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We investigate, in this article, a generalization of the Riemann–Roch theorem for graphs

of Baker and Norine, with a view toward identifying new objects for which a two-

variable zeta-function can be defined. To a lattice Λ of rank n− 1 in Zn and perpendicular

to a positive integer vector R, we define the notions of g-number and of canonical vec-

tor, in analogy with the notions of genus and canonical class in the theory of algebraic

curves. When Λ is the full sublattice of Zn perpendicular to R, its g-number turns out

to be the classical Frobenius number of the coefficients of R. We investigate the exis-

tence of canonical vectors—in particular, in the context of arithmetical graphs—where

we obtain an existence theorem using methods from arithmetic geometry. We show that

a two-variable zeta-function can be defined when a canonical vector exists.

1 Introduction

We investigate, in this article, a generalization of the Riemann–Roch theorem for graphs

of Baker and Norine [3], with a view toward identifying new objects for which a zeta-

function can be defined.

The theorem of Baker and Norine was motivated by the classical Riemann–Roch

theorem for smooth projective curves. The main topological invariant of such a curve is

its genus g ≥ 0. The theory of functions on such curves motivates the introduction of the
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2 D. Lorenzini

notion of a divisor D on the curve, having degree deg(D), and each curve is endowed with

a canonical divisor K, of degree 2g − 2. To each divisor, D, is associated a vector space

of functions having dimension h(D), with h(D) = deg(D) + 1 − g when deg(D) > 2g − 2.

We propose a generalization of the Riemann–Roch theorem in [3] for integer lat-

tices Λ of rank n− 1 in Zn and perpendicular to a positive vector R. When G is a con-

nected graph on n vertices with (n× n)-Laplacian matrix M, our results apply to the

lattice ΛG consisting of the image of M in Zn. This lattice is perpendicular to (the trans-

pose of) the vector (1, . . . , 1) (see Example 2.2).

In analogy with the theory of algebraic curves, we introduce in the next section

the g-number g(Λ) of Λ (Definition 2.1). When ΛR is the full sublattice of Zn perpen-

dicular to R, the integer g(ΛR) is equal to the classical Frobenius number of the coor-

dinates of R (Lemma 2.4). We define a notion of canonical divisor K of a lattice Λ in

Definition 2.6.

To state our proposed generalization of the Riemann–Roch theorem, we intro-

duce in Section 3 the notion of Riemann–Roch structure on a lattice in Definition 3.1,

with its associated Riemann–Roch function h. A Riemann–Roch function is the weakest

type of function for which a nontrivial, meaningful Riemann–Roch theorem could pos-

sibly be expected to hold. With this definition, a lattice has a Riemann–Roch structure if

and only if a Riemann–Roch theorem holds for this lattice and for the associated func-

tion h. If the lattice has a canonical divisor, then it carries a Riemann–Roch structure

(Proposition 3.4), but a lattice could carry several distinct Riemann–Roch structures.

To a lattice endowed with a Riemann–Roch structure, we associate a two-

variable zeta-function in Definition 3.6, and the main properties of this function, such

as its functional equation, are proved in Proposition 3.10. This definition is motivated

by the theory of zeta-functions for curves over finite fields. A two-variable zeta-function

for curves along these ideas was introduced by Pellikaan [26].

In the case of a finite connected graph, such a zeta-function can always be

defined, owing to the theorem of Baker and Norine. A partial evaluation of this asso-

ciated two-variable Riemann–Roch zeta-function is shown, using results of Biggs and

Merino, to equal a partial evaluation of the Tutte polynomial of the graph (Proposi-

tion 3.12). It would be interesting to understand better what are the graph-theoretical

properties shared by two graphs having the same zeta-function (Proposition 3.14).

In Section 4, we discuss the case of arithmetical graphs. An arithmetical graph

(G, M, R) consists of a usual connected graph G on nvertices, plus some extra structure,

including a natural lattice ΛM of rank n− 1 in Zn. Arithmetical graphs arise naturally in

arithmetic geometry in the context of degenerations of curves [18].
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Zeta-functions on graphs and Riemann–Roch theorems 3

The main integer associated with an arithmetical graph is denoted by g0(G, M, R)

in [17], and is given by an explicit formula in terms of the data (G, M, R) (see

Definition 4.1). Arithmetical graphs, with g0(G, M, R) = 1, 2, and 3, have been completely

enumerated [25, 31]. Given an arithmetical graph (G, M, R), we show in Theorem 4.2 that

the g-number of the lattice ΛM is at most equal to g0(G, M, R), and that when we have

equality, g(ΛM) = g0(G, M, R), then ΛM has an explicit canonical divisor, and its zeta-

function can be defined. Our proof uses techniques from arithmetic geometry. It would

be of interest to understand better when the equality g(ΛM) = g0(G, M, R) occurs. The

problem of classifying the arithmetical graphs with small g-numbers seems to be quite

difficult (see [13] for some partial results).

In Section 5, we produce some classes of lattices Λ beyond those associated with

the Laplacian of a graph and for which we can compute explicitly the g-number g(Λ)

and prove that Λ has a canonical divisor (Proposition 5.3). In view of the fact that g(Λ)

is a generalization of the classical Frobenius number, it is not surprising that closed

formulas for g(Λ) are not expected to exist in general. This explains our interest in

Theorem 4.2, where an explicit formula for g(Λ) is shown to exist in some cases. In

general though, given a lattice of moderate size explicitly, experiments seem to indicate

that it is computationally quite expensive to determine its g-number.

We also show in Section 5 that a lattice Λ ⊂ Zn perpendicular to a positive vec-

tor R has a canonical vector if and only if an associated lattice perpendicular to the

vector Jn, the transpose of (1, . . . , 1), has a canonical vector. Lattices perpendicular to

Jn are studied in great detail in a paper by Amini and Manjunath [1], where such lat-

tices are called sublattices of the root lattice An−1. We thank an anonymous referee

for providing us with the reference [1]. In [1], the authors discuss the existence of a

Riemann–Roch theorem for lattices perpendicular to Jn and for a specific Riemann–

Roch function h. Two integers, gmin(Λ) ≤ gmax(Λ), are introduced in [1] for such lattices,

and it turns out that gmax(Λ) = g(Λ) (Proposition 5.7). It is shown in [1, 5.5], that if

gmin(Λ) = gmax(Λ) and the lattice is reflection invariant, then it satisfies a Riemann–Roch

theorem.

2 The g-Number of a Lattice

We introduce in this section the basic terminology used in this article, and define the g-

number and canonical vector of certain lattices Λ of rank n− 1 in Zn. The g-number can

be seen as a generalization to lattices of the Frobenius number of an n-tuple of positive

integers (r1, . . . , rn).
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4 D. Lorenzini

Let R∈ Zn be a vector with strictly positive integers entries. We denote its

transpose by t R= (r1, . . . , rn) . In this article, unless specified otherwise, any integer

vector denoted R is assumed to have gcd(r1, . . . , rn) = 1.

Let D ∈ Zn. We define the degree of D as degR(D) := D · R. When the context

makes the reference to R unnecessary, we will denote degR simply by deg. The kernel

of the degree homomorphism Zn → Z is the lattice in Zn perpendicular to R:

ΛR := {D ∈ Zn, D · R= 0}.

For any sublattice Λ ⊆ ΛR of rank n− 1, we define Pic(Λ) := Zn/Λ. If D ∈ Zn, then

we denote by [D] the class of D in Pic(Λ). By construction, deg(Λ) = {0}, so that we have

a group homomorphism

deg : Pic(Λ) → Z, deg([D]) := D · R.

This homomorphism is surjective since we assume that gcd(r1, . . . , rn) = 1. Its kernel is

the finite abelian group

Pic0
(Λ) := ΛR/Λ.

If D ∈ Zn, then we will write D ≥ 0 if all coefficients of D are nonnegative, and we

write D > 0 if all coefficients of D are strictly positive. Note that if D ≥ 0, then deg(D) ≥ 0.

We will say that D ≥ 0 is effective. An element D ∈ Zn may be called a divisor, and [D] ∈

Pic(Λ) a divisor class, in keeping with the notation used in the Riemann–Roch theorem

for curves.

Definition 2.1. Let Λ be as above. The g-number of Λ, denoted g(Λ), or simply g, is the

smallest nonnegative integer γ such that, for any vector D ∈ Zn such that deg(D) ≥ γ ,

there exists E ≥ 0 with D − E ∈ Λ. �

We show in Proposition 2.5 that the integer g(Λ) exists. The above definitions

are motivated by the following key example.

Example 2.2. Let G be a finite unweighted connected multigraph on n vertices and

m edges, without loop edges. Choose an ordering v1, . . . , vn for the vertices of G. Let

di denote the valency of vi. Let A denote the associated adjacency matrix. Set D :=

diag(d1, . . . , dn), the diagonal matrix of the valencies. Let M :=D − A, the Laplacian

matrix of G. By definition, (1, . . . , 1)M = 0. It follows that ΛG := Im(M) ⊂ Zn is a lattice of

rank n− 1.
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Zeta-functions on graphs and Riemann–Roch theorems 5

The order of the group Pic0
(ΛG) is well known to be the number κ(G) of spanning

trees of G [6, 6.3]. The group Pic0
(ΛG) occurs in the literature under different names,

depending on the context in which it is used: group of components [19] (1989), sandpile

group [11] (1990), jacobian group [2] (1997), or critical group [7] (1999). See [22] for the

relationships between this group and the eigenvalues of the Laplacian.

Recall that the integer β(G) := m − n+ 1 is the first Betti number of the graph.

The work of Baker and Norine [3] completely determines the integer g(ΛG). �

Proposition 2.3. Let G be a graph as above. Then g(ΛG) = m − n+ 1. �

Proof. For any D ∈ Zn, Baker and Norine introduce an integer r(D) with the following

property [3, 2.1]: r(D) ≥ −1 and r(D) > −1, if and only if D is equivalent to an effec-

tive. Theorem 1.12 in [3] states that for all D ∈ Zn, r(D) − r(K − D) = deg(D) + 1 − β(G).

