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Dual graphs of degenerating curves

Dino J. Lorenzini
Department of Mathematics, University of California at Berkeley, Berkeley, CA 94720, USA

Introduction

Let X/K be a proper smooth geometrically connected curve of genus g, where K
is a complete field with a discrete valuation v. Let @y denote the ring of integers
of v in K, with algebraically closed residue field k and s:= Speck. Let L/K be the
minimal extension such that the minimal model #/0, of X /L is semi-stable. In
this paper, we attempt to express mathematically the “feeling” that if the special
fiber of % is “rather simple”, then the special fiber of a regular model /0 should
also be “not too complicated”.

We succeed in doing so when the extension [L:K] is tame. We treat the case
where #/0, is smooth (the graph of the special fiber is just one vertex) and the
case where the Jacobian of the curve X /L has good reduction: the graph associated
to the special fiber of % is a connected tree.

Recall that as an effective divisor, the special fiber &' (/k of a regular model of

n

X/K can be written as &, = ). r;C;, where C; denotes an irreducible component
i=1

of ', having multiplicity r,. When ged (ry,...,r,) = 1, we say that X/K is an S-curve

(see [7], definition 1.1). When the irreducible components of Z; are smooth and

the singularities of Z™¢ are formally isomorphic to the one of the union of the

coordinate axis in an affine space A%, we say that the regular model &/0y is a

SNC-model.

The dual graph G associated to the regular model %/0y has vertices C,,
i=1,...,nand C; is linked to C; by exactly c;;:=(C; C;) edges, where c;; denotes
the intersection number in & of the given curves. Recall also that a node of a graph
is a vertex having three or more adjacent edges. We measure how complicated the
special fiber of a regular model is by counting the nodes of the dual graph.

2.1. Theorem. Let X/K be an S-curve of genus g 2 1. If it has tame potential good
reduction, the graph of one of its regular SNC-model has at most one node.

3.1. Let X/K be an S-curve of genus g = 2. If the Jacobian of X /K has tame potential
good reduction, the graph of one of the regular SNC-models of X/K has at most
29 — 2 nodes.

4.3, Let X/K be an S-curve of genus g, unipotent rank u and abelian rank a. The
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graph associated to any almost minimal regular model Z/0x of X/K has at most
29 — 2+ u —4a nodes.

In the first section, we discuss how to construct the prescribed regular SNC-models.
Our main tool is the description of the resolution of quotient singularities as in
Viehweg [15]. The hypothesis p[[L:K] is essential, the first result above is false
when L/K is wild (2.2).

When the graph associated to an SNC-model /0y is a tree, it is usually quite
hard to find out if the special fiber of #/0, is or is not a tree. For instance, there
exists two curves of genus 2 with regular SNC-models having the same type over
K and such that the Jacobian of one has potential good reduction but the Jacobian
of the other does not. The theorem above gives a criterion to find out if the special
fiber of # has a cycle: this happens if the graph of one of the almost minimal
SNC-model of X/K has “too many” nodes.

As an application of our theorem, we show that [L:K] < 2(2u + 1) for a curve
with tame potential good reduction (2.7). When X/K is a curve with potential
good reduction such that its Jacobian is K-simple with complex multiplication
defined over K, then [L:K] = p"lq or p"* with p,l, q distinct primes (2.5).

1. Quotient of semi-stable models

Let X/K be a smooth proper geometrically connected curve of genus g and L/K
a tamely ramified field extension. In this section, we first describe a normal scheme
Z/0k, quotient of the minimal model #/0; of X,/L by the natural action of
Gal(L/K). Then, under the further assumption that X, /L has semi-stable reduction
(see [3, p. 3]) and that L is minimal with this property, we describe a regular model
Z/0k of X/K obtained by resolving the singularities of Z/0y.

We follow closely Viehweg’s article [15] and we refer the reader to his work
for more details. Though he states at the beginning of his paper that he considers
only the equicharacteristic case, his proofs of the facts listed below are also correct
in the mixed characteristic case.

Fact L. Let 6 be a generator of Gal(L/K). o induces a canonical morphism of the
generic fiber of % and hence a birational proper map % -% x , O, . By the universal
property of a minimal model [2, page 3101, this map extends to a morphism from
Y to U X, 0. Since ¥ is reduced and separated, there exists then a unique
automorphism t of % making the following diagram commutative:

¥y — ¥
! i
Spec 0, —— Spec 0,

We assume that ord(t,) = ord(a) =r and we let G = (7).

Fact I1. Since %/0, is projective, the quotient & =% /G can be constructed in the
usual way by glueing together the rings of invariants of G-invariant affine open sets
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of . Z/0x is a normal scheme and hence its singular points are closed points of its
special fiber. We let f:% — % denote the quotient map.

Fact I [15, p. 303]. Let t:%,—»%, and t°: %™ > %™ the natural morphisms
induced by t. Then the natural map

Y ) > 20 = (@ (o)
is an isomorphism over s.

For any irreducible component Y,c ¥, let D;={ueG|u(Y)=Y;} and I,=
{neGlyy, =id}.

Fact IV [15, p. 303]. Let m; be the multiplicity if Y; in % and let Z; = f(Y)). The
multiplicity r; of Z; in % g is equal to m;-r/|1;|.

We assume now that %/, is a semi-stable model of X, /L. In particular, &, = ] Y;
is reduced and is a divisor with normal crossings. Each irreducible component Y;
has at worst ordinary double points as singularities.

