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Abstract. Let K be a number field, and let A/K be an abelian variety. Let c
denote the product of the Tamagawa numbers of A/K, and let A(K)tors denote the
finite torsion subgroup of A(K). The quotient c/|A(K)tors| is a factor appearing
in the leading term of the L-function of A/K in the conjecture of Birch and
Swinnerton-Dyer. We investigate in this article possible cancellations in this ratio.
Precise results are obtained for elliptic curves over Q or quadratic extensions K/Q,
and for abelian surfaces A/Q. The smallest possible ratio c/|E(Q)tors| for elliptic
curves over Q is 1/5, achieved only by the modular curve X1(11).
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1. Introduction

Let K be any discrete valuation field with ring of integers OK , uniformizer π, and
residue field k of characteristic p ≥ 0. Let A/K be an abelian variety of dimension
g. Let A/OK denote the Néron model of A/K. The special fiber Ak/k of A is the
extension

(0) −→ A0
k −→ Ak −→ Φ −→ (0)

of a finite étale group scheme Φ/k, called the group of components, by a connected
smooth group scheme A0

k/k, the connected component of 0. The order of the finite
abelian group Φ(k) is called the Tamagawa number of A/K.

Let now K be a global field, and v a non-archimedean place of K, with completion
Kv and residue field kv. Let cv denote the Tamagawa number of AKv/Kv, and let
c = c(A/K) :=

∏
v cv. The quotient c(A/K)/|A(K)tors| is a factor appearing in the

leading term of the L-function of A/K in the conjecture of Birch and Swinnerton-
Dyer (see, e.g, [30], F.4.1.6). We investigate in this article possible cancellations in
this ratio.

Much can be said about the ratio c/|A(Q)tors| for elliptic curves over Q, due to
the fact that the modular curves X1(N)/Q, parametrizing elliptic curves over Q
with a Q-rational torsion point of order N , are rational curves. The smallest ratio
c/|A(Q)tors| for elliptic curves over Q is 1/5, achieved only by the modular curve
X1(11)/Q (2.23). For abelian varieties over Q of dimension g > 1, we did not find
any ratio smaller than (1/5)g, obtained by taking the product of g copies of X1(11).
Precise results for elliptic curves are as follows.
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Proposition 1.1. Let E/Q be an elliptic curve with a Q-rational point of order N .
The following statements hold with at most five explicit exceptions for a given N .
The exceptions are given by their labels in Cremona’s table [12].

(a) If N = 4, then (N/2) | c, except for X1(15), 15a7, and 17a4.
(b) If N = 5, 6, or 12, then N | c, except for X1(11), X1(14), 14a6, and 20a2.
(c) If N = 10, then (N2/2) | c.
(d) If N = 7, 8, 9, then N2 | c, except for 15a4, 21a3, 26b1, 42a1, 48a6, 54b3, and

102b1.

Without exception, N | c if N = 7, 8, 9, 10, or 12.

Mazur [47] showed that N in the proposition can only take the values 1 through
10, and 12. A statement for N = 7 weaker than the one in Prop. 1.1 is proven in
[14] (see 4.2). We note in 2.26 that there are infinitely many elliptic curves E/Q
with a Q-rational point of order N = 3 and c = 1.

Proposition 1.2. Let K be a number field. Let E/K be an elliptic curve with a
K-rational point of order N . If N = 7 or 9, then N | c, except possibly when E/K
belongs to a list of at most 29(rank(O∗K)+1) isomorphism classes of elliptic curves over
K.

Proposition 1.3. Let K/Q be a quadratic field. Let E/K be an elliptic curve with
a K-rational point of order N with N = 11 or 13. Then N | c.

Kamienny [32] proved that the possible prime values of N in 1.3 are 2, 3, 5, 7, 11,
and 13. Propositions 1.1 and 1.2 are proven in the next section through a case-by-
case analysis. Proposition 1.3 follows from 3.4. The case where K/Q is a cubic field
is considered in [34].

The statement that N | c in 1.1 above, in the cases N = 5 and N = 7, was
verified numerically by A. Agashe for all optimal elliptic curves in Cremona’s data
base. This led him to ask whether the statement for these values of N was true for
all optimal curves. I thank him for bringing this question to my attention.

Abelian varieties A/K of higher dimensions are considered in the third section.
Optimal modular quotients are briefly considered in section four. We note in these
sections two statements which may be of independent interest. Let K be a global
field and let A∨/K denote the dual of A/K. Then c(A/K) = c(A∨/K) (4.3). Let
L/K be a Galois extension, and let ResL/K(B)/K denote the Weil restriction of
B/L. Then c(B/L) = c(ResL/K(B)/K) (3.19).

As for elliptic curves, one does not expect in higher dimension that the existence
of a point P ∈ A(K) of finite order N always produces a cancellation in the ratio
c/|A(K)tors|. For instance, the Jacobians A/Q of certain Fermat quotients have
dimension g with a Q-rational torsion point of order N = 2g+1 and c = 1 (see 3.7).
On the other hand, let A/Q be an abelian surface with a Q-rational point of prime
order N . Without stating our results here in complete generality, let us mention
that if N ≥ 23, then N | c(A) (3.8).

In view of this latter result, it is natural to wonder whether the existence of
a point P ∈ A(Q) of prime order N with N ‘large’ compared to dim(A) always
forces a cancellation in the ratio c/|A(Q)tors|. Such a cancellation is frequently a
consequence of the fact that there exists a place v of Q where the image in Φv(kv)
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of the point P still has order N (see 2.28 and 3.1). How large |A(Q)tors| can be for
a given dimension, and how large N should be to force a cancellation in general, is
not understood for g = dim(A) > 1. For an example where a prime N is quite large
compared to g, consider the Jacobian J1(59)/Q of the modular curve X1(59)/Q.
This abelian variety has dimension g = 117, has c = 1, and has a Q-rational point
of prime order N = 9988553613691393812358794271, with N > 12g13 (see 3.6, and
[11], 6.6).

Explicit computations in this article were done using the Sage Mathematics Soft-
ware [64] and Magma [8]. I thank A. Agashe, D. Benson, E. Howe, W. Stein, R.
Varley, M. Watkins, and the referee, for useful comments. I am grateful to N. Elkies
for sending me a copy of [19], to A. Brumer for bringing to my attention [62], and
to P. Clark for the reference [63]. I also thank J. Stankewicz for sharing a Sage
program with me.

2. The case of elliptic curves

2.1 Let K be any field. Let E/K be an elliptic curve and P ∈ E(K) be a point of
order not equal to 1, 2 or 3. Then E/K can be given by a Weierstrass equation

(2.1) E(b, c) : y2 + (1− c)xy − by = x3 − bx2

with P = (0, 0). For this Weierstrass equation, we have

c4(b, c) = 16b2 + 8b(1− c)(c+ 2) + (1− c)4,
∆(b, c) = b3(16b2 − b(8c2 + 20c− 1)− c(1− c)3).

By setting the order of P to be N , one obtains an explicit relation between b and c.
When N = 4, . . . , 10, and 12, the relation found between b and c defines a K-rational
curve in the (b, c)-plane. We will denote by λ a parameter on the normalization
of this plane curve. The relationship between b and c can be obtained using the
following explicit points of the elliptic curve E(b, c):

[-1]P = (0, b) [-2]P = (b, 0) [-3]P = (c, c2)

[2]P = (b, bc) [3]P = (c, b− c) [4]P = ( b(b−c)
c2

, b
2(c2+c−b)

c3
)

[5]P = ( bc(c
2+c−b)

(b−c)2 , bc
2(b2−bc−c3)
(b−c)3

[7]P = ( bc(b−c−c
2)(2b2−bc2−3bc+c2)
(b2−bc−c3)2 , b

2(b−c−c2)2((b−c)3+c3(b−c−c2))
(b2−bc−c3)3 )

Explicit formuli for each case N = 4, . . . , 10, and 12, can be found for instance in
[35], page 217, or [31], page 319.

2.2 Let K be a discrete valuation field with ring of integers OK , uniformizer π, and
residue field k. Let E/K be an elliptic curve given by a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

with discriminant ∆, invariant c4, and j-invariant j(E) = c34/∆. Recall that this
elliptic curve has multiplicative reduction of type In modulo π if there exists such
an equation with ai ∈ OK , i = 1, 2, 3, 4 and 6, with n := ordπ(∆) > 0 and with
ordπ(c4) = 0. Since π | ∆, it is possible to change coordinates so that in the new
Weierstrass equation, π | a3, a4, and a6. Then the condition to have multiplicative
reduction is that π - a21+4a2 (we set as usual b2 := a21+4a2). The reduction is called
split if, for the coefficients of the new equation, the congruence t2 + a1t− a2 = 0 has
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two (distinct) roots in k. When the reduction is split multiplicative, the Tamagawa
number c(π) is equal to ordπ(∆) (see Tate’s Algorithm [67], or [65], IV.9). When
the reduction is not split multiplicative, the Tamagawa number c(π) is equal to 2 if
ordπ(∆) is even, and 1 otherwise. When the reduction is potentially multiplicative,
then the reduction modulo π is of type I∗n for some n > 0, and c(π) is equal to 2 or
4 (see [45], 2.8).