Then deg(D) + 1 − β(G) = r(D) − r(K − D) ≤ r(D) + 1. Assume that deg(D) ≥ β(G). Then

deg(D) − β(G) ≥ 0, so that r(D) ≥ 0. It follows that g(ΛG) ≤ β(G). A complete description

of the set of D ∈ Zn of degree β(G) − 1 that are not equivalent to an effective divisor is

given in [3, 3.4], showing in particular that this set is not empty. Hence, g(ΛG) = β(G). �

Fix positive integers r1, . . . , rn. We define g(r1, . . . , rn) to be one more than the

largest integer that does not belong to the additive semigroup of Z generated by r1, . . . , rn.

In other words, every integer N ≥ g(r1, . . . , rn) can be written in the form
∑n

i=1 xiri with

xi ≥ 0 for all i = 1, . . . , n, and g(r1, . . . , rn) − 1 cannot be written in this form.

In this article, we call g(r1, . . . , rn) the Frobenius number of r1, . . . , rn, even

though it is the integer g(r1, . . . , rn) − 1 which is classically called the Frobenius num-

ber of r1, . . . , rn in the literature. We chose this rescaling so that we have the property

g(r1, . . . , rn) ≥ 0. In particular, if ri = 1 for some i, g(r1, . . . , rn) = 0.

Our next lemma shows that g(ΛR) = g(r1, . . . , rn). We can thus interpret the inte-

ger g(Λ) as a generalization of the Frobenius number to lattices.

Lemma 2.4. Let R> 0 be as above, and Λ′ ⊆ Λ ⊆ ΛR be lattices of rank n− 1.

(a) g(ΛR) = g(r1, . . . , rn) ≥ 0, and g(ΛR) 6= 1. In particular, if |Pic0
(Λ)| = 1, then

Λ = ΛR, and g(Λ) = g(r1, . . . , rn).

(b) If Λ′ ⊆ Λ ⊆ ΛR, then we have a natural surjective homomorphism Pic(Λ′) →

Pic(Λ), and g(Λ′) ≥ g(Λ) ≥ g(ΛR).

(c) If g(Λ) = 0, then Λ = ΛR. �
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6 D. Lorenzini

Proof. (a) By construction, Pic0
(ΛR) = (1), and deg : Pic(ΛR) → Z is an isomor-

phism. Thus, if there exists E ≥ 0 of degree d, every D ∈ Zn of degree d is

such that [D] = [E ] in Pic(ΛR). And if there is no E ≥ 0 of degree d, then no

element D ∈ Zn of degree d is equivalent to an effective. This shows that

g(ΛR) = g(r1, . . . , rn). By definition, g(r1, . . . , rn) 6= 1.

(b) Follows from the definitions.

(c) If g(Λ) = 0, we find that every D of degree 0 is equivalent to an effective.

But there is only one effective E ≥ 0 with deg(E) = 0, the zero vector. Hence,

Pic0
(Λ) = (1), and Λ = ΛR. �

Our next proposition implies that the integer g(Λ) exists. Given any positive

integer x, we let xΛ := {xD, D ∈ Λ}. Denote by e = e(Λ), the exponent of the group Pic0
(Λ).

In particular, when Λ ⊆ ΛR, eΛR ⊆ Λ.

Proposition 2.5. Let R> 0 be as above, and Λ ⊆ ΛR be a lattice of rank n− 1 and expo-

nent e. Then

g(Λ) ≤ eg(ΛR) + (e − 1)

(

−1 +

n
∑

i=1

ri

)

,

and e(Λ) ≥
g(Λ)−1+

∑n
i=1 ri

g(ΛR)−1+
∑n

i=1 ri
. �

Proof. The second inequality is immediate from the first. To prove the first, we

note that, since eΛR ⊆ Λ, g(Λ) ≤ g(eΛR). We claim that g(eΛR) ≤ eg(ΛR) + (e − 1)(−1 +
∑n

i=1 ri). Indeed, let D ∈ Zn. Write D = eD′ + t(y1, . . . , yn) with 0 ≤ yi ≤ e − 1. Suppose

that deg(D) > e(g(Λ) − 1) + (e − 1)(
∑n

i=1 ri). Then deg(eD′) > e(g(Λ) − 1). It follows that

deg(D′) ≥ g(Λ). Hence, there exists E ′ ≥ 0 and V ′ ∈ Λ such that D′ = E ′ + V ′. Thus,

D = eE ′ + t(y1, . . . , yn) + eV ′ , and D is eΛ-equivalent to an effective. Hence, g(eΛ) ≤

1 + e(g(Λ) − 1) + (e − 1)(
∑n

i=1 ri). �

The following rescaling makes for a prettier formula. Let f(Λ) := g(Λ) − 1 +
∑n

i=1 ri. Then f(ΛR) is the largest integer not representable as a linear combination of

r1, . . . , rn in positive integers. Proposition 2.5 implies that f(Λ) ≤ ef(ΛR).

Let G be a graph as in Example 2.2. Let e denote the exponent of the group

Pic0
(ΛG). Then Example 2.5 shows that e ≥ m

n−1
. This bound is achieved when G is a

graph on two vertices linked by m edges. Note that when G has vertex connectivity at

least 2, κ(G) ≥ m [22, 4.3].
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Zeta-functions on graphs and Riemann–Roch theorems 7

Definition 2.6. Let Λ ⊆ ΛR be a lattice of rank n− 1. A canonical vector K ∈ Zn for Λ is

a vector of degree deg(K) = 2g(Λ) − 2 such that, for all D ∈ Zn of degree g(Λ) − 1, either

both D and K − D are equivalent to an effective, or neither D nor K − D is equivalent to

an effective.

Let D ∈ Zn. Set ǫΛ(D) to be 1, if there exists E ≥ 0 such that [D] = [E ] in Pic(Λ),

and set ǫΛ(D) to be 0 if there does not exist any E ≥ 0 such that [D] = [E ] in Pic(Λ). Then

K is a canonical divisor if, for all D ∈ Zn of degree g(Λ) − 1, ǫΛ(D) = ǫΛ(K − D). �

The Riemann–Roch theorem of Baker and Norine [3] shows that a canonical vec-

tor exists for the lattice ΛG associated to any graph G.

Proposition 2.7. Let G be a graph as in Example 2.2, and let ΛG ⊆ Zn be its associ-

ated Laplacian lattice. Let K := (d1 − 2, . . . , dn − 2). Then deg(K) = 2g(ΛG) − 2 and K is a

canonical vector for ΛG . �

Proof. The condition ǫΛ(D) = ǫΛ(K − D) for all D of degree g(Λ) − 1 is equivalent to

condition RR2 in [3, 2.2], and is proved to hold in the proof of 1.12 of [3]. �

The motivation for introducing the notions of g-number and canonical vector is

found in Definition 3.1 and Proposition 3.4. The existence of a canonical vector for Λ

allows for the existence of a Riemann–Roch structure on Λ, to which one associates a

two-variable zeta-function. These topics are discussed in the next section.

Example 2.8. Let R= t(r1, . . . , rn) > 0 with gcd(r1, . . . , rn) = 1. The example below

exhibits many lattices Λ ⊂ ΛR, with Λ 6= xΛR for all x > 0, and which have a canonical

vector (lattices of the form xΛ are considered in Corollary 5.5). Consider the following

vectors in ΛR:

w1 := t(rn, 0, 0, . . . , 0,−r1),

w2 := t(0, rn, 0, . . . , 0,−r2),

. . .

wn−1 := t(0, . . . , 0, rn,−rn−1).

Note that when rn = 1, this set of vectors generates ΛR. Choose positive integers

y1, . . . , yn−1. Let Λ ⊂ ΛR denote the sublattice of ΛR generated by y1w1, . . . , yn−1wn−1. We
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8 D. Lorenzini

claim that

g(Λ) − 1 =

n−1
∑

i=1

(rnyi − 1)ri − rn,

and Pic(Λ) contains a single class of degree g(Λ) − 1 which is not equivalent to an effec-

tive, the class of

D0 := (rny1 − 1, . . . , rnyn−1 − 1,−1).

Thus, 2D0 is a canonical vector for Λ. Moreover,

|Pic0
(Λ)| = rn−2

n y1 · . . . · yn−1. �

Proof. Given any vector D ∈ Zn, we can write it as D =
∑n−1

i=1 ci(yiwi) + t(z1, . . . , zn) with

0 ≤ zi ≤ rnyi − 1 for all i = 1, . . . , n− 1. In other words, the class [D] in Pic(Λ) contains a

vector of the form t(z1, . . . , zn) with 0 ≤ zi ≤ rnyi − 1 for all i = 1, . . . , n− 1. Suppose now

that deg(D) =
∑n

i=1 ziri >
∑n−1

i=1 (rnyi − 1)ri − rn. Then, zn being an integer, we find that zn ≥

0, and D is equivalent to an effective. When deg(D) =
∑n

i=1 ziri =
∑n−1

i=1 (rnyi − 1)ri − rn,

we find that zn ≥ 0 unless zi = rnyi − 1 for all i = 1, . . . , n− 1, and zn = −1, that is, unless

[D] = [D0]. It is easy to show that D0 is not equivalent to an effective.

The order of Pic0
(Λ) can be computed as the greatest common divisor of the

determinants of the (n− 1) × (n− 1)-minors of the matrix whose columns are the vectors

y1w1, . . . , yn−1wn−1. �

Let Jn := t(1, . . . , 1) ∈ Zn . Let Λ ⊂ ΛJn
be a sublattice. If Λ is of the form ΛG

for some graph G with Laplacian M, then Λ = Im(M) for some symmetric positive-

semidefinite matrix.

Lemma 2.9. Let R∈ Zn. Any lattice Λ perpendicular to R is of the form Λ = Im(N) for

some symmetric positive-semidefinite matrix N ∈ Mn(Z). �

Proof. Note first that any lattice Λ is of the form Λ = Im(L) for some matrix L ∈

Mn(Z). Simply take n vectors in Zn which generate Λ, and let L denote the matrix

whose columns are these vectors. To prove the lemma, it suffices to show that

given any matrix, L ∈ Mn(Z), there exists W ∈ GLn(Z) such that LW is symmetric

positive semidefinite. Then Λ = Im(L) = Im(LW). Given L, there exist P , Q ∈ GLn(Z)

such that P L Q = D is diagonal with nonnegative entries. Thus, in particular, D is

symmetric positive-semidefinite. Then L · Q(P −1)t = P −1 D(P −1)t is symmetric positive-

semidefinite. �
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Zeta-functions on graphs and Riemann–Roch theorems 9

Example 2.10. Examples of lattices Λ ⊂ ΛJn
which are not the lattices ΛG associated

with any graph G, but which are nevertheless endowed with a canonical vector, are

given in [1, Section 6.4].