Fact V [15, Sect. 6]. There exists a regular model & /0y and a proper birational
morphism n:% — % such that n induces an isomorphism between & — {n~ (% 50 }
and & — {Z g} and such that, for any zeZ 4., " '(2) is a connected chain of
rational curves. By a chain of rational curves, we mean:

q
1. n7Yz)= |J E;, E; smooth and rational curves on Z.
i=1

2. (E;E;y)=1foralli=1,...,q— 1 and (E;-E;) =0 for all j % i+ 1. Moreover,
(E;-E))< —2 for all i.
In order to describe the intersection of this chain with the rest of the fiber, we set
d(z) =1 if z belongs to exactly one irreducible component of %, and &(z) =2 in the
other case. If z is a singular point of &, n~ (z) intersects the rest of the special fiber
normally in exactly 6(z) points. If 6(z)=1, we have E,nZ,—{n"'(2)} + &; if
0(z)=2, the set E,nZ,—{n"'(z)} and the set E,n%,— {n"'(z)} are both non
empty.

Viehweg states in 8.1.d on p. 306 of [15] that the model &, obtained by taking
the quotient of the semi-stable model and then resolving the singularities, has
normal crossings.

We note that the multiplicity of every irreducible components of Z is prime to the
residual characteristic.

L.1. Corollary. Let X/K be a smooth proper curve of genus g 2. Let L/K be the
minimal extension such that X /L has semi-stable reduction over Oy . The condition
1) ged(p, [L:K]) = 1 implies that 2) there exists a regular SNC-model &' /0 of X/K
with the following property: let ;=Y r;X;; if plr;, then X, is a smooth rational
curve, and (X ;- X% — X;) = 2; moreover, X intersects exactly two other irreducible
components of the special fiber.

Saito shows in [13,3.11] that condition 1 is in fact equivalent to condition 2.

1.2. We do not want to attempt to sketch a proof of Fact V. However, we would
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like to stress one of the key point in the proof of the resolution of quotient
singularities. Let ye® be a smooth closed point of #/0,, so that @}g O, [[x1])
Let u be the generator of the decomposition group of y. The action of u can be
linearized in the following way:

Let (R, #) be a local ring and p:R[[X]]— R[[X]] an automorphism having
the properties 1) u(R) =R and 2) ord (u) =r is a unit in R.

1.3. Lemma. Let X5 f(X)=a, 4 a, X +a, X% + ---. Assume that R is separated
and complete for the I-adic topology, where I'=(ag, u(ay), ..., ~*(ao)). Then there
exists an sel such that W(X —s)=b (X —s)+ by(X —s)> + by(X —s)> + ---.

Proof. We need only to show that there exists an sel such that f(s) — u(s) =0.
We construct by induction a Cauchy sequence (s,)2 , for the I-adic topology, with
(Ss+1 — s»)el", and such that f(s,) — u(s,)el” for all neN. We claim that s:= lim (s,)
has the desired property. In fact, s=s, + a, with ael” by construction. Hence
()= f(s,) + b with beI" so that f(s) — u(s) = [ f(s,) — u(s,)] + [b — u(a)]I”" for all
neN.

Set s; =0 and suppose that s,_, €l is already constructed with c:= f(s,_,) —
W(s,-)el" 1. Let Z:=(X —s,_,) and write Z5g(Z)=c +¢,Z + c,Z* + ---. Since

r—1
I is p-invariant, we have J:=(c,p(c),..., 0" () S 1" " Let &:=1/r- Y u~'(c"),
1=0

where p(Z)=c®+c{PZ + ---. We claim that s,:= s, _ , + J has the desired properties.

From the relation u*V(2)=pu(w(Z)), we get that c®*9 = u®(c) + u®(c,)c®
modulo J2. In particular, c?eJ for all l and deJ. Using the relation u~{(c¢* 1) =
¢ + ¢, u”Y(c®) modulo J?, it easy to check that g(5) — u(5)eJ2 Hence u(X — s,) can
be written as a power series in (X — s,) with constant term f(s,) — u(s,) in J> = I".

14. Lemma. Let X 5g(X)=aX 4+ a,X? + a;X? + ---. Then there exists Ye(X),
Y = X (mod X?) such that u(Y) = ayY.

Proof. Write p/(X)=a®X +aPX?+ ---, where a” = p'"Y(a)u'~*a)--- u(a)a and
a” =1. We let a® = b, with the relation u(b,) = ab,, . We conclude the proof

r—1
by setting Y =1/r Y b,u®(X).
=0

Lemmas 1.3 and 1.4 above are Lemmas 5.1 and 5.2 in [15]. However, the proof
of 5.1 in [15] is false as stated and we do not know if the complete statement of
5.1 holds in the case of several variables. P. Vojta suggested to use Viehweg’s
argument to show that a slightly weaker statement holds, as in 1.3 above.

The reader may consult [11] and [15] to find out how to resolve the possible
singularities of (R[[x]])‘*.

2, Curves with tame potential good reduction

We keep the notations and hypothesis of the previous section and we apply the
quotient construction to the case where the minimal model #/0, is smooth and
L is minimal with this property. We say that such a curve X/K has tame potential
good reduction.
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The scheme & = %/{t) has an irreducible special fiber. ¢ is obtained as the
quotient of % by the action of {z,) and is then a smooth and proper curve. The
multiplicity of &, in Z equals r/I(%,). Because #/I is a smooth model of X ./L'
and L/K is assumed to be minimal with this property, we must have I = {id}; Z,
has then multiplicity r = [L:K]. We let g, denote the genus of the curve 2. The
regular model Z /0y described in Fact V has the properties listed in the next
theorem.