2.3 We will use the fact reviewed below in several of the proofs in this section. Let
K be a number field. Let A, B ∈ K∗, and consider the equation

AX +BY = 1

with X, Y ∈ O∗K . The number of solutions to this equation in (O∗K)2 is bounded by
the constant 29(rank(O∗K)+1) (see [4], and [22] (1.5)).

We will apply this bound in this section for the equation X − Y = 1. When
[K : Q] = 2, its solutions can be explicitly determined as follows.

Let X ∈ O∗K , and assume that X − 1 ∈ O∗K . Let σ(X) denote the conjugate of X
in K. Then Xσ(X) = ±1, and (X−1)(σ(X)−1) = 1−(X+σ(X))+Xσ(X) = ±1.
It follows that X = (3±

√
5)/2, or X = (1±

√
5)/2, or X = (−1±

√
5)/2 in Q(

√
5),

or X = (1±
√
−3)/2. (See also [55], 17, page 350.)

The results in the propositions below are stated only for K = Q or K a number
field, although it will be clear from the proofs that similar results also hold when K
is the function field of a curve.

Proposition 2.4 (Case N=4). Let E/Q be an elliptic curve with a Q-rational
point of order N = 4. Then c(E) is even, except for the three curves denoted by
15a7, 15a8, and 17a4 in [12], which have c(E) = 1.

Proof. Let K be any field. For the point P on the curve E(b, c) in (2.1) to have
order N = 4, we need c = 0. Set λ := b. The invariants of E(b, c) expressed in terms
of λ are:

∆(λ) = λ4(1 + 16λ),
c4(λ) = 16λ2 + 16λ+ 1,

with res(∆(λ), c4(λ)) = 24. It follows that there exists λ ∈ K such that an elliptic
curve E/K with a point of order N = 4 can be given by a Weierstrass equation of
the form

Eλ : y2 + xy − λy = x3 − λx2.
Let now K be a number field. Assume that there exists a prime P such that

m := ordP(λ) > 0. Then we immediately find from the computations of ∆ and c4
that the reduction of E/K modulo P is split of type I4m.

Assume now that there exists a prime P such that m := ordP(λ) < 0. Let π
denote a uniformizer of the local ring OK,P, and write λ = uπm, with u ∈ O∗K,P.
The Weierstrass equation Eλ is not integral at P, but the following equations are:

If |m| = 2z : y2 + πzxy − uπzy = x3 − ux2,
If |m| = 2z + 1 : y2 + πz+1xy − uπz+2y = x3 − uπx2.

When the residue characteristic is not 2, the first equation is minimal, with reduc-
tion of type I2z, with component group of order 2 or 2z. The second equation is such
that over K(

√
π), the change of variables x′ = x

√
π
−2

and y′ = y
√
π
−3

produces
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a new equation with reduction of type I4z+2. It follows that over K, the reduction
of the elliptic curve is of type I∗n for some n > 0, which has a component group of
order 2 or 4 (see 2.2).

Let us assume now that K = Q, and that λ = ±2−m. An explicit computation
of the valuation at (2) of the j-invariant of E shows that if m > 8, then E has
potentially multiplicative reduction. Again, we find that the reduction over K is
of type I∗n for some n > 0, which has a component group of order 2 or 4. For the
finitely many cases where the reduction is potentially good, an explicit case-by-case
computation of the reduction type will confirm that for these cases too, the product
(
∏

p prime cp) is even, except when λ = −2−8,−1, and 1, defining the curves 15a7,
15a8, and 17a4, respectively. �

Remark 2.5 Consider the curve Eλ in 2.4 with λ = 1/p2, p > 3 prime. It has
a minimal equation y2 + pxy − py = x3 − x2, with discriminant p2(p2 + 16), and
b2 = a21 + 4a2 = p2 − 4. This curve has reduction of type I2 at (p), and reduction of
type Is at a prime q such that ordq(p

2 + 16) = s.
Schinzel’s Hypothesis H conjectures that the polynomials λ and (λ2 + 16) take

prime values at the same time infinitely often. For a prime p such that p2 + 16 is
squarefree, the curve has a point of order 4, and c = 2.

Consider the curve Et/Q(t) with equation y2+txy−ty = x3−x2 and discriminant
t2(t2 + 16). This curve has exactly four places of bad reduction over Q(t), all semi-
stable, with reduction of type I2, I1, I1, and I8. Such a curve is uniquely determined
over C(t) [2].

Remark 2.6 Let E/Q be an elliptic curve. One may define a Tamagawa number
c∞(E) for the place at infinity as follows: c∞(E) = 1 if ∆(E) < 0, and c∞(E) = 2 if
∆(E) > 0. This quantity is usually attached to the contribution of the real period
in the conjecture of Birch and Swinnerton-Dyer (see [65], V.2.3.1, for the connection
between the sign of the discriminant and the connectedness of E(R)).

The curve 15a8 has negative discriminant, while ∆(15a7),∆(17a4) > 0. Thus,
the statement N/2 divides c(E)c∞(E) is true for all but one exception, 15a8. We
do not know whether N divides c(E)c∞(E) with only finitely many exceptions.

Proposition 2.7 (Case N=5). Let E/K be an elliptic curve with a K-rational
point of order N = 5.

(a) If K = Q, then there exists at least one prime ideal (p) where E/Q has split
multiplicative reduction of type In with N | n, except for the curve 11a3 in [12],
with c(E) = 1.

(b) If K is an imaginary quadratic field, then there exists at least one prime ideal
P in OK where E/K has split multiplicative reduction of type InP

with N | nP,
except for the curve 11a3 and finitely many additional possible exceptions when
K = Q(

√
−1) and K = Q(

√
−3).

Proof. Let K be any field. For the point P on the curve E(b, c) in (2.1) to have
order N = 5, we need b = c. Set λ := b. The invariants of E(b, c) expressed in terms
of λ are:

∆(λ) = λ5(λ2 − 11λ− 1),
c4(λ) = 1 + 12λ+ 14λ2 − 12λ3 + λ4,
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with res(∆(λ), c4(λ)) = 52. It follows that there exists λ ∈ K such that an elliptic
curve E/K with a point of order N = 5 can be given by a Weierstrass equation of
the form

Eλ : y2 + (1− λ)xy − λy = x3 − λx2.
Let now K be a number field. Assume that there exists a prime P such that

m := ordP(λ) > 0. Then we immediately find from the computations of ∆ and c4
that the reduction of E/K modulo P is split of type I5m.

Assume now that there exists a prime P such that m := ordP(λ) < 0. The
Weierstrass equation Eλ is not integral at P, but the following equation is, where
µ := λ−1:

y2 + (µ− 1)xy − µ2y = x3 − µx2.
The discriminant of this new equation is µ5(1 − 11µ − µ2), and we find again that
the reduction is split of type I5|m|.

The cases where ordP(λ) = 0 for all P, i.e., when λ ∈ O∗K , have to be treated
separately. When K = Q, the units λ = ±1 produce the same elliptic curve y2−y =
x3 − x2, 11a3 in [12], with c(E) = 1. �

Remark 2.8 The result above, that all but finitely many elliptic curves E/Q have
N | c(E) when N = 5, is likely to be sharp. Indeed, Schinzel’s Hypothesis H
conjectures that the polynomials λ and (λ2−11λ−1) take prime values at the same
time infinitely often. Thus, there conjecturally exist infinitely many prime numbers
λ such that the discriminant of E/Q, λ5(λ2 − 11λ − 1), is divisible by exactly two
distinct primes, so that E/Q has reduction I5 at λ, and I1 at the prime (λ2−11λ−1).
For such curves, 52 - c.

It seems likely that the result in (b) cannot be extended to all number fields. To
show this, it would suffice to produce a number field K, and an infinite number of
units λ ∈ O∗K such that the ideal (λ2 − 11λ − 1) has a squarefree factorization in
prime ideals of OK , or more generally, such that the order of (λ2 − 11λ− 1) at any
prime P is not a multiple of 5. This would show the existence of infinitely many
elliptic curves E/K with a point of order 5 and with 5 - c(E). Deciding whether such
an infinite family of units exists may be out of reach with the current techniques.

Proposition 2.9 (Case N=6). Let E/Q be an elliptic curve with a Q-rational
point of order N = 6. Then N | c(E), except for the curves denoted by 14a4, 14a6,
and 20a2 in [12], which have c(E) = 2, 2, and 3, respectively.