Hower communicated to us an example of two distinct lattices Λ′ ( Λ in Z6 with

g(Λ′) = g(Λ). He also found examples of lattices coming from arithmetical graphs which

do not have a canonical vector, and examples of other lattices Λ with two canonical

vectors K and K ′ such that [K] 6= [K ′] in Pic(Λ) [13, 11.1, 11.2]. �

3 Riemann–Roch Structures

Can the Riemann–Roch theorem in [3] be extended to apply to structures other than

graphs? We propose in this section the following extension. Fix R> 0. Let Λ ⊆ ΛR be

a sublattice of rank n− 1 as in Section 2, with g-number g = g(Λ) and degree function

degR.

Definition 3.1. A Riemann–Roch structure on Λ is a function h : Zn → Pic(Λ) → Z≥0 sat-

isfying the following properties (a)–(c):

(a) There exists a vector K ∈ Zn such that for all D ∈ Zn,

h(D) − h(K − D) = deg(D) + 1 − g.

(b) If deg(D) ≤ 0, then h([D]) = 0, unless [D] = [0], in which case h([0]) = 1.

(c) h(D) ≥ 1 if and only if there exists E ≥ 0 with [D] = [E ] in Pic(Λ). In other

words, using the notation introduced in Definition 2.6, h(D) ≥ 1 if and only

if ǫΛ(D) = 1, and h(D) = 0 if and only if ǫΛ(D) = 0. �

Lemma 3.2. Let h be a Riemann–Roch structure on Λ. Then

(i) We have deg(K) = 2g − 2, h(K) = g, and the class of K is uniquely determined

by h.

(ii) If deg(D) > 2g − 2, then h(D) = deg(D) + 1 − g. Moreover, if deg(D) = 2g − 2

and [D] 6= [K], then h(D) = g − 1. �

Proof. (i) and (ii): Plugging D = 0 and D = K in the formula in (a) gives h(0) − h(K) =

1 − g and h(K) − h(0) = deg(K) + 1 − g. It follows that deg(K) = 2g − 2.

Using (b), we find that h(K) = g, and if deg(D) > 2g − 2, then h(D) = deg(D) + 1 −

g. Moreover, if deg(D) = 2g − 2 and [D] 6= [K], then h(D) = g − 1. It also follows that the
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10 D. Lorenzini

class of K is uniquely determined by h. Indeed, suppose that K and K ′ both satisfy

the condition in the Riemann–Roch formula. Then h(K ′) − h(K − K ′) = deg(K ′) + 1 − g =

g − 1. Since h(K ′) = g, we find that h(K − K ′) = 1, so that [K − K ′] = [0], as desired. �

Lemma 3.3. Let h be a Riemann–Roch structure on Λ. Consider the properties (1) and

(2) below, which are satisfied by the classical Riemann–Roch function in the context of

curves:

(1) Let E ≥ 0. For all D, h(D) ≤ h(D + E).

(2) For all D, D′ ≥ 0, h(D) + h(D′) ≤ h(D + D′) + 1.

Then:

(i) If h satisfies (2), then h satisfies (1). Indeed, if h(D) = 0, then h(D + E) ≥

h(D) = 0 is always true. Assume now that h(D) ≥ 1. If E ≥ 0, then h(E) ≥ 1.

Using (2), we find that h(D + E) ≥ h(D) + h(E) − 1 ≥ h(D).

(ii) Assume that the Riemann–Roch structure h satisfies (1). Then

If 0 ≤ deg(D) ≤ 2g − 2, then h(D) ≤ min(g, deg(D) + 1).

Indeed, this bound trivially holds if h(D) = 0. When h(D) ≥ 1, we find that

D is equivalent to an effective. Hence, applying (1), h(K − D) ≤ h(K) = g.

It follows from (a) that h(D) = deg(D) + 1 + (h(K − D) − g), so that h(D) ≤

deg(D) + 1.

If h(K − D) = 0, then we find from (a) that h(D) = deg(D) + 1 − g ≤

g − 1. If h(K − D) > 0, then K − D is equivalent to an effective and (1)

implies h(D) ≤ h(K) = g.

(iii) Assume that the Riemann–Roch structure h satisfies (2). Then it satisfies

the analogue of Clifford’s Theorem:

If 0 ≤ deg(D) ≤ 2g − 2, then h(D) ≤ 1
2

deg(D) + 1.

Assume that D ≥ 0 and K − D ≥ 0. By (2), h(D) + h(K − D) ≤ h(K) + 1 = g +

1, and by (a) h(D) − h(K − D) = deg(D) + 1 − g. Adding these two relations

gives 2h(D) ≤ 2 + deg(D), as desired.

If D is not equivalent to an effective, h(D) = 0 and the inequality is

obvious. If K − D is not equivalent to an effective, h(K − D) = 0 and the
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Zeta-functions on graphs and Riemann–Roch theorems 11

Riemann–Roch formula implies that h(D) = deg(D) + 1 − g = deg(D)/2 −

(g − 1 − deg(D)/2) ≤ deg(D)/2. �

Proposition 3.4. Let Λ ⊆ ΛR be a lattice of rank n− 1 with g-number g and |Pic0
(Λ)| > 1.

Then Λ has a Riemann–Roch structure if and only if there exists a canonical divisor K

for Λ. �

Proof. Suppose that Λ has a Riemann–Roch structure h with associated divisor K. We

claim that K is a canonical divisor for Λ. Indeed, for all D of degree g − 1, the Riemann–

Roch formula gives h(D) = h(K − D). The equality ǫΛ(D) = ǫΛ(K − D) follows from the

fact that h(D) = 0 if and only if ǫΛ(D) = 0

Suppose the existence of a canonical divisor K for Λ. Let us define a Riemann–

Roch function hǫ as follows. If deg(D) ≤ 0, then set hǫ([D]) := ǫ([D]) = 0, unless [D] = [0], in

which case set hǫ([D]) := ǫ(D) = 1 (property (b) is satisfied). If 0 < deg(D) ≤ g − 1, then set

hǫ([D]) := ǫ([D]) and hǫ(K − D) := g − deg(D) − 1 + ǫ(D). When deg(D) = g − 1, this is well

defined, since hǫ(K − D) = ǫ(D) = ǫ(K − D) by hypothesis. The Riemann–Roch formula

trivially holds for deg(D) ≤ g − 1.

When g − 1 ≤ deg(D) < 2g − 2, the above rule determines hǫ(D) since it deter-

mines hǫ(K − D) already, because 0 < deg(K − D) ≤ g − 1. In fact, hǫ(K − D) = ǫΛ(K − D),

and hǫ(D) = hǫ(K − (K − D)) := g − deg(K − D) − 1 + ǫ(K − D). It follows that hǫ(D) =

deg(D) + 1 − g + hǫ(K − D), and the Riemann–Roch formula holds.

When deg(D) = 2g − 2, set hǫ(D) := g − 1 if D 6= K, and hǫ(K) := g. If deg(D) > 2g −

2, set hǫ(D) := deg(D) + 1 − g. We leave it to the reader to check that hǫ and the divisor

K define a Riemann–Roch structure on Λ. �

Lemma 3.5. Let Λ ⊆ ΛR be a lattice of rank n− 1 with g-number g and canonical vector

K. The associated Riemann–Roch function hǫ satisfies condition (2) in Lemma 3.3 and,

thus, satisfies the analog of Clifford’s Theorem (Lemma 3.3(iii)). �

Proof. Let D ≥ 0 and D′ ≥ 0. Then D + D′ ≥ 0. If deg(D) ≤ g − 1 and deg(D′) ≤ g − 1, then

hǫ(D) = hǫ(D′) = 1 and hǫ(D + D′) ≥ 1. Hence, hǫ(D) + hǫ(D′) ≤ hǫ(D + D′) + 1, as desired.

If deg(D) ≥ g and deg(D′) ≤ g − 1, then hǫ(D′) = 1, and hǫ(D) = hǫ(K − D) +

deg(D) + 1 − g with h(K − D) ≤ 1. The inequality holds if h(K − D) ≤ h(K − D − D′) +

deg(D′). If deg(D′) ≥ 1, then this latter inequality clearly holds. If deg(D′) = 0, D′ = 0,

and the inequality (3.3) is obvious.
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12 D. Lorenzini

If deg(D), deg(D′) ≥ g, (2) is satisfied if hǫ(K − D) + hǫ(K − D′) ≤ hǫ(K − D − D′) +

g. Recall that our assumption on the degrees imply that h(K − D), h(K − D′) ≤ 1. This

inequality is thus trivially satisfied if g ≥ 2. When g ≥ 1, K = 0. We leave the details of

the cases g = 1 and g = 0 to the reader. �

Definition 3.6. Let Λ ⊆ ΛR be a lattice of rank n− 1 with g-number g and a Riemann–

Roch structure h. The zeta-function of h is defined as follows:

Zh(Λ, t, u) :=
∑

[D]∈Pic(Λ)

uh(D) − 1

u− 1
tdeg(D),

where we set u0 := 1.

Given a Riemann–Roch structure h, we may obtain a possibly different Riemann–

Roch structure by considering hǫ defined in Proposition 3.4, keeping the same canonical

divisor for both h and hǫ . We can thus also consider the associated zeta-function

Zhǫ
(Λ, t, u) :=

∑

[D]∈Pic(Λ)

uhǫ(D) − 1

u− 1
tdeg(D).