2.1. Theorem. Let X/K be a curve of genus g =1 having tame potential good
reduction over L. Then there exists a regular SNC-model /0y of X/K such that
the graph G associated to its special fiber is a tree with at most one node. All
irreducible components of the special fiber are smooth and rational, with self-inter-
section smaller than or equal to —2, except possibly the component of multiplicity
r=[L:K].

2.2. Remark. This theorem is false if the curve has wild potential reduction. In
characteristic p = 2, there are many elliptic curves with potential good reduction
but with reduction type I* (i.e. with 2 nodes).

2.3. Remark. Suppose that the graph G in 2.1 has a unique node C, with multiplicity
r.Letry,...,r, be the multiplicities of the vertices adjacent to C. The simple graph
G is completely determined by the set (r,r,...,r;) and the condition r|Y r;
[6,Remark 4.2]; the terminal vertex on the i terminal chain has multiplicity x;
equal to gcd(r,r;) and Fact VI below gives a geometric interpretation for the
terminal multiplicities x;. We note that the set (r,x;,...,x;) does not completely
determine G.

When ged(x,,...,x,)=1, we say that the curve X/K is an S-curve. We
computed the order ¢ =|®| of the group of components of the Néron model of
Jac(X)/K as ¢ =r""?/x,---x, [6, Corollary 2.3]. In the same section, we also
proved in an elementary way that given a simple tree with exactly one node C,
the multiplicity r of this node kills the group of components @.

We note now that given an S-curve with tame potential reduction, the model
Z /0 described in Fact V is such that either its associated graph is a simple chain,
in which case its group of component is trivial, or its associated graph is a tree
with exactly one node and this node has multiplicity [L:K]. In [8], McCallum
proves that [ L: K ] kills the canonical subgroup ¥ of @ (see also [ 7, Proposition 3.7]).
Since X/K has potential good reduction, ¥ = @, and hence we obtain a new proof
that the multiplicity of the node of the special fiber kills the group of components.

Fact VI [15, Sect. 6]. Let z,,...,z,; be the closed points of & (or of &) that are
ramification points of the morphism f:%,— 2. Then {z,,...,2,} is the set of
singular points of Z. Moreover, if 1:& — % is the desingularization of Z described
in Fact V, then the multiplicity x; of the terminal vertex on the terminal chain =~ (z;)
is equal to the number of closed points in the fiber f;(z,).

2.4. Remark. We can compute the genus g of the curve X/K in two different ways:

1) We can use the “adjunction formula” for the special fiber of %=} m;C;:
let p(C;) be the arithmetical genus of the irreducible component C; and d; its degree
in the graph G associated to the special fiber &,. The genus g of X is expressed
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as 29— 2= m(—(C;"C;) — 2+ 2p(C;)). Letting a = Y m;p(C;) as in [7, Definition
2.1], we can write 29 — 2 = 2g, — 2 + 2a where 2g, — 2= m;(d; — 2). The integer
g, was called the linear rank of . In the present case, the vertices with degree 1
have multiplicity x;,...,x,. The only possible vertex with degree bigger than or
equal to 3 is the node and its has multiplicity r=[L:K]. All curves in &,
are rational except possibly the node which has genus equal to g,. The adjunction
formula becomes:

29—2=[rd—2)—) x;]+2rg,.

2) We can apply the Riemann—Hurwitz formula to the tame cover ¥ — %™,
The ramification points are z,,...,z, and | f; (z;)| = x;. Hence

29—2=r2g, = 2)+ Y x,(r/x; — 1) =2rg; +rd —2) - Y x;.

In the remainder of this section, we discuss some consequences of the arithmetical
properties of this formula for the genus.

2.5. Proposition. Let X/K be a curve with potential good reduction such that its
Jacobian is K-simple with complex multiplication defined over K. Then [L:K] = p"lgq
or p"I* with p,1,q distinct primes and n,k = 0.

Proof. The Galois group Gal (L/K)is abelian [14, Corollary 2, p. 502]. We can then
reduce the situation to the case where the extension L/K is tame by making the
base extension M/K with Gal (M/K) isomorphic to the p-part of Gal (L/K). A curve
whose Jacobian is K-simple and has complex multiplication over K with K = L
has abelian rank equal to zero for all subfields K = F < L (see [10, Lemma 2.4]). In
the terminology of 2.4, the abelian rank of X/K is equal to g,. We are then reduced
to study curves with the following properties:

e For any field L o F 2 K, the irreducible components of the special fiber of the
minimal model of X/F are all rational curves.
e X/K has tame potential good reduction.

For short, we shall call a curve with these properties a rtpg-curve. Our claim follows
now from the next proposition.

Note that the assumption that Jac(X) has complex multiplication defined over
K is essential for X to be an rtpg-curve. Let us consider for instance a tame Fermat
quotient X, defined over K = Q" as the smooth proper model of the plane curve
¥? = x*(1 — x). It has good reduction over a cyclic extension L/K of degree 2(p — 1)
(see [1,4.6]). The complex multiplication is defined only after adjoining to K the
p-roots of 1. X/K is not an rtpg-curve, even though its Jacobian has complex
multiplication over some extension of K. The special fiber of the smooth regular
model of X; /L over O, is isomorphic to the smooth proper model of the curve
Y given by v?=u? —u [1,3.4]. The automorphism t in Fact I induces an
automorphism yu of Y of the form (u, v) > (au, \/&v), with aeF} of order p — 1. When
6|(p — 1), let v = u2P~ V3 It is not hard to check that Y/{v) has genus (p — 1)/6 = 1.