Proof. Let K be any field. For the point P on the curve E(b, c) in (2.1) to have
order N = 6, we need b = c+ c2. Set λ := c. The invariants of E(b, c) expressed in
terms of λ are:

∆(λ) = λ6(λ+ 1)3(9λ+ 1),
c4(λ) = (3λ+ 1)(3λ3 + 3λ2 + 9λ+ 1),

with res(∆(λ), c4(λ)) = 21632. It follows that there exists λ ∈ K such that an elliptic
curve E/K with a point of order N = 6 can be given by a Weierstrass equation of
the form

Eλ : y2 + (1− λ)xy − λ(λ+ 1)y = x3 − λ(λ+ 1)x2.

Let now K be a number field. Assume that there exists a prime P such that
m := ordP(λ) > 0. Then we immediately find from the computations of ∆ and c4
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that the reduction of E/K modulo P is split of type I6m, and the proposition is
proved in this case.

Assume now that there exists a prime P such that m := −ordP(λ) > 0. The
Weierstrass equation Eλ is not integral at P, but the following equation is, where
µ := λ−1:

y2 + (µ− 1)xy − µ(µ+ 1)y = x3 − (µ+ 1)x2.

The discriminant of this new equation is µ2(1 + µ)3(9 + µ).
When the residue characteristic is not 3 at P, this equation is minimal at P, with

reduction of type I2m. When µ + 1 is contained in a prime ideal Q which does not
contain 2, then the reduction of this Weierstrass equation at Q is split of type I3s,
where s := ordQ(µ+ 1). The proposition follows then in this case.

Let us assume now that K = Q, and that µ = ±3m. Then Tate’s algorithm shows
that the reduction mod (3) is of type III, so with component group Z/2Z. The
equation µ+1 = ±2s has only the solutions µ = 0, µ = −2, with s = 0, and µ = −3
and µ = −32. (The cases µ = 0 and µ = −9 need not be considered as in these cases
∆ = 0). Except for µ = −2,−3, we find that µ + 1 is divisible by an odd prime,
and thus has a place with reduction of type I3s. When µ = −2, we have 14a4, with
c(14a4) = 2. When µ = −3, we have 36a1, with c(36a1) = 6.

Suppose now that µ is not a power of 3, and µ+ 1 = ±2s. Consider first the case
where s ≥ 4. Then the equation

y2 + (µ− 1)xy − µ(µ+ 1)y = x3 − (µ+ 1)x2.

is not minimal at (2). Since ord2(µ − 1) = 1, we can ‘divide the equation’ by 26,
and obtain an minimal integral equation of the form

y2 +
(µ− 1)

2
xy − µ(µ+ 1)

23
y = x3 − (µ+ 1)

22
x2,

with split multiplicative reduction. The discriminant of this equation is ∆ =
2−12µ2(µ + 1)3(9 + µ), and since s ≥ 4, we find that ord2(∆) = 3s − 9. It fol-
lows that the reduction at 2 is split of type I3(s−3).

It remains to consider the cases where µ = 1 or −3 with s = 1 (curve 20a2 with
c(20a2) = 3, and 36a1 with c(36a1) = 6), µ = 3 or −5 with s = 2 (curves 36a2 and
20a1, both with c = 6), and µ = 7 with s = 3 (curve 14a6 with c(14a6) = 2). �

Proposition 2.10 (Case N=7). Let E/K be an elliptic curve with a K-rational
point of order N = 7.

(a) If K = Q, then there exist at least two prime ideals (p) where E/Q has split
multiplicative reduction of type Inp with N | np, except for the curve 26b1 in [12],
with c(E) = 7.

(b) If K is an imaginary quadratic field, then there exist at least two prime ideals
P in OK where E/K has split multiplicative reduction of type InP

with N | nP,
except possibly for the curve 26b1 and finitely many additional possible exceptions
when K = Q(

√
−1) and K = Q(

√
−3).

(c) If K is a real quadratic field, or [K : Q] > 2, then there exists at least one prime
ideal P in OK where E/K has split multiplicative reduction of type In with
N | n, except when E/K belongs to a list of at most 29(rank(O∗K)+1) isomorphism
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classes of elliptic curves over K. When K is real quadratic, the exceptions may
include the curve 26b1, and possibly six additional exceptions when K = Q(

√
5).

Proof. Let K be any field. For the point P on the curve E(b, c) in (2.1) to have
order N = 7, we need b2 − bc − c3 = 0. Set b = λ3 − λ2 and c = λ2 − λ. The
invariants of E(b, c) expressed in terms of λ are:

∆(λ) = λ7(λ− 1)7(λ3 − 8λ2 + 5λ+ 1),
c4(λ) = (λ2 − λ+ 1)(λ6 − 11λ5 + 30λ4 − 15λ3 − 10λ2 + 5λ+ 1),

with res(∆(λ), c4(λ)) = 72. It follows that there exists λ ∈ K \ {0, 1} such that the
elliptic curve E/K with a point of order N can be given by a Weierstrass equation
of the form

y2 + (1− λ(λ− 1))xy − λ2(λ− 1)y = x3 − λ2(λ− 1)x2.

Let now K be a number field. Assume that there exists a prime P such that
m := ordP(λ) > 0. Then we immediately find from the computations of ∆ and c4
that the reduction of E/K modulo P is split of type I7m. If there exists a second
maximal ideal P′ with m′ := ordP′(λ) > 0, then we have a second place where the
reduction is split multiplicative, this time of type I7m′ .

Assume that there exists a prime P such that m := ordP(λ) < 0. The Weierstrass
equation Eλ is not integral at P, but the following equation is, where µ := λ−1:

y2 + (µ2 + µ− 1)xy − µ3(1− µ)y = x3 − µ(1− µ)x2.

The discriminant of this new equation is µ7(1 − µ)7(1 − 8µ + 5µ2 + µ3), and the
reduction at P is split of type I7m. It follows from the above considerations that the
proposition is proved if there exist two distinct prime ideals P such that ordP(λ) 6= 0.

Assume now that there exists a single prime ideal P such that m := ordP(λ) 6= 0.
Then either λ ∈ OK or µ ∈ OK . Assume first that λ ∈ OK . Then λ ∈ P. Consider
the element λ− 1. Clearly, ordP(λ− 1) = 0. If there exists a maximal ideal Q 6= P
such that m′ := ordQ(λ− 1) > 0, then we find that the elliptic curve has reduction
modulo Q of type I7m′ . Otherwise, λ− 1 ∈ O∗K . When K = Q, the only possibility
is λ = 2. When K is an imaginary quadratic field, the set of elements of the form
λ = 1 + u, with u a unit, is finite.

The argument when µ ∈ OK is similar, and we find that a second place of mul-
tiplicative reduction of type I7m′ exists, unless 1 − µ is a unit. When K = Q, the
only possibility is λ = 1/2.

When ordP(λ) = 0 for all P, i.e., when λ ∈ O∗K , we find that there may not be
in general two places of multiplicative reduction with 7 | cv. There will be at least
one such place if λ − 1 is not a unit in O∗K . As we recalled in 2.3, the equation
X + Y = 1, with X, Y ∈ O∗K , has a number of solutions in (O∗K)2 bounded by the
constant 29(rank(O∗K)+1). When K = Q, the values λ = −1, 2, and 1/2, all produce
an equation for the curve 26b1, with c(26b1) = 7. �

Remark 2.11 Let K = Q(
√
−3), with ζ6 := (1 +

√
−3)/2. Consider the curve Eλ

in the proof of 2.10 with λ = ζ6. The Weierstrass equation is

y2 + 2xy + ζ6y = x3 + ζ6x
2.

This curve has j-invariant j = 0, and discriminant ideal (2+ζ6)
2, with NormK/Q(2+

ζ6) = 7. It has additive reduction of type II at (2+ζ6), so c(Eλ) = 1. The conjugate
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curve with λ = ζ56 similarly has c = 1. These curves appear in [53], Table 10, and
are the only elliptic curves E/K over any quadratic field K which have integral
j-invariant and a torsion point over K of order 7.

Proposition 2.12 (Case N=8). Let E/Q be an elliptic curve with a Q-rational
point of order N = 8. Then N2 | c(E), except for the curves denoted by 15a4, 21a3,
42a1, 48a6, and 102b1 in [12], with c(E) = 16, 8, 16, 32, and 32, respectively.

Proof. Let K be any field. For the point P on the curve E(b, c) in (2.1) to have
order N = 8, we need the relation between b and c obtained by considering the
x-coordinates of [7]P = [−1]P :

2b2 − bc2 − 3bc+ c2 = 0.

We find that b = (2λ−1)(λ−1) and c = (2λ−1)(λ−1)/λ. The invariants of E(b, c)
expressed in terms of λ are:

∆(λ) = (1−8λ+8λ2)(2λ−1)4(λ−1)8
λ4

,

c4(λ) = (16λ8−64λ7+224λ6−448λ5+480λ4−288λ3+96λ2−16λ+1)
λ4

.