�

Lemma 3.7. Zhǫ
(Λ, t, 0) = Zh(Λ, t, 0). �

Proof. First hǫ(D) = h(D) if deg(D) ≤ 0 or deg(D) ≥ 2g − 2, since both h and hǫ are

Riemann–Roch functions with the same canonical divisor. Assume that 1 ≤ deg(D) ≤

g − 1. Then hǫ(D) = ǫ(D) by definition. It follows that h(D) = 0 if and only if hǫ(D) = 0,

since the condition h(D) = 0 is equivalent to ǫ(D) = 0. Assume now that deg(D) ≥ g. Then

h(D) ≥ 1 and hǫ(D) ≥ 1. Our claim follows, since it is easy to check that
(

uh(D)−1
u−1

)

|u=0
equals

0, if h(D) = 0, and equals 1, if h(D) > 0. �

Example 3.8. When g(Λ) = 0, any Riemann–Roch structure satisfies h(D) = deg(D) + 1

if deg(D) ≥ −1. The zeta-function of Λ is

Z(Λ, t, u) =
1

(1 − t)(1 − ut)
.

When g(Λ) = 1, any Riemann–Roch structure satisfies h(D) = deg(D) if deg(D) ≥ 1. The

zeta-function of Λ is completely determined by κ := |Pic0
(Λ)|, with

Z(Λ, t, u) =
1 + (κ − (u+ 1))t + ut2

(1 − t)(1 − ut)
. �
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Zeta-functions on graphs and Riemann–Roch theorems 13

Example 3.9. Let G be a graph as in Example 2.2, with Laplacian M and lattice

Λ := Im(M). Baker and Norine attach an integer r(D) to any vector D ∈ Zn in [3, 1.6], and

we set h(D) := r(D) + 1 ≥ 0 to obtain a Riemann–Roch structure h on Λ. The Riemann–

Roch theorem in [3] is motivated by the analogy between graphs and algebraic curves,

and by the existence of the Riemann–Roch theorem for algebraic curves. When we

refer in the remainder of this article to the zeta-function of a graph G, we will mean,

unless specified otherwise, the zeta-function Zh associated with the h-function of Baker

and Norine as above. The Riemann–Roch structure h satisfies the analog of Clifford’s

Theorem (Lemma 3.3(iii)), since it is shown in [3, 3.5], that it satisfies (2).

It is only for g(ΛG) ≥ 3 that hǫ may produce a zeta-function Zhǫ
different from Zh.

This happens, for instance, for the graph G on two vertices linked by four edges. The

effective divisor D = (1, 1) on this graph has h(D) = 2, while hǫ(D) = 1. �

Proposition 3.10. Fix R> 0. Let Λ ⊆ ΛR be a sublattice of rank n− 1 with g-number g

and Riemann–Roch structure h. Then

Zh(Λ, t, u) :=
f(t, u)

(1 − t)(1 − tu)
,

where

f(t, u) = 1 + c1(u)t + · · · + cg(u)tg + ucg−1(u)tg+1 + u2cg−2(u)tg+2 + · · · + ugt2g,

and for all i = 1, . . . , g, ci(u) is an integer polynomial; when h satisfies the analog of

Clifford’s Theorem (Lemma 3.3(iii)), the degree of ci(u) is at most (i + 1)/2. Moreover,

(a) Functional equation:

Z

(

Λ,
1

ut
, u

)

= (ut2)1−gZ(Λ, t, u).

(b) f(1, u) = |Pic0
(Λ)|.

(c) The leading term of f(t, u) as a polynomial in u is t2g − t2g−1, and the poly-

nomial f(t, u) is irreducible in C[t, u]. �

Proof. We let κ := |Pic0
(Λ)|. This proposition follows formally from the properties of

the function h. Our proof below follows closely the classical proof of the rationality of

the zeta-function for curves over finite fields (see, e.g., [20, VIII.6 and VIII.7]).
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14 D. Lorenzini

Write (u− 1)Z(Λ, t, u) as the sum of two terms α(t, u) and β(t, u), where

α(t, u) :=
∑

[D],0≤deg(D)≤2g−2

uh(D)tdeg(D), and

β(t, u) :=
∑

[D],deg(D)≥2g−1

uh(D)tdeg(D) −
∑

[D],deg(D)≥0

tdeg(D).

The second expression can be rewritten using Lemma 3.2(b) as

β(t, u) = κ





∑

d≥2g−1

ud+1−gtd −
∑

d≥0

td





= κu1−g(ut)2g−1





∑

f≥0

(ut) f



− κ
∑

d≥0

td

= κ

(

ugt2g−1

1 − ut

)

− κ

(

1

1 − t

)

.

We find that α(t, u) + β(t, u) = F (t,u)

(1−t)(1−ut)
for some polynomial F (t, u). We can compute

α(t, 1) + β(t, 1) = 0 explicitly. It follows that u− 1 divides F (t, u). Hence, we find that

Z(Λ, t, u) is a rational function of the form f(t, u)/(1 − t)(1 − ut) for some polynomial

f(t, u) with integer coefficients, and degree in t at most 2g.

An easy calculation shows that

lim
t→1

(1 − t)Z(Λ, t, u) = −
κ

u− 1
,

so that f(1, u) = κ, proving (b). It is also easy to check that

β(1/ut, u) = (ut2)1−gβ(t, u).

We now turn our attention to the term α(t, u) and prove that the zeta-function satisfies

the expected functional equation in (a). We use first the fact that the map [D] 7→ [K − D]

is a bijection from the set of all divisor classes of nonnegative degree at most 2g − 2 to

itself. Clearly, the map is well defined, since if 0 ≤ deg(D) ≤ 2g − 2, then 0 ≤ deg(K − D) ≤
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Zeta-functions on graphs and Riemann–Roch theorems 15

2g − 2. Using this remark, we can write

α(t, u) =
∑

[D],0≤deg(D)≤2g−2

uh(K−D)tdeg(K−D).

The Riemann–Roch formula 3.1(a) is now used to show that

α(t, u) =
∑

[D],0≤deg(D)≤2g−2

uh(D)−deg(D)−1+gtdeg(K)−deg(D)

= ug−1tdeg(K)
∑

[D],0≤deg(D)≤2g−2

uh(D) 1

(ut)deg(D)

= ug−1t2g−2α(1/ut, u).

This completes the proof of (a).

We now use the fact that if deg(D) = 0, then h(D) = 0, unless D = 0, in which case

h(D) = 1. Then

Z(Λ, t, u) := 1 +
∑

[D]∈Pic(Λ),deg(D)>0

uh(D) − 1

u− 1
tdeg(D),

showing that f(t, u) = 1 + tϕ(t, u). The functional equation shows that

f(t, u) = ugt2g f(1/ut, u).

This equality implies that f(t, u) has degree 2g in t, and the expected form

f(t, u) = 1 + c1(u)t + · · · + cg(u)tg + ucg−1(u)tg+1 + u2cg−2(u)tg+2 + · · · + ugt2g.

Let us write

Z(Λ, t, u) = 1 +
∑

i≥1

bi(u)ti

for some integer polynomials bi(u). The analog of Clifford’s Theorem (Lemma 3.3(iii))

states that h(D) ≤ deg(D)/2 + 1 for all D with 0 ≤ deg(D) ≤ 2g − 2. When this inequality
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16 D. Lorenzini

holds, we have deg(bi(u)) ≤ i/2 when 1 ≤ i ≤ 2g − 2. Clearly,

(

1 +
∑

i≥1

bi(u)ti

)

(1 − (u+ 1)t + ut2) = f(t, u).

In particular, both c1(u) := b1(u) − (u+ 1) and c2(u) := u− (u+ 1)b1(u) + b2(u) have degree

1. For i ≥ 3, ci(u) := ubi−2(u) − (u+ 1)bi−1(u) + bi(u), and we find that deg(ci(u)) ≤ (i + 1)/2.

It is then clear that when writing f(t, u) as a polynomial in u, only the terms

ug−2c2(u)t2g−2 + ug−1c1(u)t2g−1 + ugt2g

can contain a nontrivial multiple of the monomial ug. Since c2(u) has degree 1 and c1(u)

has leading term −1, we find that the leading term of f(t, u) as a polynomial in u is

−t2g−1 + t2g. To end the proof of part (c), we apply [24, 2.1], to the polynomial F (t, u) :=

t2g f(1/t, u), which is monic in t, has an irreducible leading coefficient in u, and satisfies

F (1, u) 6= 0. These conditions suffice to imply that F (t, u) and, hence, f(t, u) is absolutely

irreducible. �

Previous work on two-variable zeta-functions of curves and number fields can

be found in [10, 15, 26, 32]. Inspired by these studies, we make the following definition.

Definition 3.11. Given a lattice Λ ⊆ ΛR of rank n− 1 with Riemann–Roch structure h

and g-number g, consider

Wh(Λ, x, y) :=
∑

[D]∈Pic(Λ)

xh(D)yh(K−D).

When g = 0, Wh(Λ, x, y) =
1−xy

(1−x)(1−y)
. A formal computation shows that

Wh(Λ, ut, t−1) = (u− 1)t1−gZh(Λ, t, u).

To a connected graph G is associated its Tutte polynomial, defined as a sum

taken over the set Σ(G) of spanning trees of G:

T (G, x, y) :=
∑

T∈Σ(G)

xi(T)yj(T),

 b
y
 g

u
est o

n
 D

ecem
b

er 1
, 2

0
1
1

h
ttp

://im
rn

.o
x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 



Zeta-functions on graphs and Riemann–Roch theorems 17

where i(T) and j(T) are nonnegative integers associated with the spanning tree T . In

[8, p. 127], Biggs associates to Pic0
(G) a polynomial L(t) of degree g, and proves using a

result of Merino [23] that

T (G, 1, t−1) = t−g
L(t).