2.6. Proposition. Let X/K be a rtpg-curve of genus g = 1 and let r = [L:K]. Denote
by &/0 the regular model described in 2.1. The only possible values for r are:
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1. r =g, 13 q prime numbers. Then there are only two possible values for the genus g:

(@) 29 =(— 1)(q — 1); in this case, the terminal vertices of ¥ ; have multiplicities
(g, 1) and ¢ = 1. After a field extension of degree I, the new model has | + 1 terminal
branches, all with terminal multiplicities equal to 1 and ¢ = q' .

(b) g=(—1)(q —1); in this case, the terminal multiplicities are (l,1,q,q) and

¢ = 1. After an extension of degree I, the new model has 2l terminal branches, all
with multiplicity equal to 1 and ¢ = g>*~ .
2. r=1%1 prime. Then 2g = AlI*" (1 — 1) for some integer A,¢ =14 and the model
has A + 2 terminal branches, two of them with terminal multiplicity equal to one and
A with terminal multiplicity equal to 1~ . After a field extension of degree I, the new
model has I1A + 2 terminal multiplicities, two of them equal one and A of them equal
I[¥=2_ In this case, ¢ = I'A. '

Proof. Given L/K with Galois group {¢ ), any non trivial extension L/M, where
L > M 2 K, has Galois group {¢*) for some a|r, a + r (we abbreviate this condition
by a|.r). For each a|,r, we have a morphism f,:% — & ,:= %/{z*) which induces
the morphism f, %, — Z5¢¢ = ¥ /{(r,)*>. To simplify the notations, we let Y:= %
and Z,= 7. We let g, be the genus of Z,. The Riemann-Hurwitz formula
applied to the tame cover Y — Z, reads:
29—-2=1rQ29; -2+ Y, AX)x(r/x—1)
x|rxFr

where A(x) is the number of orbits of {7 ) containing exactly x closed points of
Y and g,g, are respectively the genus of Y and Z,. For each x|,r, the model
Z'/Oy described in Fact VI has A(x) terminal chains with terminal multiplicity x.
In particular, the number of terminal chains is equal to d:= ) A(x). The

. . . |
Riemann—Hurwitz formula applied to the tame cover Y > Z, reads: *

, X r/a
2—2=_(g,~ 2+ x.?x:*, A, ")(TzSc“)(x/(a, 0! )

In particular, if b = ged (x, A(x) # 0), we obtain an etale morphism Z, — Z, of degree
b such that b(g, —1)=g,— 1. If g, =0, then b= 1.

By definition, a rtpg-curve has g, =0 for all a|,r. We prove now that r cannot
be divisible by 12¢, with [, g distinct primes. Suppose that r = [%q. We can write the
integer 2g — 2 in five different ways, using the R—H formula for all divisors of I%g.

a=1 =22q+AQ)(2q— 1)+ AD)llg— 1)+ A(H)I*(@q—1)
+ A(lg)lg(! — 1) + A(g)g(* — 1)
a=1 —=2g+ AQ1)(g— 1)+ ADI(g— 1)+ A(*)I*(q—1)
+ A(lg)lg(! — 1) + A(g)q( — 1)
a=q =22+ A% =1+ ADII - 1) + A(g)lq( — 1) + A(g)q(* — 1)
a=lg =24+AM)(I-1)+ADII - 1)+ Alg)lq(l — 1) + A(9)q(! — 1)
a=12 —2q+ A(l)(g— 1)+ A()lg — 1) + A(*)*(g—1).
From the first two lines above, we get that A(1)+ A(q) = 2. From the next two,
we get that A(1) + gA(q) = 2, so that A(1) = 2 and A(g) = 0. By substracting the last
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two lines to the second, we get a contradiction. We prove now the first assertion
of the proposition and leave the others to the reader. Suppose that r =lq.

a=1 29—-2=-2lg+AN)(Iq—1)+ ADlg— 1)+ A@g)qi—1)
a=1 29—-2=—-2q+ A(l)(g— 1)+ ADlg—-1)
a=q 2g-—-2=-2+ AN - 1)+ A(q)q(l —1).
We obtain that: A(1)+ A(qg)—2=0 and A(1)+ A(l) —2=0. The case A(l)=2

cannot happen because g = 1. Finally, when A(l) = A(q) = 1,29 =(— 1)(¢ — 1) and
when A(l) = A(q)=2,2g=2(I—1)(g—1).
2.7. Proposition. Let X/K be an S-curve of genus g = 1 with tame potential good
reduction. Let u be the unipotent rank of the Néron model of Jac(X)/K. Then
[L:K]£2(2u+ 1). If [L:K] > u, theneitheru =g oru + 1 = g = [L:K]. Moreover, if
a prime 1> u divides [L:K], then either

Nu=gandl=g+1orl=2g+1

Qu=g—1landl=[L:K]=g.
2.8. Remark. In [8] (or [7, Proposition 3.3]), r=gq$'---qf* is bounded as
Y gt ~'(g;— 1) £ 2u when r =0mod 4 or r odd. This bound implies directly that

if a prime [ divide 7, then I < 2u + 1. When 2g + 1 is prime and divides [L:K], the
special fiber of the smooth model of X /L is well understood [5, Theorem 2.9].