It follows that there exists λ ∈ K such that an elliptic curve E/K with a point of
order N = 8 can be given by a Weierstrass equation of the form

Eλ : y2 + (1− c)xy − by = x3 − bx2,
with b and c as above. The curves in this family indexed by λ and 1 − λ are
isomorphic. We collect here some explicit computations:

λ = −1/2 curve 21a3 c(Eλ) = 8
λ = 1/6 curve 15a4 c(Eλ) = 16
λ = 1/3 curve 42a1 c(Eλ) = 16
λ = 1/4 curve 48a6 c(Eλ) = 32
λ = 2 curve 102b1 c(Eλ) = 32.

Let now K be a number field. We begin the proof with a series of preliminary
remarks in (a) – (d) below.

(a) Assume that there exists a prime P such that m := ordP(λ − 1) > 0. Then
we immediately find from the computations of ∆ and c4 that the reduction of E/K
modulo P is of type I8m. Similarly, if there exists a prime P such that m :=
ordP(2λ− 1) > 0, then the reduction of E/K modulo P is of type I4m.

(b) Assume now that there exists a prime P such that m := ordP(λ) > 0. The
above equation is not integral at P, but

y2 + (λ− (2λ− 1)(λ− 1))xy − λ3(2λ− 1)(λ− 1)y = x3 − λ2(2λ− 1)(λ− 1)x2

is minimal. Its discriminant is λ8(λ − 1)8(2λ − 1)4(8λ2 − 8λ + 1). The reduction
modulo P is of type I8m, and is split.

(c) Assume now that there exists a prime P such that m := −ordP(λ) > 0. The
Weierstrass equation Eλ is not integral at P, but the following equation is, where
µ := λ−1:

y2 + (µ− (2− µ)(1− µ))xy − µ(2− µ)(1− µ)y = x3 − (2− µ)(1− µ)x2.

The discriminant of this new equation is µ2(2 − µ)4(1 − µ)8(µ2 − 8µ + 8). When
2 /∈ P, then the reduction modulo P is of type I2m. Modulo P, the reduction is
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y2 − 2̄xy = x3 − 2̄x2, which may not be split. If ordQ(2 − µ) = u > 0 for some
prime ideal Q with 2 /∈ Q, then the reduction at Q is split multiplicative of type
I4u. If ordL(1− µ) = v > 0 for some prime ideal L, then the reduction at L is split
multiplicative of type I8v.

(d) Suppose that ordP(2) = 1, and that µ ∈ P. Consider then the case where
ordP(2− µ) = s > 1, which corresponds to the case ordP(µ) = 1 (µ 6= 2). Then the
equation is not minimal, but dividing by µ6 leads to the equation

y2 + (1− (2− µ)

µ
(1− µ))xy − (2− µ)

µ2
(1− µ)y = x3 − (2− µ)

µ2
(1− µ)x2

which is minimal at (2). When s > 2, the reduction is split multiplicative of type
I4s−8, so 4 | cP. When s = 2, the reduction is good.

Suppose that ordP(µ) = m > 1. It follows from Tate’s algorithm that the equation

y2 + (µ− (2− µ)(1− µ))xy − µ(2− µ)(1− µ)y = x3 − (2− µ)(1− µ)x2

is minimal at (2) and that it has reduction of type I∗s for some s > 0. Therefore, 2
or 4 | cP. We claim that 4 = cP. To see this, it suffices to note that Tate’s algorithm
terminates when the equation Y 2 + a3,iY − a6,2i has distinct roots, and that cP = 4
if the roots are in the residue field k. Since in our case, a6 = 0, the latter condition
is automatically satisfied.

We are now ready to proceed with the case K = Q. Write λ = ±u/v, with
u, v > 0 coprime integers. If u is divisible by two distinct primes, then we conclude
using (b) that N2 | c(Eλ).

2.13 We assume in this paragraph that u is divisible by a single prime. From b),
we find that N | c(Eλ). If v = 1, then u − 1 is divisible by a prime unless u = 2.
Except for this exception (curve 102b1), we find that N2 | c(Eλ) (use (a) and (b)).
Assume now that u is divisible by a single prime, and that v 6= 1. If the numerator
of λ− 1 is divisible by a prime, then N2 | c(Eλ) (use (a) and (b)). If the numerator
of 2λ − 1 is divisible by an odd prime and v is not a power of 2, then N2 | c(Eλ),
where a factor N is contributed by the numerator of u/v, a factor 2 is contributed
by an odd factor of the denominator of u/v, and a factor N/2 is contributed by the
odd prime in the numerator of 2λ− 1.

Assume now the numerator of λ − 1 is not divisible by a prime. Then λ = u/v,
and u − v = ±1. If the numerator of 2(u/v) − 1 is not divisible by an odd prime,
then either 2u − v is even or 2u − v = ±1. The former condition implies that v is
even. Then, if v is divisible by an odd prime, we find that N2 | c(Eλ), a factor N
being contributed by u, a factor 4 by the prime 2 in v, and a factor 2 by the odd
prime in v. Assume now that 2u − v = ±1. Then, since u − v = ±1, u ± 1 = ±1
has solution u = 2 with then v = 3, leading to the curve 42a1.

Assume that v is not divisible by an odd prime. Then u − v = ±1 with v = 2s

and u = pr, p odd prime. In other words, pr − 2s = ±1. By Catalan’s conjecture
[50], we have pr = 32 unless either s = 1 or r = 1. For the case pr = 32, 2s = 8,
we find that 2u − v = 10 is divisible by an odd prime, thus contributing 4 to the
divisibility of c(E). The prime 2 in v also contributes 4 to c(E), and the prime in
u contributes 8. The proposition holds in this case. Assume now that s = 1. Then
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pr = 3, leading to the case λ = 3/2 and the curve 21a3, and to the case λ = 3/4
and the curve 48a6.

Assume that r = 1, so that p = 2s ± 1, s ≥ 2. Consider the numerator of
2λ − 1 = 2(p/2s) − 1, that is, p − 2s−1. Then p − 2s−1 = ±1 + 2s−1, and this
numerator is divisible by a non-trivial prime unless s = 2 and λ = 3/2. The case
λ = 3/2 was treated above already and gives the exception 21a3. In all other cases,
we can use a) with a prime dividing the numerator of 2λ− 1. Since ord2(µ) > 1, we
can also use d), and we then conclude that the statement of the proposition holds
in this subcase.

2.14 We now assume that u = 1, and set µ := λ−1 = ±v ∈ Z. The case µ = 1 need
not be considered, as ∆ = 0 in this case. The case µ = −1 is the curve 102b1, with
c(102b1) = 32. When µ 6= ±1 is odd, 2 − µ is divisible by an (odd) prime, unless
µ = 3, which gives the curve 42a1 with c(42a1) = 16. The above considerations
show that when µ is odd and µ 6= ±1 or µ 6= 3, then N2 | c(E).

Assume now that µ is even. If µ is divisible by an odd prime, then the proposition
is proven if 2− µ is also divisible by an odd prime (see (c)). Consider then the case
where 2 − µ = ±2s. Since µ 6= 0 and is divisible by an odd prime, we have s > 1.
Then the reduction at (2) is of type I4s−8 (see (d)), and the proposition is proved in
this case also, unless µ = 6 and s = 2, which gives the curve 15a4 with c(15a4) = 16.

It remains to consider the cases where µ is a power of 2. The case µ = 2 is excluded
since in this case ∆ = 0. The case µ = −2 is the curve 21a3 with c(21a3) = 8.
Suppose that µ = ±2m with m > 1. It follows from Tate’s algorithm that the
reduction is of type I∗` for some ` > 0 (see (d)). Therefore, 4 | c2 in this case. The
proposition is then proved when µ is a power of 2, since in this case 2−µ is divisible
by an odd prime, unless µ = ±1,±2, 4. The case µ = 4 is the curve 48a6, with
c(48a6) = 32. �

Remark 2.15 Proving that the statement of the proposition is best possible, that
is, that there exist infinitely many values of λ such that ord2(c(Eλ)) = 6, does not
seem to follow from standard conjectures. A computational search led to only finitely
many values with ord2(c(Eλ)) = 6. Searching over λ = 1/µ with µ ∈ [3, 2 · 105]
produced the values µ = 9, 14, 54, 4374 with ord2(c(Eλ)) = 6. When µ ∈ [−2 ·
105,−2], the values with ord2(c(Eλ)) = 6 are µ = −6,−10,−18,−26,−106,−162,
−242, −2186, and −8746. In view of c) in the above proof, an integer µ with:

(i) |µ| = 2pr for some odd prime p and odd r, and
(ii) |µ− 1| = `s for some prime ` and odd s, and

(iii) |µ− 2| = 4qt for some odd prime q and odd t,

may produce an elliptic curve E with ord2(c(Eλ)) = 6 (more precisely, with good
reduction at (2), and with ord2(cp) = 1, c` = 8s, and cq = 4t). An integer µ = 2pr

with r even could also produce cp = 2 if the reduction at p is not split. We searched
through such integers to about 10500 and found only two additional values, µ =
−1594322 = −313 + 1 and µ = −86093442 = −2 · 316, with ord2(c(Eλ)) = 6. We do
not know whether there exist infinitely many integers with the properties (i)-(iii).