A polynomial of degree g which naturally occurs in the context of our zeta-function is the

numerator of Zh(Λ, t, 0) (Lemma 3.7). This polynomial does not depend on the existence

of a canonical divisor. Using the notation of Proposition 3.10, we write

Zh(Λ, t, 0) =
f(t, 0)

(1 − t)
= 1 + a1t + · · · + ag−1tg−1 + κtg + κtg+1 + · · ·,

where ai denotes the number of elements [D] in Pic(G) of degree i such that h(D) > 0. By

definition, f(t, 0) = 1 + (a1 − 1)t + (a2 − a1)t
2 + · · · + (ag − ag−1)t

g. The following proposi-

tion follows directly from the definitions. �

Proposition 3.12. Let G be a connected graph. Then L(t) = f(t, 0). �

Proof. Fix a vertex q of G. Given any element [D] ∈ Pic0
(G), Biggs defines a nonnegative

integer L([D]) as follows in [8, p. 127]. Consider all possible divisors equivalent to D of

the form D′ − deg(D′)q, with D′ effective: then L([D]) is the smallest possible degree that

such a divisor D′ may have, and

L(t) :=
∑

[D]∈Pic0(G)

tL([D]) =

n
∑

i=0

bit
i.

Since D′ = 0 is the only effective of degree 0, we find that b0 = 1. Since any divisor of

degree g is equivalent to an effective, D + gq = D′ with D′ effective, and L([D]) ≤ g. Hence,

n≤ g. Since by definition of g, there exists a divisor C of degree g − 1 that is not equiv-

alent to an effective, we find that L([C − (g − 1)q]) = g and n= g. Clearly,
∑g

i=0 bi = κ. To

prove the proposition, it suffices to prove that for each i = 1, . . . , g,
∑i

j=0 bi = ai. For each

i > 0, let Pici
(G) denote the subset of Pic(G) consisting in the classes of degree i, and con-

sider the bijection Pic0
(G) → Pici

(G) given by [D] 7→ [D + iq]. By definition, if L([D]) ≤ i,

then h(D + iq) > 0 since D + iq is equivalent to an effective. Hence,
∑i

j=0 bi ≤ ai. Suppose

now that a divisor class [C ] ∈ Pici
(G) is equivalent to an effective D′. Then [C − iq] =

[D′ − iq], and L([C − iq]) ≤ i. So
∑i

j=0 bi = ai. �
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18 D. Lorenzini

Corollary 3.13. Let G be a connected graph, equipped with a Riemann–Roch structure

h. Then the zeta-function Zhǫ
(Λ, t, u) of the associated Riemann–Roch structure hǫ is

completely determined by the partial evaluation T (G, 1, t−1) of the Tutte polynomial

of G. �

Proof. The number of times the function hǫ takes a given value is completely deter-

mined by the integers ai, i = 1, . . . , g. As the previous proposition shows, these integers

are determined by L(t) = t−gT (G, 1, t−1). �

Note that the function Wh(Λ, x, y) is symmetric:

Wh(Λ, x, y) = Wh(Λ, y, x),

and this symmetry produces the functional equation satisfied by Zh(t, u). On the other

hand, the Tutte polynomial is not symmetric in general. For instance, it is well-known

that if G is a planar graph and G∗ denotes its dual, then

W(G, x, y) = W(G∗, y, x).

It is also known that Pic0
(G) and Pic0

(G∗) are isomorphic. From the equality W(G, x, y) =

W(G∗, y, x), we obtain that W(G, 1, 1) = W(G∗, 1, 1), which imply that the latter two

groups have same order, equal to the complexity of G. We do not know if the existence

of an isomorphism of groups between Pic0
(G) and Pic0

(G∗) can be deduced from the

equality W(G, x, y) = W(G∗, y, x).

Suppose that two graphs G and G ′, both equipped with the Riemann–Roch struc-

ture h of Baker and Norine (Example 3.9), have the same zeta-function Z(G, t, u). It is nat-

ural to wonder what other properties these graphs must then share. When two curves

X/Fq and Y/Fq over a finite field have the same zeta-function, then their jacobians are

isogenous, that is, there exists a morphism ϕ : Jac(X) → Jac(Y) defined over Fq with finite

kernel. Using the degree of the numerator of the zeta-function of G and G′, Using the

degree of the numerator of the zeta-function, we find that β(G) = β(G ′). Using the residue

of the pole at t = 1 of the zeta-function, we find that κ(G) = κ(G ′).

Given a graph G, let us introduce the following nonnegative integers: for all

i, j ≥ 0, let

b(i, j) := number of divisor classes [D] of degree i in Pic(ΛG) with h(D) = j.
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Zeta-functions on graphs and Riemann–Roch theorems 19

With this definition, writing Z(G, t, u) := 1 +
∑

i≥1 bi(u)ti as in the proof of Proposi-

tion 3.10, we have

bi(u) =
∑

j>0

b(i, j)
uj − 1

u− 1
.

We have b(0, 1) = 1, b(2g − 2, g) = 1, and for any fixed i,

i+1
∑

j=0

b(i, j) = κ(G).

It follows that bi(0) = κ(G) − b(i, 0). By definition, two graphs G and G ′ have the same

zeta-function if and only if b(i, j)(G) = b(i, j)(G ′) for all i, j ≥ 0.

Recall that a bridge on a graph G is an edge e of G such that G \ {e} is not con-

nected.

Lemma 3.14. Suppose that G is a graph on n vertices without bridges. Then b(1, 1) = n.

In particular, two graphs without bridges with the same zeta-function have the same

number of vertices, the same number of edges, and same complexity. �

Proof. If deg(D) = 1, then h(D) ≤ 1 (use Clifford’s Theorem). If h(D) = 1, then [D] = [E ]

with E ≥ 0. There are exactly ndivisors E ≥ 0 of degree 1. Each such divisor E has h(E) =

1. Given two distinct vertices v and v′ of G, denote again by v and v′ the corresponding

elements of degree 1 in Zn. Then [v] = [v′] in Pic(ΛG) if and only if there is a path in

G linking v and v′ such that all edges of the path are bridges [21, 2.3]. Thus, under our

hypothesis, there are exactly ndivisor classes of degree 1 containing an effective divisor,

implying that b(1, 1) = n. �

Example 3.15. When β(G) = 2, the zeta-function of G is completely determined by the

integers b(1, 0) and b(1, 1), with b(1, 0) + b(1, 1) = κ(G). Thus, when G does not have

bridges, the pairs of integers (n, κ) and (m, κ) each determine the zeta-function of G.

Let x, y, and z be positive integers, and consider the family of graphs G(x, y, z)

consisting of three vertices u, v, and w, with x edges between u and v, y edges between v

and w, and z edges between w and u. The planar dual G∗(x, y, z) of G(x, y, z) has m(G∗) =

x + y + z edges, and g(G∗) = 2. Its complexity is κ(G∗) = xy + yz + xz, and as we have indi-

cated above, the integers κ(G∗) and m(G∗) completely determine the zeta-function of G∗.

Consider the two graphs G1 := G∗(40 + 13s, 61 + 13s, 16 + 13s) and

G2 := G∗(52 + 13s, 52 + 13s, 13 + 13s). These graphs have the same zeta-functions,
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20 D. Lorenzini

since they have the same number of edges (in both cases x + y + z= 117 + 39s) and

same complexity (κ = 4056 + 3042s + 507s2). The integer solutions to the system of

equations
∑3

i=1 xi =
∑3

i=1 yi and
∑3

i=1 x2
i =

∑3
i=1 y2

i are briefly discussed with reference

in [12], XXIV, page 707. But it is worth noting that two graphs can have the same

zeta-function without having isomorphic Jacobian groups. Indeed, in this example

with s = 0, the groups Pic0
(ΛG1

) and Pic0
(ΛG2

) are not isomorphic, since the group

Pic0
(ΛG∗(x,y,z)) is cyclic if and only if gcd(x, y, z) = 1. When s = 0, Pic0

(ΛG1
) is cyclic and

Pic0
(ΛG2

) = Z/13Z × Z/(13 · 24)Z. We also note that the eigenvalues of the Laplacians of

these two graphs are distinct, as, for instance, t2 − 4t + 2 exactly divides the character-

istic polynomial of G1, while (t2 − 4t + 2)2 divides the characteristic polynomial of G2. �

Let G1 and G2 be two connected graphs with the same Tutte polynomial. Is it

possible for these two graphs to have nonisomorphic groups Pic(G1) and Pic(G2)? Is it

possible for two such graphs to have distinct zeta-functions Zh(G1, t, u) and Zh(G2, t, u)?

Note that we know from our hypothesis that |Pic0
(G1)| = |Pic0

(G2)| and Zh(G1, t, 0) =

Zh(G2, t, 0) (Proposition 3.12).

Example 3.16. Let T and T ′ be any two nonisomorphic trees on nvertices v1, . . . , vn. Let

M and M′ denote their Laplacian matrices. Given any positive integer x, the matrices xM

and xM′ are the Laplacians of two multigraphs without bridges, which we denote by G

and G ′. Both graphs have g = (x − 1)(n− 1), and Picard group isomorphic to (Z/xZ)n−1.

Both graphs have the same Tutte polynomial.

We claim that the graphs G and G ′ have the same zeta-functions, even though

these graphs are not isomorphic. In fact, Im(xM) = Im(xM′) in Zn. Indeed, since T and T ′

are trees, Im(M) = Im(M′) = Ker (t(1, . . . , 1)). Hence, Im(xM) and Im(xM′) are both gener-

ated by t(x,−x, 0, . . . , 0), t(x, 0,−x, 0, . . . , 0), . . . ,t (x, 0, . . . , 0,−x). �

One finds in the literature several different definitions of a zeta-function of a

graph, with contributions by many authors to the subject, including Ihara, Stark and

Terras [30], Bartholdi [4], and others. It would be of interest to understand how the

Riemann–Roch zeta-function relates to these other objects.

4 Arithmetical Graphs

The notion of arithmetical graph was introduced in [17], and we recall below

its definition. Arithmetical graphs arise when considering degeneration of curves

 b
y
 g

u
est o

n
 D

ecem
b

er 1
, 2

0
1
1

h
ttp

://im
rn

.o
x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 



Zeta-functions on graphs and Riemann–Roch theorems 21

in algebraic geometry, and encode some of the discrete data associated with the

degeneration. They consist in a “usual” graph endowed with an additional structure,

providing a lattice to which one may apply the considerations of the previous sections.

These objects may be similar enough to “usual” graphs that they may retain some of

their properties, such as the existence of a canonical vector. Our strongest result in this

direction is Theorem 4.2, the proof of which uses the theory of curves, and is thus not of

a combinatorial nature.