Proof. We keep the notations used in 2.3 and 2.4. In particular, r = [L:K]. Given
an S-curve with tame potential good reduction, the model described in 2.1 and 2.3
gives rise to a set (r,ry,...,r;) of positive integers with the following properties
(compare with [4, p.17-18]):

S1) ry<r forall i=1,...,d

d
§2) rdivides Y r;
i=1

d
83) (d—2)r— Y x,is an even integer, where x; = gcd (r,7;)
i=1

S4) ged(r,ry,...,r))=1.
We note that, by §2,d is always bigger than or equal to 2. As in 2.4, g, denotes the
d
integer defined by 2g,—2=(d —2)r— ) x;. We proved that g, is positive in [6,
i=1

Proposition 4.1]. By definition, g, +rg; =g and by Raynaud’s Theorem [12]
(see also [7, Theorem 1.3]),u=g —g,. If g,=0,r =g/g, Su+ 1. When g, + 0, we
bound r in terms of g, = g —rg, < u by using the following facts:

1. d=3 implies r <2(2g,+ 1)
2. d=4 implies r<2(g,+ 1)

3. d= 5 implies r £2(g,— 1)

4. d=2 is equivalent to g, =0.

These facts are well-known. Their proofs are tedious and consist of examining all
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possible subcases. Let us discuss now the primes [ > u that divide r. If r — 1 > u,
we have ui=g —g, =g,+ (r — 1)g; =2 g, + ug,. In particular, if g, # 0, then g, = 1,
g,=0,u=g—1 and hence g =r so that if | > u, then [=g=r.

We suppose now that g, =0; then g, =g > 1 and we can assume that d > 3.
We show that /> u = g =g, can happen only in the case | = 2g, + 1 and d =3 or
I=g,+1andd=3 ord=4.

Ifd = 5,r <2(g,— 1). In particular, if | > g, + 1 and l|r, then | = r. By the formula
for the linear rank, we have 2g, =(d — 2)(/ — 1) and we obtain a contradiction.

Ifd=4,r<2(g9,+ 1). Again, if I > g, + 1, we must have r = and this leads to
a contradiction in a similar way.

If d =3, r <2(2g, + 1). In this case, r = [ implies | = 2g, + 1. If we assume that
g,+1=1<2g,+ 1, the remaining possibilities for r are r = 2 or r = 3. It is easy
to check that none of them occurs unless =g, + 1.

3. Curves whose Jacobian has tame potential good reduction

As a second application of the quotient/desingularization construction described
in the first section, we prove the following theorem:

3.1. Theorem. Let X/K be a curve of genus g = 2 whose Jacobian has tame potential
good reduction. There exists a regular SNC-model & /0y of X/K whose associated
graph is a tree with at most 2g — 2 nodes.

Proof. We keep our previous notations. In particular, f:% —% denotes the
quotient map and 7: & — % denotes the resolution of singularities. Let %, = %™ =
u'Y; denote the special fiber of the minimal semi-stable model #/@; and let G(Y)
be its associated graph. Let 27 = U Z; be the special fiber of the scheme Z/0y
and let G(Z) be the following graph: its vertices are the irreducible components Z;
and two vertices Z;, Z; are linked in G(Z) by exactly | Z;n Z;| edges, where |Z;n Z |
denotes the number of closed points in Z;nZ;.

Since Jac (X /L) has good reduction by hypothesis, all irreducible components
of &, are smooth and the graph G(Y) is a tree [7, Corollary 1.4]. We claim that
the graph G(Z) is also a tree. This follows easily from the following fact, which
implies that a cycle of G(Z) can always be lifted to a cycle in G(Y): Let PeZ,nZ;
with i  j. For any Y,ef ~'(Z)), there exists Y;ef ~!(Z;) and QeY,nY; such that
f(Q) = P. The proof is almost obvious: let Qe Y; with f(Q) = P. Given Y,ef ~1(Z)),
we find Q,e Y, with f(Q,) = P, or equivalently, with (Q;) = Q for some ueG. Hence
QeY; = u(Y,).

Let Z/0 be the regular model of X/K described in Fact V. Let 2% = U X,
be its reduced special fiber and let G(X) denote its associated graph.

According to Fact V, one can obtain the graph G(X) from the graph G(Z) by
doing the following operations: for each singular point (of 2) PeZ,nZ; with i % j,
replace the corresponding edge of G(Z) by a chain connecting Z; to Z;. The length
of the chain is determined by P. For each singular point PeZ; and P¢Z; for all
J#i, attach a terminal chain to Z;. Again, the length of the chain is determined
by P.

In particular, a node of G(X) corresponds to a vertex of G(Z). More precisely,
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X, is a node of the graph G(X) if X; — n(X}) is birational and if one of the following
conditions is satisfied:

Case A. n(X,) is a node of G(Z) or equivalently /' ~*(n(X,)) contains only nodes
of G(Y).

Case B. For some Y;ef ™' (n(X,)), f}y,: Y= n(X,) is not etale and g(Y;) > 0.
Case C. For some Ye f~!(n(X,)), fiy,:Yi—n(X,) is not etale and g(Y;)=0.
We note that a priori,

o There are at most g — 2 curves satisfying case A.

By minimality of the (reduced) model %, each terminal vertex in G(Y) represents
a curve of strictly positive genus. By the next lemma, we know that the number
of nodes of the graph is bounded by the number of terminal vertices minus 2. We
conclude then that the tree G(Y) associated to the special fiber has at most g — 2
nodes.

3.2. Lemma. Let G be a connected graph having ﬁ independent cycles. Given a vertex
C,;, let d; denote its degree in G. Then 2 — 2 = Z (d, — 2). In particular, the number
of nodes of G is at most equal to the number of termmal vertices of G plus (2 — 2).