Remark 2.16 Let K = Q(
√

5). The prime (31) splits in K. Let λ be a root of
x2 + x − 1. The elliptic curve E/K given by y2 + (1 − c)xy − by = x3 − bx2, with
b = (2λ−1)(λ−1) and c = (2λ−1)(λ−1)/λ, has prime conductor P one of the two
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prime ideals of K above (31), with reduction at P of non-split multiplicative type
I1. Thus, E/K has (0, 0) as K-rational torsion point of order 8, and c(E/K) = 1.

Proposition 2.17 (Case N=9). Let E/K be an elliptic curve with a K-rational
point of order N = 9.

(a) If K = Q, then there exist at least two prime ideals (p) where E/Q has split
multiplicative reduction of type Inp with N | np, except for the curve 54b3 in [12],
with c(E) = 27.

(b) If K is an imaginary quadratic field, then there exist at least two prime ideals
P in OK where E/K has split multiplicative reduction of type InP

with N | nP,
except for finitely many exceptions.

(c) If K is a real quadratic field, or [K : Q] > 2, then there exists at least one prime
ideal P in OK where E/K has split multiplicative reduction of type In with
N | n, except when E/K belongs to a list of at most 29(rank(O∗K)+1) isomorphism
classes of elliptic curves over K.

Proof. Let K be any field. For the point P on the curve E(b, c) in (2.1) to have
order N = 9, we need the relation between b and c obtained by considering the
y-coordinates of [7]P = [−2]P ,

(b− c)3 + c3(b− c− c2) = 0.

We find that b = cd, with c := λ2(λ− 1), and d := λ2 − λ+ 1. The discriminant of
E(b, c) expressed in terms of λ is:

∆(λ) = λ9(λ− 1)9(λ2 − λ+ 1)3(λ3 − 6λ2 + 3λ+ 1).

For use in 2.24, let us note that

c4(λ) = (λ3 − 3λ2 + 1)(λ9 − 9λ8 + 27λ7 − 48λ6 + 54λ5 − 45λ4 + 27λ3 − 9λ2 + 1).

It follows that there exists λ ∈ K such that an elliptic curve E/K with a point
of order N = 9 can be given by a Weierstrass equation of the form

Eλ : y2 + (1− λ2(λ− 1))xy − dλ2(λ− 1)y = x3 − dλ2(λ− 1)x2.

The curves in this family indexed by λ, (λ− 1)/λ, and −1/(λ− 1), are isomorphic.
Let now K be a number field. Assume that there exists a prime P such that

m := ordP(λ) > 0. Then we immediately find from the computations of ∆ and b2
that the reduction of E/K modulo P is split of type I9m. If there exists a second
maximal ideal P′ with m′ := ordP′(λ) > 0, then we have a second place where the
reduction is split multiplicative, this time of type I9m′ .

Assume now that there exists a prime P such that m := −ordP(λ) > 0. The
Weierstrass equation Eλ is not integral at P, but the following equation is, where
µ := λ−1:

y2 + (µ3 − (1− µ))xy − µ4(µ2 − µ+ 1)(1− µ)y = x3 − µ(µ2 − µ+ 1)(1− µ)x2.

The discriminant of this new equation is µ9(1−µ)9(µ2−µ+ 1)3(1− 6µ+ 3µ2 +µ3),
and the reduction at P is split of type I9m. It follows from the above considerations
that the proposition is proved if there exist two distinct prime ideals P such that
ordP(λ) 6= 0.

Assume now that there exists a single prime ideal P such that m := ordP(λ) 6= 0.
Then either λ ∈ OK or µ ∈ OK . Assume first that λ ∈ OK . Then λ ∈ P. Consider
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the element λ− 1. Clearly, ordP(λ− 1) = 0. If there exists a maximal ideal Q 6= P
such that m′ := ordQ(λ− 1) > 0, then we find that the elliptic curve has reduction
modulo Q of type I9m′ . Otherwise, λ− 1 ∈ O∗K . When K = Q, the only possibility
is λ = 2. When K is an imaginary quadratic field, the set of elements of the form
λ = 1 + u, with u a unit, is finite.

The argument when µ ∈ OK is similar, and we find that a second place of mul-
tiplicative reduction of type I9m′ exists, unless 1 − µ is a unit. When K = Q, the
only possibility is λ = 1/2.

When ordP(λ) = 0 for all P, i.e., when λ ∈ O∗K , we find that there may not be
in general two places of multiplicative reduction with 9 | cv. There will be at least
one such place if λ − 1 is not a unit in O∗K . As we recalled in 2.3, the equation
X + Y = 1, with X, Y ∈ O∗K , has a number of solutions in (O∗K)2 bounded by the
constant 29(rank(O∗K)+1).

When K = Q, the values λ = −1, 2, and 1/2, all produce an equation for the
curve 54b3, with c(54b3) = 27. �

Remark 2.18 Over K = Q(ζ3), the elliptic curve E/K obtained by setting λ = ζ3
has a K-rational point of order N = 9 with c(E) = 27.

Over K = Q(
√

5), the elliptic curve E/K obtained by setting λ = (3 +
√

5)/2 has
a K-rational point of order N = 9 with c(E) = 3. It has reduction of type I1 at one
of the prime ideals above (19), and reduction of type I3 at the prime ideal (2).

Remark 2.19 We did not find any elliptic curve E/Q with a Q-rational point of
order N = 9 and ord3(c(E)) = 4. The curves 714i1, 1482l1, 1554n1, and 6942n1
(with λ = −2, 3,−3 and 4) have ord3(c) = 5. The curves Eλ with λ = −4, 5,−8,
9,−31,32,−127,128,−8191, and 8192 = 213, have ord3(c) = 6. The curves with
λ = −2 · 34, −2532, 273, −283, −2435, −2734, 219, and 231, have ord3(c) = 7. It is
not clear whether there exist infinitely many curves Eλ with ord3(c) = 6, or with
ord3(c) = 7.

Proposition 2.20 (Case N=10). Let E/Q be an elliptic curve with a Q-rational
point of order N = 10. Then 50 | c(E).

Proof. We set

b :=
λ3(λ− 1)(2λ− 1)

(λ2 − 3λ+ 1)2
and c :=

−λ(λ− 1)(2λ− 1)

(λ2 − 3λ+ 1)
.

The discriminant of E(b, c) expressed in terms of λ is:

∆(λ) =
λ10(λ− 1)10(2λ− 1)5(4λ2 − 2λ− 1)

(λ2 − 3λ+ 1)10
.

There exists λ ∈ K such that an elliptic curve E/K with a point of order N = 10
can be given by a Weierstrass equation of the form

Eλ : y2 + (1− c)xy − by = x3 − bx2,

with b and c as above. The curves in this family indexed by λ and (λ−1)/(2λ−1) are
isomorphic. All isogenies between the curves below are of degree 2, and are related
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by the formula λ→ −1/2(λ− 1). We collect here some explicit computations:

λ = 2 curve 66c1 c(Eλ) = 50
λ = −1/2 curve 66c2 c(Eλ) = 100
λ = −1 curve 150a3 c(Eλ) = 100
λ = 1/4 curve 150a4 c(Eλ) = 100
λ = 3 curve 870i1 c(Eλ) = 500
λ = −1/4 curve 870i2 c(Eλ) = 500.

(a) Let now K be a number field. Assume that there exists a prime P such that
m := ordP(λ) > 0. Then we immediately find from the computations of ∆ and b2
that the reduction of E/K modulo P is split of type I10m. Similarly, if there exists
a prime P such that m := ordP(λ − 1) > 0, then the reduction of E/K modulo P
is split of type I10m.

(b) Assume now that there exists a prime P such that m := −ordP(λ) > 0. The
Weierstrass equation Eλ is not integral at P, but the following equation is, where
µ := λ−1. Write

b′ :=
(2− µ)(1− µ)

µ(1− 3µ+ µ2)2
and c′ :=

−(2− µ)(1− µ)

µ(1− 3µ+ µ2)
,

with equation

(2.2) y2 + µ(1− c′)xy − µ3b′y = x3 − µ2b′x2.

The discriminant of this new equation is

µ5(1− µ)10(2− µ)5(4− 2µ− µ2)

(1− 3µ+ µ2)10
.