Definition 4.1. Let G be a finite unweighted connected multigraph on n vertices

v1, . . . , vn, without loop edges. Let A denote its adjacency matrix. Consider a diagonal

(n× n)-matrix D = diag(δ1, . . . , δn) with strictly positive integer diagonal entries, and

an integer vector t R= (r1, . . . , rn) with R> 0 and gcd(r1, . . . , rn) = 1. Let M :=D − A. The

triple (G, M, R) is called an arithmetical graph if MR= 0. When D = diag(d1, . . . , dn) with

di the valency of vi and t R= (1, . . . , 1) , the matrix M is nothing but the Laplacian of G.

Let ΛM := Im(M) ⊆ ΛR. We may denote g(ΛM) and Pic0
(ΛM) simply by g(M) and Pic0

(M),

respectively.

The main geometric invariant of an arithmetical graph is the integer g0(M)

defined by the expression

2g0(M) − 2 =

n
∑

i=1

ri(δi − 2) =

n
∑

i=1

ri(di − 2).

That g0(M) is always an integer is noted in [17, 3.6]. When t R 6= (1, . . . , 1) , we do not

have examples of two arithmetical graphs (G1, M1, R) and (G1, M2, R) on n vertices such

that Im(M1) = Im(M2) and g0(M1) 6= g0(M2). In other words, we do not know whether the

integer g0 depends only on the lattice spanned by the columns of the matrix M.

In the Riemann–Roch theorem for the Laplacian of a graph, the canonical class

is represented by tKG := (d1 − 2, . . . , dn − 2) , with
∑n

i=1(di − 2) = 2β(G) − 2. For an arith-

metical graph (G, M, R), a natural analogue to consider is

K := t(δ1 − 2, . . . , δn − 2),

with deg(K) = 2g0(M) − 2. Note that by adding together the columns of the matrix M

we obtain the vector t(δ1 − d1, . . . , δn − dn) , showing that t(d1 − 2, . . . , dn − 2) is a vector

equivalent to K in Pic(ΛM). �
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22 D. Lorenzini

Theorem 4.2. Let (G, M, R) be an arithmetical graph, with ΛM := Im(M) ⊆ ΛR. Let K :=

t(δ1 − 2, . . . , δn − 2) . Then

(a) g(ΛM) ≤ g0(M).

(b) Let D ∈ Zn with deg(D) = g0(M) − 1. Then ǫΛM
(D) = ǫΛM

(K − D). In particular,

K is a canonical vector for ΛM if g(ΛM) = g0(M). �

Proof. We prove this theorem by first interpreting the matrix M as the intersection

matrix associated with the reduction of a curve, and then by applying the Riemann–

Roch Theorem for curves.

Given M and R, there exist a complete discrete valuation ring OF (with field of

fractions F and algebraically closed residue field k of characteristic 0), and a smooth

proper geometrically connected curve X/F of (geometric) genus pg(X) with a regular

model X /OF satisfying the following properties (see [33, 4.3]). The special fiber Xk/k of

X /OF is the union of smooth irreducible curves C i, i = 1, . . . , n (called the components of

Xk). Each curve C i/k has genus 0 and multiplicity ri. Denote by (C i · C j) the intersection

number of the components C i and C j on X . The matrix ((C i · C j))1≤i, j≤n is called the

intersection matrix of Xk/k, and is equal to M. These conditions, on the intersection

matrix and on the genus of the components of Xk, imply that pg(X) = g0(M).

Our reference for the facts recalled below is [16, 9.1]. Since X is regular, the

natural inclusion X →X induces a surjective restriction map res : Pic(X ) → Pic(X).

Recall that Pic(M) := Zn/Im(M). In keeping with the geometric notation, we write Zn

as Div(M) =
⊕n

i=1 ZC i , and call an element of Div(M) a divisor. Two divisors D and E are

said to be equivalent if [D] = [E ]. We also have a natural homomorphism ρ : Pic(X ) →

Pic(M) defined as follows: L ∈ Pic(X ) is mapped to the class in Pic(M) of the divi-

sor deg(L|C1
)C1 + · · · + deg(L|Cn

)Cn. There exists in Pic(X ) an element KX /OF
, called the

canonical bundle, with the following properties:

(i) ρ(KX /OF
) = [K], and

(ii) res(KX /OF
) = KX/F is the canonical bundle in Pic(X).

For each i, we can choose a closed point Pi of X a closed point Pi of X whose closure P i

in X intersects Xk/k only in C i; more precisely, we require the following: ( P̄i · C i) = 1, and

( P̄i · C j) = 0 if j 6= i. This shows that the map ρ is surjective. Indeed, let D :=
∑n

i=1 aiC i be

a divisor of Div(M). Consider the line bundle L :=OX (
∑n

i=1 ai Pi). Then ρ(L) = [D]. More-

over, the degree of the divisor res(L) :=OX(
∑n

i=1 ai Pi) in Pic(X) is equal to the degree of

[D] in Pic(M).
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Zeta-functions on graphs and Riemann–Roch theorems 23

(a) Let D :=
∑n

i=1 aiC i be a divisor of Div(M) of degree r ≥ g0(M). Consider the

divisor D′ :=
∑n

i=1 ai Pi in Div(X). Since r ≥ g0(M) = pg(X), the Riemann–Roch theorem on

curves [20, IX.4.1] shows that the vector space H0(X, D′) has positive dimension, which

implies that we can find a divisor E ′ =
∑s

j=1 bj Q j ∈ Div(X) with bj ≥ 0 for all j and such

that D′ and E ′ are linearly equivalent. Consider the line bundle L′ :=OX (
∑s

j=1 bj Q j).

Then L′ ⊗ L−1 is trivial on the generic fiber X. Hence, ρ(L) = ρ(L′) in Pic(M). It is easy

to verify that ρ(L′) is represented in Div(M) by an effective divisor. By construction,

ρ(L) = [D] and, thus, D is equivalent to an effective divisor. It follows that g(ΛM) ≤ g0(M).

To prove (b), it is sufficient to show that if D =
∑n

i=1 aiC i is an effective divisor

of degree g0(M) − 1 in Div(M), then K − D is equivalent to an effective divisor. Consider

the divisor D′ :=
∑

ai Pi in Div(X). Let K ′ ∈ Div(X) denote a canonical divisor for X/F .

Since g0(M) = pg(X), the Riemann–Roch theorem for curves implies that either both D′

and K ′ − D′ are linearly equivalent to an effective divisor on X, or neither is. Since D′

is clearly effective in Div(X) because D is, K ′ − D′ is equivalent to an effective divi-

sor E ′ =
∑s

j=1 bj Q j ∈ Div(X). Consider then the line bundle KX /OF
⊗ OX (

∑n
i=1 ai Pi)

−1 ⊗

OX (
∑s

j=1 bj Q j)
−1 in Pic(X ), which is trivial on the generic fiber X by construc-

tion. It follows that ρ(KX /OF
⊗ OX (

∑n
i=1 ai Pi)

−1) is equivalent to ρ(OX (
∑s

j=1 bj Q j)) in

Pic(M). By construction, ρ(KX /OF
⊗ OX (

∑n
i=1 ai Pi)

−1) = [K − D], and ρ(OX (
∑s

j=1 bj Q j)) is

effective. �

It would be of interest to find a completely combinatorial proof of this theorem.

It is also natural to wonder whether M has a canonical vector when g(M) < g0(M). We

give below some examples of arithmetical graphs, and of the inequalities g(R) ≤ g(ΛM) ≤

g0(M).

Example 4.3. Let R= (r1, . . . , rn) be an integer vector with positive entries such that

gcd(r1, . . . , rn) = 1. Using the incidence matrix of any connected graph H on n vertices,

we construct an arithmetical graph of the form (G, M, R), producing in this way for most

vectors R many nonisomorphic arithmetical graphs having the same vector R.

Indeed, given a graph H , Chung and Langlands introduced a Laplacian with ver-

tex weights in [9]. When, for all i, the weight of the vertex vi is the square of a positive

integer ri, then the Laplacian L introduced in [9, (1), p. 317] is the matrix of an arithmeti-

cal graph with vector t R= (r1, . . . , rn) . We recall this construction here. Let B denote the

incidence matrix of H , with nrows and m columns. The Laplacian of H is equal to B(t B).

Let BR denote the following (n× m)-matrix. Say a row of the transpose t B has +1 in its

ith entry and −1 in its jth entry, then the matrix t BR has +r j in its ith entry and −ri in
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24 D. Lorenzini

its jth entry. By construction, (t BR)R= 0 . We let M := BR(t BR) , and denote by (G, M, R)

the associated arithmetical graph.

Let r :=
∑n

i=1 r2
i . When the initial graph H is the complete graph on n vertices,

the associated arithmetical graph (G, M, R) has M = r In − R(t R) . The group Pic0
(ΛM)

is isomorphic to (Z/rZ)n−2 [17, 1.10]. When R= t(1, 1, 2) , g(M) = g0(M) = 4, and for R=

t(1, 1, 3) , g(M) = 6 and g0(M) = 9. In the latter case, t(5, 5, 0) is a canonical vector.

The simplest example of this construction is with the tree H on two vertices and

the vector t R= (r, s), gcd(r, s) = 1. Then the associated (G, M, R) has

M =

(

s2 −rs

−rs r2

)

.

In this case, |Pic0
(ΛM)| = 1, so g(M) = g(r, s) = (r − 1)(s − 1). An easy computation shows

that g0(M) = 1
2
sr(r + s) − (r + s) + 1. �

When (G, M, R) is an arithmetical graph, let us denote by β(G) := m − n+ 1 the

first Betti number of the graph G. It is noted in [17, 4.7], that g0(M) ≥ β(G). It is not

true in general that g(M) ≥ β(G). In the above example when n= 2, β(G) = rs − 1, while

g(ΛM) = (r − 1)(s − 1).

Example 4.4. All lattices of rank 1 in Z2 have a canonical vector. Indeed, let t R := (r, s)

with gcd(r, s) = 1. The lattice ΛR is generated in Z2 by the vector t(s,−r) . We have g(ΛR) =

g(r, s) = (r − 1)(s − 1). Note that the lattice ΛR is in fact the lattice associated with an

arithmetical graph (G, M, R), namely, the arithmetical graph with M as in Example 4.3.