Proof. Let m and n denote respectively the number of edges and the number of
vertices of G. By definition, § = m — (n — 1) and hence 2 — 2 = 2m — 2n. It is trivial

to check that Z d,=2m. The second statement follows since Z d;—2)=

q=1
k nodes k nodes

Y @—2+0+ Y (—1l)and Y (d,—2)is bigger than or equal to the
i=1 all term.vert. i=1

number of nodes of the graph.

o There are at most g curves satisfying case B because g =) g(Y;), where g(Y;)
denotes the geometric genus of the smooth component Y;.

Hence, if all irreducible components that satisfy case C also satisfy case A, the
theorem is proven. We study now the irreducible components of G(X) satisfying
case C but not case A. Let X, be such a curve and let Y,ef  (n(X,)) be an
irreducible component of G(Y) of genus 0 which is not a node of G(Y) but is such
that Y, — f(Y,) = n(X,) is not etale. In particular the inertia group I, is not equal
to the decomposition group D,. Let u be the generator of D, acting on the smooth
rational curve Y,. u has either zero or two fixed points.

When the degree in G(Y) of Y, equals 2 and the generator u of D, fixes the
intersection points, the morphism py,: Yo —n(X,) is ramified only at the inter-
section points and X, is not a node of G(X).

Suppose now that the degree of Y, equals 2 and that the generator u of D,
permutes the intersection points. There exists then two fixed points which are not
intersection points; since pfy, has four fixed points, pufy, =id, and Do/I, = Z/2Z.
Let Y_,,...,Y_, Yy, Y,,..., Y, be the vertices on the chain corresponding to Yo,
ie. Y; intersects Y., , exactly once and the only vertices Y; with degree different
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than 2 are the vertices Y_, and Y|. The case Y_, = Y, cannot occur because G(Y)
is a tree. We note that u(Y_;)=Y; and hence k=1.

Suppose first that G(Y) is a chain, i.e. that Y_, and Y, are terminal vertices.
Then by minimality, g(Y_,)=g(Y,)>0 which implies that g=2. Note that
u3(Y,) =Y, for all i. Except for f(Y,), all eventual nodes of G(X) would have to
satisfy Case B. Since u(Y;)= Y_;, the number of such nodes is bounded by g/2.
Hence G(X) has at most g/2 + 1 £2g — 2 nodes.

Suppose now that G(Y) is not a chain. Each connecting chain on this graph
has at most one vertex Y, as above. Remove one edge from each connecting chain
of G(Y) that does not contain such a Y. Suppose that we remove in this way b
edges: we obtain then b + 1 disjoint subtrees of G(Y); our discussion above shows
that the nodes of G(Y) in each of these subtrees are identified in G(Z). Hence the
number of nodes in case A is at most b+ 1.

Note that in a tree, the number of nodes equals the number of connecting
chains plus one. Since the number of nodes in case C is at most equal to the sum
of the number of connecting chains in each of the subtrees defined above, we can
conclude that the number of nodes in case A plus the number of nodes in case C
is at most equal to the number of nodes of G(Y). We already noted that G(Y) has
at most g — 2 nodes and that there are at most g nodes satisfying case B. Hence
the number of nodes of G(X) is at most 2g — 2.

4. The maximum number of nodes of a type

Our aim in this section is to bound the number of nodes of the graph G associated
to a regular model of an S-curve X/K in terms of the unipotent, toric and abelian
ranks u, t,a of the Jacobian of X/K. We shall first bound the number of nodes of
G in terms of the integers y, §, « introduced in [7, Definition 2.1]. Recall that given
a type T=(n,M,R,P,G), a:=) r;p(C;) and y:= g(T) — o — f, where B denotes the
first Betti number of the graph G. When T is associated to a special fiber 2, = Y r,C,,
we have g(T)=g(X),y Su, and a = a; moreover, f =t when Z/0 is a regular
SNC-model of X/K.

It should be noted that given a curve X/K and an integer N, it is always
possible to find a regular (SNC-)model of X/K such that the number of nodes of
its associated type is bigger than N. In fact, blowing up three distinct regular points
lying on the same irreducible component will turn this component into a node of
the new type.

4.1. Definition. We say that a regular model or a type is almost minimal if
the only possible vertices C with arithmetical genus p(C) = 0 and self-intersection
(C-C)= —1 are the nodes of the associated graph G or the vertices of degree 2 on
the connecting chains.

It is clear that the minimal regular model of X/K is almost minimal. The
following lemma shows that the number of nodes may increase after a blow up.

4.2. Lemma. Let E be an exceptional curve on a regular model %. Let C4,...,C,
denote the irreducible components of the special fiber that intersect E. Let D; = n(C,),
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where n:% — % is the contraction of E. If (E-C;)=1Vi=1,...,n, then (Di'Dj))=1
Jor all i+ j and p(C;)=p(D,) for alli=1,...,n.

PrOOf. IJet —C = (Ci'Ci), - di = (Di‘Di) and a,-j = (D,'DJ) i=.-'- j. Let ¥; denote the
multiplicity of the curves C; and D; in %, and %,. From the intersection matrices
of the special fibers, we get

—cri+yrj=—dr,+Y a;r; forall i=1,...,n
J j*

or, equivalently

Y (a;— Drj=(d;+1—c)r;.

J¥i
In particular, a;; = 1Vi+jifand only ifd; + 1 —c;=0for alli=1,...,n. The above
equalities also imply that d;+ 1 —c¢;=0. The lemma cannot follow only from
considerations on the intersection matrices. We show now that d; + 1 — ¢; = 0 using
the fact that the genus of the special fiber is preserved under blowups. From the
formula 2g — 2 = X (X, — K) applied to %, and %, we get that

Z"z(ci -2)— Z"i + 2Zr|’p(ci) =yrd,—2+ ZZV;P(D;')-
Since p(C;) < p(D;)and d; + 1 — ¢; = 0, we must have p(C;) = p(D;)and d;+ 1 —c; =0.