When 2 /∈ P, this equation is minimal, with reduction at P split of type I5m.
(c) Consider now the case where K = Q. Assume that P = (2). Then the new

equation (2.2) is not minimal, and after an obvious change of variables (dividing the
equation by 26), we obtain

y2 +

(
µ

2
− −(2− µ)(1− µ)

2(1− 3µ+ µ2)

)
xy − µ2(2− µ)(1− µ)

8(1− 3µ+ µ2)2
y = x3 − µ(2− µ)(1− µ)

4(1− 3µ+ µ2)2
x2.

When m := ord2(µ) > 1, this equation is minimal, with reduction split of type
I5m−5. When ord2(µ) = 1, then the equation is also minimal, with reduction split
of type I5n, where n = ord2((1 − µ/2)). In each case, the Tamagawa number is
divisible by 5.

(d) Assume now that µ ∈ Z. Let p be a prime dividing d′ := (1− 3µ+ µ2). This
prime is obviously coprime to any divisor of µ. The equation (2.2) is not integral at
p, but the following one is:

y2 + µd′(1− c′)xy − µ3d′3b′y = x3 − µ2d′2b′x2.

The discriminant of this new equation is

µ5(1− µ)10(2− µ)5(4− 2µ− µ2)(1− 3µ+ µ2)2.

This equation is minimal with reduction modulo p of type I2s with s := ordp(d
′),

unless p = 5. Indeed, it follows that Tate’s algorithm that such a curve will have
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multiplicative reduction unless p | b2. One easily verifies that p | b2 and p | d′ if and
only if p = 5.

When p = 5, it follows from Tate’s algorithm that the reduction is of type III,
since then p3 - b8 (with here b8 = a2a

2
3). In this case also, the Tamagawa number is

even, with in fact c5 = 2.
We may now prove the proposition as follows. Write λ = ±a/b, a, b > 0 coprime

integers. If a is divisible by two distinct primes, then we conclude using (a) that
100 | c(Eλ). If a is a power of a single prime p and b = 1, we note that a− 1 is not a
unit unless a = 2. Then we conclude from (a) that 100 | c(Eλ), unless a = 2, b = 1.
When λ = a = 2, we find the curve 66c1 with c = 50.

If a is divisible by a single prime and b 6= 1, we use (a), and (b) and (c) to find
that 50 | c(E). If a = 1 and b is divisible by at least two distinct primes, we use (b),
(c), and (d) to find that 50 | c(E). If a = 1 and b is divisible by a single prime, then
(±1/b) − 1 has a numerator divisible by a prime unless b = 2. This case, λ = 1/2,
need not be considered since the discriminant is 0. We then use (a), (c), and (d) to
find that 50 | c(E). �

Remark 2.21 Under the hypotheses of Proposition 2.20, one may wonder whether
the conclusion 500 | c(E) holds, unless E is one of the four curves 66c1, 66c2, 150a3,
and 150a4.

In our next proposition, one may wonder whether N2 | c(E) always holds. The
curve 90c3 has a point of order 12 and c(E) = 122. The curve 30a2 has a torsion
subgroup of order 12 which is not cyclic, with c(E) = 24.

Proposition 2.22 (Case N=12). Let E/Q be an elliptic curve with a Q-rational
point of order N = 12. Then N | c(E).

Proof. We set

b :=
λ(2λ− 1)(3λ2 − 3λ+ 1)(2λ2 − 2λ+ 1)

(λ− 1)4
,

and

c :=
−λ(2λ− 1)(3λ2 − 3λ+ 1)

(λ− 1)3
.

The discriminant of E(b, c) expressed in terms of λ is:

∆(λ) =
λ12(2λ− 1)6(3λ2 − 3λ+ 1)4(2λ2 − 2λ+ 1)3(1− 6λ+ 6λ2)

(λ− 1)24
.

The curves in this family indexed by λ and 1 − λ are isomorphic. We collect here
some explicit computations:

λ = 1/3 curve 90c3 c(Eλ) = 122

λ = 1/4 curve 210b5 c(Eλ) = 2 · 122

λ = −1/2 curve 4290bb4 c(Eλ) = 6 · 122

λ = 2 or λ = −1 curve 2730bd1 c(Eλ) = 6 · 122.

Let now K be a number field. Assume that there exists a prime P such that
m := ordP(λ) > 0. Then we immediately find from the computations of ∆ and b2
that the reduction of E/K modulo P is split of type I12m. The proposition is thus
proved when there exists a prime P such that m := ordP(λ) > 0. Consider then the
case where µ := λ−1 ∈ OK .
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Assume now that there exists a prime P such that m := −ordP(λ) > 0. The
Weierstrass equation Eλ is not integral at P, but the equation with invariants
a1, a2, a3 given below, and a4 = a6 = 0, is integral, where µ := λ−1:

a1 = µ(1− µ)3 + (2− µ)(3− 3µ+ µ2)

a2 = −(1− µ)2(2− µ)(3− 3µ+ µ2)(2− 2µ+ µ2)

a3 = −µ(1− µ)5(2− µ)(3− 3µ+ µ2)(2− 2µ+ µ2)

The discriminant of this new equation is

µ2(1− µ)12(2− µ)6(3− 3µ+ µ2)4(2− 2µ+ µ2)3(µ2 − 6µ+ 6).

We compute b2 := a21 + 4a2 to be

µ8 + 168µ5 − 36µ6 − 372µ4 + 468µ3 − 336µ2 + 120µ− 12.

When 2 /∈ P or 3 /∈ P, the new equation is minimal, with reduction at P of type
I2m. Assume that µ ∈ Z. Then µ−1 is divisible by a prime unless µ = 2, and µ = 2
need not be considered since in this case ∆ = 0. It is easy to check that for any
p | (1− µ), the reduction is split of type I12m′ , and the proposition is proved. �

Proposition 2.23. Let E/Q be an elliptic curve with Tamagawa product c(E).
Then c(E)/|E(Q)tors| ≥ 1/5, with equality only when E = X1(11).

Proof. Recall that the possible group structures for E(Q)tors are Z/NZ for N =
1, . . . , 10 and 12, and Z/2Z×Z/2NZ for 1 ≤ N ≤ 4 (see [47], Thm 8). Propositions
2.9, 2.10, 2.12, 2.17, 2.20, and 2.22, prove our claim when E(Q)tors is cyclic. Note
that in 2.7, the exception 11a3 is isomorphic to X1(11).

In the case Z/2Z× Z/4Z, our claim follows from the fact that the elliptic curves
in 2.4 with c = 1 have a torsion subgroup of order exactly 4. Similarly, in the case
Z/2Z × Z/6Z, our claim follows from the fact that the elliptic curves in 2.9 with
c = 2 or c = 3 have a torsion subgroup of order exactly 6. Finally, in the case
Z/2Z× Z/8Z, 2.12 shows that 8 | c(E). �

The complete list of possible subgroups E(K)tors of an elliptic curve E/K over a
quadratic number field can be found in [33]. One finds that |E(K)tors| ∈ [1, 16] ∪
{18, 20, 24, 36}. We showed in 2.11 and 2.16 that c(E)/|E(K)tors| can take the values
1/7 and 1/8 when [K : Q] = 2. An example of an elliptic curve over a cubic field
with c(E)/|E(K)tors| = 1/13 can be found in [34].

Our next proposition shows that when N = 5, 7 or 9, the number of exceptions
to the divisibility N | c or N2 | c, for a given number field K, cannot be bounded
by a constant independent of the number field.

Proposition 2.24. Let d > 0 be any integer. Fix N = 5, 7, or 9. Then there exists
a number field K such that at least d distinct isomorphism classes of elliptic curves
E/K have distinct j-invariants in O∗K, have a point of order N , and c(E) = 1.

Proof. Let us denote by c4(x) and ∆(x) two integer polynomials such that j(Eλ) =
c4(λ)3/∆(λ) (see 2.7, 2.10, and 2.17). When N = 5, 7 or 9, we can choose these
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polynomials to be monic. Let K denote the extension of Q generated by a root ρ of
the monic equation

1 +
d∏
i=1

c4(x
i)∆(xi) ·

∏
i 6=j, i,j∈{1,...,d}

(
c4(x

i)3∆(xj)− c4(xj)3∆(xi)− 2
)

= 0.

Set λ = ρi and consider the elliptic curves Eρi , i = 1, . . . , d. Since λ ∈ OK ,
the associated Weierstrass equations are integral, with integral discriminant. By
construction,

d∏
i=1

c4(ρ
i)∆(ρi)

∏
i 6=j,i,j∈{1,...,d}

[c4(ρ
i)3∆(ρj)− c4(ρj)3∆(ρi)− 2]

is a product of units in O∗K . In particular, j(Eρi) ∈ O∗K for i = 1, . . . , d. Moreover,
j(Eρi) 6= j(Eρj) if i 6= j, since 2 is not a unit in OK . Since the discriminant of Eρi
is a unit, Eρi has good reduction at all places of K, and c =

∏
P cP = 1. �

Remark 2.25 Consider the elliptic curve E3/Q(λ), given by

y2 − xy − λy = x3,

with (0, 0) as a 3-torsion point1. Its discriminant is λ3(1− 27λ). It has reduction of
type I3 at (λ). Setting µ := λ−1, we consider the equation y2 − µxy − µ2y = x3 to
find that the reduction at ∞ is of type IV ∗. The new discriminant is µ8(µ − 27).
The reduction is non-split of type I1 at (µ− 27).