The only sublattices of ΛR are of the form xΛR. Then g(xΛR) = xrs − r − s + 1 and K :=

(xs − 2, xr − 2) is a canonical vector for the lattice xΛR (Corollary 5.5). �

Example 4.5. (a) Given coprime integers 2 ≤ a< b, there exists an arithmetical graph

(G, M, R) such that |Pic0
(M)| = 1 and g0(M) = g(M) = g(R) = g(a, b).

Indeed, define positive integers s1, s2, s3, and s4 by the equality 2ab = (s1 + s2)a +

(s3 + s4)b = a + (b − 1)a + b + (a − 1)b. We consider then an arithmetical tree (G, M, R)

with a single node v of multiplicity ab, and valency 4. Attached to v are four termi-

nal chains. The vertices linked to v have multiplicities s1a, s2a, s3b, and s4b, respectively.

The terminal vertices on the chains have multiplicities a, a, b, and b. Each terminal

chain is obtained using Euclid’s algorithm on the pairs (ab, sia) and (ab, sib), as in [17,

4.2]. Since the terminal multiplicity of a chain divides each multiplicity on the chain,
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Zeta-functions on graphs and Riemann–Roch theorems 25

we find that g(R) = g(a, b). A formula for the order of |Pic0
(M)| when G is a tree is given

in [17, 2.5], and can be used to show that |Pic0
(M)| = 1. Thus Lemma 2.4(a) implies that

g(M) = g(R) = g(a, b). An easy computation shows that g0(M) = g(a, b).

(b) Given coprime integers 2 ≤ a< b < c with gcd(a, c) = 1, it is often possible to

find an arithmetical graph (G, M, R) such that |Pic0
(M)| = 1 and g(M) = g(R) = g(a, b, c).

In the example below, such an arithmetical graph has g0(M) = 1 + 1
2
(abc − a − b − c); in

particular, it is possible to find many instances where g(M) < g0(M).

Indeed, suppose that we found positive integers s1, s2, and s3, such that abc =

s1a + s2b + s3c and gcd(abc, s1a)/a= gcd(abc, s2b)/b = gcd(abc, s3c)/b = 1. For instance,

since gcd(a, c) = 1, find 0 < x < a such that a | c + bx. If gcd(x, c) = 1, then take s1 = 1,

s2 = x, and s3c = abc − a − bx > 0.

Consider the arithmetical tree (G, M, R) with a single node v of multiplicity abc

and valency 3 constructed as follows. Attached to v are three terminal chains. The ver-

tices linked to v have multiplicities s1a, s2b, and s3c. The terminal vertices on the chains

have multiplicities a, b, and c. Each terminal chain is obtained using Euclid’s algorithm

on the pairs (abc, s1a), (abc, s2b), and (abc, s3c), as in [17, 4.2]. Since the terminal multi-

plicity of a chain divides each multiplicity on the chain, we find that g(R) = g(a, b, c). The

formula for the order of |Pic0
(M)|, when G is a tree given in [17, 2.5], can be applied and

shows that |Pic0
(M)| = 1. Thus Lemma 2.4(a) implies that g(M) = g(R) = g(a, b, c). Recall

[5, p. 20] that

g(a, b, c) ≤ 1 + 1
2
(
√

abc(a + b + c) − a − b − c).

In particular, in this example, the difference g0(M) − g(M) can be arbitrarily large. �

The previous examples show how to construct arithmetical trees where g(R) =

g(ΛM) = g0(M), and also where g(ΛM) < g0(M). Hower [13] has produced classes of exam-

ples of arithmetical graphs with g(ΛM) = g0(M).

Some earlier works on the Frobenius number can be seen to have a connection

to arithmetical graphs. For instance, in [14], Kan considers a connecting chain of length

s + 1 in an arithmetical graph (G, M, R), and bounds the Frobenius number of the multi-

plicities of the chain in terms of some invariants of the corresponding (s × s)-principal

minor of the matrix M. In [29], an exact formula is given for the Frobenius number of the

set of multiplicities of a connecting chain when all self-intersections are equal to 2 (i.e.,

when the multiplicities are of the form r0, r0 + d, . . . , ri := r0 + id).
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26 D. Lorenzini

5 Existence of a Canonical Vector

In this section, we introduce several classes of lattices Λ of rank n− 1 for which we can

compute g(Λ) and show the existence of a canonical vector. We show in Corollary 5.6

that the existence of a canonical vector for a lattice Λ perpendicular to a vector R is

equivalent to the existence of a canonical vector for an associated lattice perpendicular

to t(1, . . . , 1).

Let us note first the following easy facts. Let R∈ Zn be an integer vector with

strictly positive entries, as in Section 2.

Lemma 5.1. Let Λ ⊆ ΛR be a lattice of rank n− 1.

(a) Assume that Pic0
(Λ) has at most two distinct classes of degree g(Λ) − 1

which contain an effective divisor, or has at most two distinct classes of

degree g(Λ) − 1 which do not contain any effective divisor. Then Λ has a

canonical vector K. In particular, if |Pic0
(Λ)| ≤ 5, then Λ has a canonical

vector K.

(b) If g(Λ) ≤ 1, then Λ has a canonical vector K, and the class of K in Pic(Λ) is

uniquely determined. �

Proof. (a) When |Pic0
(Λ)| = 1, any vector K of degree 2g(Λ) − 2 is a canonical vector

(and there is only one class in Pic(Λ) of any given degree). If all divisors D of degree

g(Λ) − 1 are not equivalent to an effective, then any divisor of degree 2g(Λ) − 2 is a

canonical vector. If [D] is the only class of degree g(Λ) − 1 which is either equivalent to

an effective, or not equivalent to an effective, then 2D is a canonical vector. If [D] and

[D′] are the only classes of degree g(Λ) − 1 which are equivalent to an effective, or if they

are the only classes which are not equivalent to an effective, then we can take D + D′ as

a canonical vector. When |Pic0
(Λ)| ≤ 5, there are at most five classes of degree g(Λ) − 1,

and the result follows from the above considerations.

(b) When g(Λ) = 0, |Pic0
(Λ)| = 1, and the result follows from (a). When g(Λ) = 1,

the 0-vector 0 := (0, . . . , 0) is the unique vector of degree g(Λ) − 1 that is effective. Then

K = (0, . . . , 0) is a canonical vector. If K ′ is another canonical vector, 0 and K ′ − 0 both

need to be effective, so that K ′ − 0 is equivalent to 0, and [K ′] = [0]. �

Let us note that if Pic0
(Λ) is killed by 2 and there are exactly two distinct classes

[D] and [D′] of degree g(Λ) − 1 which are not equivalent to an effective, then Λ has

two canonical vectors that are not equivalent. Indeed, 2[D − D′] = [0] in Pic0
(Λ). Taking
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Zeta-functions on graphs and Riemann–Roch theorems 27

K := 2D, we find that K − D = D and [K − D′] = [D′], so K is a canonical vector. Taking

now K ′ := D + D′, we find first that K − D = D′ and K − D′ = D, so that K ′ is a canoni-

cal vector. We have [K] 6= [K ′], since otherwise, [2D] = [D + D′] implies that [D] = [D′], a

contradiction.

Definition 5.2. Let R> 0 and consider Λ ⊆ ΛR, a lattice of rank n− 1. Let x1, . . . , xn be

positive integers, and let ℓ := lcm(x1, . . . , xn). We now introduce a new lattice XΛ, new

lattice XΛ, whose g-number and canonical vector can be computed in terms of the g-

number and the canonical vector of Λ.

Let X := diag(x1, . . . , xn), and consider the map X : Zn → Zn. Let XΛ denote the

image of Λ under the map X. Clearly, XΛ has rank n− 1. Let d := gcd(ℓr1/x1, . . . , ℓrn/xn).

Set R′ := t(ℓr1/dx1, . . . , ℓrn/dxn) . Then XΛ ⊆ ΛR′ .

We claim that d | ℓ. Indeed, let p be prime, and assume that ps is the exact power

of p that divides d. Since gcd(r1, . . . , rn) = 1, there exists ri with p ∤ ri. Hence, ps | ℓ/xi, and

so ps | ℓ.

For convenience, we will use the following notation. Let Jn denote the transpose

of the vector (1, . . . , 1). As usual, In denotes the (n× n)-identity matrix. Given a lattice

Λ ⊆ ΛR, let

N (Λ) := {[D] ∈ Pic(Λ) | degR([D]) = g(Λ) − 1, ǫΛ(D) = 0},

where ǫΛ is as in Definition 2.6. Note that a vector K of degree 2g(Λ) − 2 is a canonical

vector for Λ if and only if, for all [D] ∈N (Λ), [K − D] ∈N (Λ). �

Proposition 5.3. Let Λ ⊆ ΛR. Let X and R′ be as above, and consider XΛ ⊆ ΛR′ . Then

(a) g(XΛ) − 1 = ℓ
d
(g(Λ) − 1) +

∑n
i=1(xi − 1)ℓri/dxi.

(b) The map N (Λ) →N (XΛ), [D] 7→ [XD + t(x1 − 1, . . . , xn − 1)], is a bijection.

(c) If K is a canonical vector for Λ, then XK + 2(X − In)Jn is a canonical vector

for XΛ.

(d) If K(XΛ) is a canonical vector for XΛ, then K(XΛ) is XΛ-equivalent to XK +

2(X − In)Jn with K a canonical vector for Λ. �

Proof. (a) Write D′ ∈ Zn as D′ = XD +t(y1, . . . , yn) with 0 ≤ yi ≤ xi − 1 for all i = 1, . . . , n.