4.3. Theorem. Let X/K be an S-curve of genus g=2. Let /0Oy be any almost
minimal regular model of X. The number of nodes of the graph associated to X, is
smaller than or equal to 2g — 2 + u — 4a. This bound is sharp when t = a = 0.

The proof of this theorem is postponed to the end of this section. It is purely
algebraic and follows from our study of types.

4.4, Remark. Let X/K be a curve of genus g = 2. For any M/L, let %,, denote the
minimal model of X,,/M. The number of nodes of G(%,,) is constant for all such
M % L and is bounded by 29 —2 —a;.

Proof. Let M,/M be a field extension. The model #,,, is obtained by resolving
the singularities of the model (# M)‘VM,' The number of nodes is constant because
the resolution of such ordinary double points does not introduce new nodes in
the graph (see [3, Proposition 2.2]).

By 3.2, we know that the number of nodes k of any type equals at most
Y. l;+ 2B —2, where I; denotes the number of terminal chains of the node C;.

nodes

When T is reduced, all terminal vertices have self-intersection (— 1); when the type
is also almost minimal, each terminal vertex has p(C) > 0. It follows that ) I, <a.

nodes

In the semi-stable case, f =t by [7, Corollary 1.4] and all irreducible components
are smooth. Hence a<aand k<2t+a—2=2g—-2—a.

4.5. Example. In the following example with ¢t = a =0, u = g, the number of nodes
is equal to 7=3g — 2.
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We note that by 3.1, this graph cannot be associated to a curve whose Jacobian
has potential good reduction.

Before proving our main result on the number of nodes of an almost minimal
type, we summarize in the following lemmas a few properties of some special nodes.
As usual, a node C is denoted by (r,r,,...,r;) where r is its multiplicity,
ry,...,r; are the multiplicities of its adjacent vertices that are on a terminal
chain and r,,4,...,r; are the multiplicities of its other adjacent vertices. Let
s(C)=gcd(r,ry,...,r;). We made the following definitions in [6, Theorem 4.7]:

29(C)=@d—-2)(r—1)— Zd: (x;—1), where x;=gcd(r,r;)
i=1

WO=24(O)+ 3, (5= 1)

We say that a type T=(n,M, R, P,G) is a NC-type if (C;C;)<1 when i% j. A
NC-type corresponds to a simple arithmetical graph (G, — M, R) [6]. Proposition 4.11
in [6] allows us to reduce most problems on types to the study of NC-types only.

4.6. Lemma. Let (C,r) be a node of a NC-type.

o Suppose that g(C) £ 0; if r > s(C), then exactly two branches have x; = s(C), the
others have x;=r.

o Suppose that u(C) < 0; such a node has exactly one connecting chain and if (C,,r;)
belongs to it, then x; = s(C). In particular, u(C) = 1 — s(C).

Proof. Possibly replacing r; by r — r;, we can assume that 1 <r;<rand r|3 r,. Let
s=gcd(r,ry,...,1y). Replacing (r,r4,...,7;) by (r/s,r,/s,...), we may assume that
s=1. Construct with (r/s,r,/s,...) a simple tree T with exactly one node, as in
[6, Remark 4.2]. By [6, Corollary 4.9], the fact that g,(C) = 0 implies that one of
the self intersections has to equal (— 1). We claim that the self intersection of the
node cannot equal (—1). Otherwise, r=Yr; and 2g,—2=—2=(d—2)r —
Y ged(r,r) = (d—2)r — Y.ri=(d —3)r leads to a contradiction. If r >r;, then by
construction all self intersections on the i terminal chain of T are smaller than or
equal to (— 2). Hence one of the r;s must be equal to r. Without loss of generality, we
can assume that r,=r. We can then repeat the same argument with the set

d—1
(r,74,...,74—;) because r| Y r. Finally, we obtain that ry=-.-=r,=r. Using
i=1

once more the definition of the linear rank, 2g,—2=—2=(d—-2)r —(d — 2)r —
ged (r,ry) — ged (r, r,), we get that ged (r,7,) = ged (r, ;) = 1. We proved the second
part of this lemma in [6, Theorem 4.7].

Let n(C) = u(C) + o(C), where a(C) =Y r,p(C,), the sum being taken over all
curves (C,,r,) having self-intersection equal to (— 1) and belonging to a terminal
chain of C. Note that if a(C) % 0, then (C) = s(C). Let o = dZ . a(C)Za.

nodes

4.7. Lemma. Let (C,r) be a node of an almost minimal NC-type.

o Suppose that n(C) £0; such a node has r=1 and 1=0. In particular, n(C) = 0.
We shall say that such a node is a slim node.
o Suppose that n(C) = 1; there are 3 different kinds of such nodes:
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1. r =2, exactly three connecting branches with x; = 2 and no terminal branches.
uw(C)=1,a(C)=0.

2. r=2, exactly three branches with x;=2,1,1 and the branch with x;=2 is
connecting. u(C)=1,0(C)=0.

3. r=1, exactly one terminal branch, whose terminal vertex has p(C)= I.
wC)=0, a(C)=1.