Clearly, setting λ to be a prime p in Z produces an elliptic curve E3,λ/Q with
Tamagawa number cp = 3. This gives infinitely many examples of curves E3,λ/Q
with a point of order 3 and with 3 | c.

Lemma 2.26. There are infinitely many values µ ∈ Z such that the elliptic curve
y2 − µxy − µ2y = x3, with 3-torsion point (0, 0), has c = 1.

Proof. Choose µ = t3. Then the curve y2 − µxy − µ2y = x3 can be given by the
equation y2 − txy − y = x3, with discriminant (t3 − 27), and c4 = t4 − 24t. The
polynomial t3 − 27 takes infinitely many squarefree values [21]. Choose t ∈ Z such
that t3−27 is squarefree. Then 3 - t. Pick a prime p which divides t3−27. It follows
that p - c4, and so the reduction at p is multiplicative of type I1. �

Remark 2.27 The curve E/Q(t) defined by y2 − txy − y = x3 has exactly four
semistable fibers over Q, with reduction of type I1, I1, I1 and I9. Over C there is
a unique such fibration [2]. The equation X2Y + Y 2Z + Z2X − tXY Z = 0 is an
alternate equation for E.

Remark 2.28 Let K be a number field and let G/K be a smooth group scheme
with an integral model of finite type G/ Spec(OK). The class group C(G) is defined
for instance in [26]. When G = Gm,K and G = Gm,OK

, C(G) is nothing but the
ideal class group of K. When G/K is an abelian variety A/K and G/ Spec(OK)
is the connected component of zero A0 of the Néron model A/ Spec(OK) of A/K,

1This curve is not universal with this property. One also has the isotrivial curve y2 + λy = x3

with reduction IV ∗ and IV and j = 0.
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the group C(A0) is identified with the cokernel of the product of the local reduction
maps:

C(A0) = Coker (A(K)
red−→
∏
v

Φv(kv))

(see [26]). It is natural to also consider the intermediate quotient
∏

v Φv(kv) →
C(A0)t → C(A0), with

C(A0)t := Coker (A(K)tors
red−→
∏
v

Φv(kv)).

Let P ∈ A(K)tors be a point of order N . We remark here that many of the results
in this article, proving that N | |

∏
v Φv(kv)|, can be sharpened to state that red(P )

has order N in
∏

v Φv(kv), thus providing some information on the quotient C(A0)t.
Indeed, in many of our arguments, the torsion point P is the point (0, 0) on a curve
y2 + (1 − c)xy − by = x3 − bx2, and we consider this equation modulo a prime P
with b ∈ P and 1 − c /∈ P resulting in a reduction of split multiplicative type. We
note then that the point (0, 0) reduces modulo P to the singular point. When such
is the case, the image of P is not trivial in ΦP(OK/P), and has order exactly N
when N is prime.

We note however that it is not always the case when N | |
∏

v Φv(kv)| that red(P )
has order N in

∏
v Φv(kv), as the following examples show. Consider an abelian

variety A/K with c = 1 (so that red(P ) is trivial). Assume that A/K has everywhere
semi-stable reduction (such as 11a3 with N = 5). Then it is always possible to find a
finite extension L/K such that at some place w of L over a place v of bad reduction
of A/K, the Tamagawa number of AL/L is divisible by N . On the other hand, by
construction, P ∈ AL(L), and redL(P ) is trivial.

To find an example over Q, consider the elliptic curve Et/Q given by the equation
y2−txy−y = x3, with ∆ = t3−27 and c4 = t4−24t. The point P := (0, 0) has order
3. Choose t ∈ Z coprime to 3 such that there exists a prime p with 3 | ordp(t− 3),
and p ≡ 1 (mod 3) (say t = 73 + 3). We claim that red(P ) is trivial in

∏
v Φv(kv),

and that Φp(Fp) has order divisible by 3.
Indeed, any prime q 6= 3 dividing the discriminant does not divide c4. Thus the

equation y2−txy−y = x3 is minimal at q and the curve has multiplicative reduction.
Clearly, (0, 0) is not a singular point on the reduced equation modulo q. It follows
that the point P reduces to a point of order 3 in the connected component of zero
of the Néron model of Et at q. Since the reduction is multiplicative, we find that
the reduction is split if q ≡ 1 (mod 3), and not split if q ≡ 2 (mod 3). When the
reduction is split, |Φq(Fq)| = ordq(∆).

Remark 2.29 Let us remark here that when E/Q has a subgroup G/Q of order
N = 5 or 7 defined over Q, one does not expect in general that N | c(E). Indeed,
consider the isogeny class C = {858k1, 858k2} in [12]. Then 858k1 has a Q-rational
point P of order 7, and c(858k1) = 2 · 73. The curve 858k2 is the quotient of 858k1
by the subgroup generated by P , and this quotient does not have any non-trivial
Q-rational point. The kernel of the isogeny between 858k2 and 858k1 is defined over
Q and has order 7, and one finds in [12] that c(858k2) = 2.
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A similar example is obtained for N = 5 by considering the isogeny class C ′ =
{880g1, 880g2}, where the curves are linked by 5-isogenies. Both curves have trivial
Mordell-Weil groups over Q, with c(880g1) = 20 and c(880g2) = 4.

We now use C and C ′ to answer negatively the following question. There are
several ‘special’ curves in a given isogeny class C of conductor N . For instance, C
contains the optimal quotient E0 of J0(N), and the optimal quotient E1 of J1(N).
One may wonder whether the minimal value of the ratio c(E)/|Etors(Q)|2 over all
curves E ∈ C is always achieved with E = E1. While this statement is true for
many isogeny classes C, it is not true in general. Indeed, it is known that there is an
isogeny E1 → E0 with constant kernel (see, e.g., [69], Remark 1.8). Thus, when an
isogeny class consists of two curves only, and either both curves have trivial torsion,
or only the optimal quotient E0 has non-trivial torsion, then we find that E1 = E0.
This is the case for both C and C ′.

3. Abelian varieties of higher dimension

Most of the results in this section are variations on the following simple proposi-
tion. A refinement of the argument used in the proposition, for abelian surfaces, is
presented in 3.8.

Proposition 3.1. Let K/Q be a number field. Let p be prime, and let P denote a
prime ideal of OK containing p. Let k := OK/P. Let A/K be any abelian variety
of dimension g. Let cP denote the Tamagawa number of A at P. Let N be prime,
N 6= p. Assume that for some d ≥ 1,

Nd | |A(K)tors|, and Nd > (b1 + 2
√
|k|+ |k|c)g.

Then N | cP. More precisely, Na | cP whenever Nd+1−a > (b1+2
√
|k|+ |k|c)g−1(1+

|k|). Moreover, when N > 2g+ 1, the reduction at P has positive toric rank, and is
thus not potentially good.

Proof. Let Ak/k denote the special fiber of the Néron model at P. Consider the
natural reduction map red : A(K) → Ak(k). It is well-known that this map is
injective when restricted to the subgroup of K-rational torsion points of order prime
to p. The connected component of zero A0

k/k of the special fiber of the Néron model
of A/K at P is a smooth connected commutative group scheme of dimension g over

k. Such a group scheme contains at most (b1 + 2
√
|k| + |k|c)g k-rational points

(see, e.g., [10], 3.2, Prop. 11, and note that the proof in the case of tori needs to be
modified).

Our hypothesis shows that ΦP(k) 6= (0). Since A0
k = Ak when the reduction is

good, we find that under our hypothesis, |A0
k(k)| ≤ (b1 + 2

√
|k|+ |k|c)g−1(1 + |k|).

It is shown in [43] that if q is a prime dividing the order of the component group
of the special fiber of a Néron model with toric rank t = 0, then either q = p, or
q ≤ 2g + 1. To see this, apply [43], 2.15, in the case where tK = 0. Since in our
case the component group is divisible by the prime N > 2g + 1, we find that the
reduction at P has positive toric rank. �

Corollary 3.2. Let A/Q be an abelian variety of dimension g. If 7g or 9g divides
|A(Q)tors|, then 7g−b0.8271gc ≥ 7, or 32g−b1.465gc ≥ 3, divides c2, respectively.
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Proof. This follows immediately from the previous proposition, noting that b1 +
2
√

2 + 2c = 5. �

Remark 3.3 The statement of the corollary is sharp, in the sense that there exists
an elliptic curve over Q with a point of order 5 and c = 1 (see 2.7). In view of the
fact that there exists an elliptic curve with a point of order 7 and c = 7 (see 2.10),
the strongest conclusion that could possibly hold with the hypotheses of Corollary
3.2 is that N g | c.