If degR′(D′) > ℓ
d
(g(Λ) − 1) +

∑n
i=1(xi − 1)ℓri/dxi, then degR′(XD′) > ℓ

d
(g(Λ) − 1) and, hence,

degR(D) > g(Λ) − 1. It follows that D is Λ-equivalent to an effective, so that XD and

D′ are XΛ-equivalent to an effective. Therefore, g(XΛ) − 1 ≤ ℓ
d
(g(Λ) − 1) +

∑n
i=1(xi − 1)

ℓri/dxi.
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28 D. Lorenzini

Assume now that degR′(D′) = ℓ
d
(g(Λ) − 1) +

∑n
i=1(xi − 1)ℓri/dxi. If (y1, . . . , yn) 6=

(x1 − 1, . . . , xn − 1), we find that degR′(XD) > ℓ
d
(g(Λ) − 1) and conclude as before that D′

is XΛ-equivalent to an effective.

If (y1, . . . , yn) = (x1 − 1, . . . , xn − 1), then degR′(XD) = ℓ
d
(g(Λ) − 1) and degR(D) =

g(Λ) − 1. We claim that D′ is XΛ-equivalent to an effective if and only if D is

Λ-equivalent to an effective. It is clear that if D is Λ-equivalent to an effective, then

D′ is XΛ-equivalent to an effective. Suppose now that D has degree g(Λ) − 1, and is

such that there does not exist V ∈ Λ and E ≥ 0 such that D = V + E . Consider D′ :=

XD + t(x1 − 1, . . . , xn − 1) . If there exist E ′ ≥ 0 and XV ′ ∈ XΛ such that D′ + XV ′ = E ′,

then we find that X(D + V ′) + t(x1 − 1, . . . , xn − 1) ≥ 0 . This can only occur if all coeffi-

cients of D′ + V are nonnegative, which contradicts our assumption on D. Since there

exists a D of degree degR(D) = g(Λ) − 1 that is not Λ-equivalent to an effective, we find

that g(XΛ) = 1 + ℓ
d
(g(Λ) − 1) +

∑n
i=1(xi − 1)ℓri/dxi.

(b) Note first that the map N (Λ) →N (XΛ), [D] 7→ [XD + t(x1 − 1, . . . , xn − 1)], is

well defined . We have shown in the proof of (a) that if [D] ∈N (Λ), then [XD + t(x1 −

1, . . . , xn − 1)] ∈N (XΛ) . Moreover, if [D1] = [D], then [XD1 + t(x1 − 1, . . . , xn − 1)] = [XD +

t(x1 − 1, . . . , xn − 1)] , since D1 − D ∈ Λ implies that XD1 − XD ∈ XΛ. The map is injective,

since if [XD1 + t(x1 − 1, . . . , xn − 1)] = [XD + t(x1 − 1, . . . , xn − 1)] for some D1 and D, we

have XD1 − XD ∈ XΛ, which implies that D1 − D ∈ Λ. We proved the surjectivity of the

map in (a), since we showed that every D′ that is not XΛ-equivalent to an effective is of

the form XD + t(x1 − 1, . . . , xn − 1) for some D not Λ-equivalent to an effective.

(c) By hypothesis, the map N (Λ) →N (Λ), [D] 7→ [K − D] is well-defined and bijec-

tive. We leave it to the reader to check that this implies that the map N (XΛ) →N (XΛ),

[D′] 7→ [XK + 2 t(x1 − 1, . . . , xn − 1) − D′] , is well-defined and bijective.

(d) Let K ′ be a canonical vector for K(XΛ). Then the map N (XΛ) →N (XΛ),

[D′] 7→ [K ′ − D′], is well defined and bijective. Starting with any [D0] ∈N (Λ), we obtain

that there exists [D] ∈N (Λ) such that [K ′ − XD0 − t(x1 − 1, . . . , xn − 1)] = [XD + t(x1 −

1, . . . , xn − 1)] . It follows that K ′ is XΛ-equivalent to X(D0 + D) + 2 t(x1 − 1, . . . , xn − 1) .

We leave it to the reader to show that D0 + D is a canonical vector for Λ. �

Corollary 5.4. Let G be a graph with n vertices, m edges, and adjacency matrix A.

Let D = diag(d1, . . . , dn) be the diagonal matrix of the valencies of the vertices, and let

M :=D − A. Let ΛG := Im(M) ⊆ ΛJn
, with canonical vector K = t(d1 − 2, . . . , dn − 2) and

|Pic0
(ΛG)| = κ(G). Choose X as in Definition 5.2. Then

(a) g(XΛG) = 1 + ℓm −
∑n

i=1 ℓ/xi.
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Zeta-functions on graphs and Riemann–Roch theorems 29

(b) The lattice XΛG has canonical vector t(x1d1 − 2, . . . , xndn − 2).

(c) The group Pic0
(XΛG) has order κ(G)

(
∏n

i=1 xi

)

/ℓ. �

Proof. Since gcd(ℓ/x1, . . . , ℓ/xn) = 1, we may apply the previous proposition to obtain (a)

and (b) with R′ = t(ℓ/x1, . . . , ℓ/xn) and g(ΛG) = m − n+ 1.

The adjoint matrix (XM)∗ = M∗X∗ is easy to compute. The matrix M∗ has all its

coefficients equal to κ(G). The matrix X∗ equals

diag

((

n
∏

i=1

xi

)/

x1, . . . ,

(

n
∏

i=1

xi

)/

xn

)

.

The group Pic0
(XΛG) has order equal to the greatest common divisors of the coefficients

of (XM)∗. This integer is computed as

|Pic0
(XΛG)| = κ(G) gcd

((

n
∏

i=1

xi

)/

x1, . . . ,

(

n
∏

i=1

xi

)/

xn

)

= κ(G)
(
∏n

i=1 xi)

ℓ
.

�

When |Pic0
(XΛG)| = 1, we find that κ(G) = 1 and ℓ =

∏n
i=1 xi; in particular, G is a

tree, with m = n− 1. Let R := t(ℓ/x1, . . . , ℓ/xn) . Then XΛG = ΛR, and g(XΛG) = g(R).

It turns out that the Frobenius number g(R) is well understood already: when

ℓ =
∏n

i=1 xi, the sequence ℓ/x1, . . . , ℓ/xn, is strongly flat, and g(R) = 1 + ℓ(n− 1) −
∑n

i=1 ℓ/xi

(see [28, 3.2.2(b)], or the original reference [27]). Corollary 5.4(a) lets us then interpret

1 + ℓ(n− 1) −
∑n

i=1 ℓ/xi as a g-number even when ℓ <
∏n

i=1 xi; it is the g-number of XΛG

when G is a tree.

Corollary 5.5. Let Λ ⊆ ΛR. Let x > 0 be an integer and consider xΛ ⊆ Λ. Then

(a) g(xΛ) − 1 = x(g(Λ) − 1) + (x − 1)(
∑n

i=1 ri).

(b) Λ has a canonical vector if and only if xΛ has a canonical vector. �

Our next corollary shows that a search for a canonical vector for Λ ⊆ ΛR can be

reduced to a similar search for a lattice in ΛJn
.

Corollary 5.6. Let R> 0 and set R̃ := diag(r1, . . . , rn). Let Λ ⊆ ΛR, and R̃Λ ⊆ ΛJn
. Then

(a) g(R̃Λ) = g(Λ) +
∑n

i=1(ri − 1).

(b) Λ has a canonical vector if and only if R̃Λ has a canonical vector. �
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30 D. Lorenzini

Let Λ ⊂ Zn be a lattice perpendicular to Jn. In [1], such a lattice is called a sub-

lattice of the root lattice An−1, and the authors study the existence of a Riemann–Roch

theorem for the following function h associated with Λ (this function is closely related

with the h-function that Baker and Norine attach to a graph). Let D ∈ Zn. Define

|D| := {E ∈ Zn | E ≥ 0, [E ] = [D] in Pic(Λ)}.

Let (see [1, 2.1])

h(D) := min{deg(E) | E ≥ 0, |D − E | = ∅}.

To a lattice Λ, Amini and Manjunath [1] associate in 2.4 two integers gmin(Λ) ≤ gmax(Λ).

They define a lattice to be uniform when gmin = gmax = g [1, 2.11]. They further introduce

the notion of reflection invariance [1, 5.1], and show in 5.5 that a lattice that is both

uniform and reflection invariant satisfies the Riemann–Roch theorem h(K − D) − h(D) =

g − 1 − deg(D) for some canonical vector K. When the lattice is not uniform, they provide

in [1, 5.2], a two-sided Riemann–Roch inequality for h(K − D) − h(D) + deg(D) and for

some canonical vector K. It is shown in [1, 5.7], that a lattice satisfies a Riemann–Roch

formula for the function h if and only if it is uniform and reflection invariant.

Let g(Λ) denote the g-number as defined in Definition 2.1. We thank the referee

for strengthening our original Proposition 5.7.

Proposition 5.7. Let Λ ⊂ Zn be a lattice perpendicular to Jn. Then gmax(Λ) = g(Λ). �

Proof. Consider the set S(Λ) of all divisors D ∈ Zn which are not equivalent to an effec-

tive. By definition of g(Λ), the maximum degree of a divisor in S(Λ) is g(Λ) − 1. In

[1, Definition 2.1], the authors define the Sigma-Region Σ(Λ), and it follows from [1,

2.2(i)], that Σ(Λ) = −S(Λ). A subset Ext(Λ) ⊆ Σ(Λ) of extremal points is defined in [1,

Definition 2.5], and gmax(Λ) − 1 is defined to be the maximum of the set {− deg(D) | D ∈

Ext(Λ)} [1, Definition 2.9]. This proves gmax(Λ) ≤ g(Λ).

The equality gmax(Λ) = g(Λ) follows from [1, Theorem 2.6]. Indeed, this theorem

states that given any point D ∈ Σ(Λ), there exists A∈ Ext(Λ) such that D − A≥ 0. It

follows that every element B ∈ S(Λ) of degree g(Λ) − 1 is such that −B is an extremal

point in Σ(Λ). Since there exists an extremal point of degree −(g(Λ) − 1), the equality

gmax(Λ) = g(Λ) follows from the definition of gmax(Λ). �

 b
y
 g

u
est o

n
 D

ecem
b

er 1
, 2

0
1
1

h
ttp

://im
rn

.o
x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 



Zeta-functions on graphs and Riemann–Roch theorems 31

Acknowledgments

The definition of the two-variable zeta-functions for graphs and for curves over finite fields was

first made by the author in a course taught at the conference “Géométrie et Arithmétique” in Les
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