Proof. Suppose that n(C) <0. The case «(C)> 0 cannot happen: this is clear if
u(C) =0; in case u(C) <0 and a(C) = s(C) > 0, then #(C) = — (s — 1) + s = 1, which
is a contradiction. We remark that o(C) = 0 implies that no curves on any terminal
chains of C have self-intersection equal to (—1). In particular, no terminal
multiplicities of the node C can equal r. Hence, if r = s(C), [ = 0. It is easy to check
that in this case, 7(C) < 0 implies r = 1. Finally, the case r > s(C) cannot happen.
Since g(C) <0, C has two chains with gcd equal to s(C); the others have gcd equal
to r. It is easy to check that n(C) <0 cannot happen in this case.

Suppose that #(C)=1. The case a(C)>1 cannot happen because otherwise
#(C) = — (s — 1) < 0leads to a contradiction. If «(C) = 1, then s(C) = 1 and g(C) = 0.
Moreover, no terminal chain can have ged equal to > 1. We leave it to the reader
to check that only case 3 can happen if (C)=1. If a(C) =0, then g(C) <0 and
none of the d — 2 chains with gcd equal to r can be terminal. We leave it to the
reader to check that only case 1 and case 2 can happen if «(C) = 0.

4.8. Proposition. Let T =(n, M,R, P, s = 1) be an almost minimal type such that the
multiplicity of each of its nodes is bigger than or equal to 3. Then T has at most
Y + 30 nodes.

Proof. We first reduce to the case of an almost minimal NC-type, obtained by
blow-ups, using Proposition 4.11 in [6]. According to this proposition, we can
consider an almost minimal NC-type with same nodes and same invariants y, 8, «’
as G. For any NC-type, we have the formulas ([6], Theorem 4.7):

2g,—2f= Y wC) and 2g,—2f+a'= Y n(C)

nodes C nodes C

By our assumption and the previous lemma, none of the nodes of T has 5(C) < 1,
so that Y n(C)= 2k. Hence the conclusion follows.

nodes C
4.9. Theorem. Let T = (n, M, R, P,s = 1) be an almost minimal type whose graph has
k nodes. If G does contain a slim node (see 4.7) then k < 3 (y + 1&) + 2B — 2. Otherwise,
k<2(y +3o).

Proof. As in the previous proposition, we first reduce to the case of an almost
minimal NC-type. If the type has no slim nodes, then by definition all its nodes
have n(C) = 1. We use the formulas quoted in the previous proposition to conclude
that k < 2(y +4a’). When T has at least one slim node, our theorem follows from
the next lemma:

4.10. Lemma. Let T be an almost minimal NC-type with at least one slim node.
Then the number of slim nodes of T is bounded by y + o’ + 28— 2.
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Proof. Let N be the set of nodes of G. Let & be the set of slim nodes in N. We
say that two nodes are connected if there exists a connecting chain between them.
Let 2 be the set of nodes in N — & connected to two or more nodes of &. Let
% be the set of nodes in N — & — 2 connected to exactly one node of &.

We want to construct a new graph % such that & is included in the set of nodes
of % and then apply 3.2 to bound the number of nodes of 4. But first we construct
a subgraph ¢’ of %, whose vertices are the elements of & =&[[2]][¥%. Two
vertices C and C’' of & are linked in ¢’ if there exists a connecting chain in G
linking the corresponding nodes. & is included in the set of nodes of this
subgraph by 4.7. Note that by construction, only vertices in € can be terminal
vertices of this subgraph.

Consider a vertex C in € with #(C) = 1. According to our description in 4.7 of
nodes with n(C)=1, a node C in ¥ cannot be a node with only one connecting
chain. This is clear if C is in case 1 or 3. In case 2, the chain with x; = 2 is connecting.
Since Ce¥, it is connected to a slim node, which has r = 1. Hence a chain with
x; =1 must also be a connecting chain. It follows that each vertex C in ¥ with
n(C) =1 has a connecting chain (in G) to a node v¢ of G not in & We can now
construct the graph ¢ in the following way. For each node v.e 2 | | %, we introduce
a new edge that links in ¢ > ¢’ the vertices C and v¢. Let & = {v,,...,v,} be the
set of nodes v not in 2| [ %; we introduce b new vertices, noted again by vy, ..., v,
and we link in % the vertex v; to each vertex C; in %' such that vc, = v;.

The terminal vertices of ¥ are either in € or #. For each terminal vertex C
of 4 in €, n(C) = 2 by construction. Also by construction, there exists a bijection
between the set of terminal vertices of 4 in % and a set of vertices of %’ in € with
n(C) =1

2g,—2B+o' = dch(C)
z ) n(C)
Cin%
2 ) [Ool+ ) () +1(C)]
Ce¥ withn(C)22 ve#F,C corresp.in €
22| 7|

= 2-(number of terminal vertices in ).

Hence the number of terminal chains of ¢ is smaller than or equal to g, — f + 3o'.
We note that the first Betti number of ¢ is smaller than or equal to f so that, by 3.2:
|&| £ number of nodes of ¢
< 2B — 2 + (number of terminal chains of %)
§26_2+gn_ﬁ+%al
=y+2f+40' -2
Proof of 4.3. As noted at the beginning of this section and proven in [7], we have
(%) = a and y(%) £ u. In particular, p(%) — (%) Su—3a,s0thatk <3 (y + 3o') +

2B-2<29—-2+y—4a<29—2+u—3a.
By the previous theorem, the number of nodes of G(Z',) equals at most the
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maximum of k; =2g—2+y—3%a and k,=2g9—a—2f. k, 2k, except when
y + 3o+ 2B < 2. This could happen if g = 1 but we assumed that g = 2. This could
also happen if y=a =1 and g=2. It is easy to check with the tables of [9] that
when g = 2, the number of nodes is bounded by k;.
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