When N > 7 is prime and N g divides |A(Q)tors|, the proposition also implies that
N | c2. However, we do not know of any example of an abelian variety A/Q of
dimension g > 1 such that N g divides |A(Q)tors| and N ≥ 11. One may wonder
whether a principally polarized abelian variety A/Q of dimension g > 1 can have
(Z/NZ)g isomorphic to a subgroup of A(Q) when N = 11 or N > 12.

Corollary 3.4. Let [K : Q] = 2 and let A/K be an abelian variety of dimension g.
If N ≥ 11 is prime and N g | |A(K)tors|, then N | cP for all P above (2).

Proof. The statement follows from the previous proposition, noting that the residue
field at P can be F4, and that b1 + 2

√
22 + 22c = 9. �

Remark 3.5 Examples of quadratic extensions K with an elliptic curve E/K hav-
ing a torsion point of order N = 11 or N = 13 are given in [63], Table I and Table
II. As predicted by the above proposition, the reduction at any P above (2) is of
type In with N | n. For N = 11 one finds in Table I an example of an elliptic curve
E/K with exactly one single prime ideal P of OK such that N | cP.

The hypothesis N ≥ 11 of the corollary is sharp. Indeed, there exists an elliptic
curve E/Q(

√
−3) with a Q(

√
−3)-rational point of order 7 and 7 - c (see 2.11). One

may wonder whether N g | c holds under the hypotheses of 3.4.

Example 3.6 Let p > 3 be prime, and let J1(p)/Q denote the Jacobian of the
modular curve X1(p)/Q. Then J1(p)/Q has bad reduction only at the prime p, and
its component group Φp is trivial [11]. The Q-rational cuspidal torsion subgroup of
the modular Jacobian J1(p) is computed in [11] for primes 11 ≤ p ≤ 71, and for
p ≤ 100 in [70]. For each prime N dividing the order of the cuspidal subgroup of
J1(p)(Q), we find that N does not divide the order of the product c of the Tamagawa
numbers of J1(p).

The modular Jacobians J0(p
n)/Q also have bad reduction only at the prime p.

The relationship between the torsion in J0(p
n)(Q) and the component group Φp is

completely established in [47] when n = 1. Partial results are obtained for n > 1 in
[44]. The cuspidal subgroup of J0(p

n)(Q) is computed in [40], and we find that the
order of the p-part of this subgroup is in general larger than the order of the p-part
of the component group at p. Optimal quotients of J0(p) are discussed in [20].

Modular Jacobians of genus 1 have already appeared in the previous section. In
2.4, the curve 15a8 with c = 1 is X1(15). In 2.7, the curve 11a3 with c = 1 is
X1(11). In 2.9, the curve 14a4 with c = 2 is X1(14) and the curve 14a6 with c = 2
is X1(14)/w2. In 2.12, the curve 21a3 with c = 8 is X0(21)/w7 (see [17]). It can
also be noted that 17a4 in 2.4, 20a2 in 2.9, and 42a1 in 2.12, are optimal quotients
of J1(17), J1(20), and J1(42), respectively. This can be checked as follows: Each of
these curves in the numbering of the Antwerp Tables (also included in [12]) is the
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A-curve in its isogeny class. One finds in [66], page 104, Numerical Evidence, that
indeed these A-curves are optimal quotient of J1(N).

Example 3.7 Let p ≥ 5 be prime, and consider the Fermat curve Fp given by
xp + yp = zp. The Fermat quotient Ca/Q is the smooth projective curve associated
with the plane curve given by the equation yp = xa(1 − x), with 1 ≤ a ≤ p − 2.
The Fermat Jacobian Jac(Fp)/Q and the Jacobian Ja/Q of Ca are other examples of
abelian varieties which have bad reduction only at p. The group Ja(Q) has a point
of order p and Jac(Fp)(Q) = (Z/pZ)2 ([68], Thm 1).

Regular models for Ca/Qp are provided in full generality in [49], section 6. We
find for instance that when p is not a Wieferich prime, the minimal regular model of
C1/Qp has an integral special fiber. It follows that the Jacobian J1/Q, of dimension
g = (p− 1)/2, has a point of order 2g + 1 and Tamagawa product c = 1.

We conclude this section by considering the case of abelian surfaces, where the
general bound for the number of points of a smooth commutative group scheme over
a finite field can be refined as follows. Let A/Fq be an abelian surface. Then (see,
e.g., [10], 5.3):

|A(F2)| ∈ {1, . . . , 16} ∪ {19, 20} ∪ {25},
|A(F3)| ∈ {1, . . . , 16} ∪ {18, . . . , 25} ∪ {28, 29, 30} ∪ {34, 35, 36, 42, 49}.

Let T/Fq be a torus of dimension 2. Then

T (Fq) ∈ {(q − 1)2, q2 − q + 1, q2 − 1, q2 + 1, q2 + q + 1, (q + 1)2}.

In particular, |T (F2)| ∈ {1, 3, 5, 7, 9} and |T (F3)| ∈ {4, 7, 8, 10, 13, 16}. When
|T (F2)| = 9, note that T (F2) = (Z/3Z)2.

Proposition 3.8. Let A/Q be an abelian surface with a Q-rational point of order
N .

(a) If N = 17, 23, or if N ≥ 29 is coprime to 210, then N | c2.
(b) If N = 22 or 26, then N/2 | c2. If N = 26, either 2 or 13 divide c3.
(c) If N = 27, then 3 | c2 and 3 | c3.
(d) If A(Q) contains a subgroup isomorphic to (Z/9Z)2, then 9 | c2 and 9 | c3.
(e) If A(Q) contains a subgroup isomorphic to (Z/7Z)2, then 7 | c2 and the reduction

at 2 is purely multiplicative.
(f) If N = 11 or 13, and A/Q has bad reduction at (2), then N | c2. Moreover,

the reduction at (2) has positive toric rank, and is thus not potentially good. If
N = 11, and A/Q has bad reduction at (3), then N | c3 and the reduction at (3)
has positive toric rank.

Proof. Recall that a Q-rational point of prime order N > 2 reduces injectively in the
special fiber AF2/F2 of the Néron model at (2). The smooth group scheme AF2/F2

is an extension of the connected component of 0, A0
F2
/F2, be a finite étale group

scheme. To show that N | c2, it suffices to show that N - |A0
F2

(F2)|.
(a) Our hypothesis on N insures that A cannot have good reduction at 2. More-

over, no multiplemP of the point P of orderN can reduce to a point in the connected
component of 0 of the special fiber of the Néron model at 2, except for m = N . It
follows that N | c2.



TORSION AND TAMAGAWA NUMBERS 22

(b) When N = 22 or 26, the reduction at 2 cannot be good. Since the reduction
of a Q-rational point of order 2 may be trivial in the special fiber of the Néron
model at 2, we find that N/2 | c2. When N = 26, the reduction at 3 is not good. If
the connected component of zero in the special fiber is a torus of dimension 2 with
|T (F3)| = 13, we find that 2 | c3. If the connected component of zero is any other
group scheme, it cannot contain a point of order 13 and, hence, 13 | c3.

(c) Assume now that N = 27. Then the reduction at 2 is not good. The group
A0
k(k) may have order 9 when the reduction is purely toric, but in this case, the

group is isomorphic to (Z/3Z)2. The group A0
k(k) may also have order 9, and thus

a point of order 9, when the reduction is an extension of a torus by an elliptic curve.
Hence, we can only conclude that 3 | c2. The reduction at 3 is also not good, and
this time it could happen that A0

k(k) has a point of order 9 when the reduction
is purely additive (see [61], p. 73, for an example where A0

k(k) is a non-split Witt
group). So 3 | c3.

(d) Note first that the reduction at 2 cannot be good. The connected component
of 0 can have order at most 9, and thus 9 | c2. The reduction at 3 cannot be good.
If it is purely toric, then 92 | c3. In all other cases, 9 | c3.

(e) Assume that the reduction is not purely multiplicative at (2). Then our
hypothesis implies that (Z/7Z)2 is a subgroup of the component group Φ(F2) at (2).
The prime-to-2 part of such a component group contains a subgroup Σ which can
be generated by t elements, where t is the toric rank of the Néron model at (2). The
prime-to-2 part of the quotient Φ(F2)/Σ has order divisible only by primes q ≤ 2g+1
([43], 2.15). Hence, it follows that t = 2 under our hypothesis, a contradiction.

(f) Since an elliptic curve over F2 has at most five F2-rational points, and a torus
of dimension 2 has at most nine points, we find that when N ≥ 11, N - |A0

F2
(F2)|.

It is shown in [43] that if q is a prime dividing the order of the component group
of the special fiber of a Néron model with toric rank 0, then either q = p (p is the
residue characteristic), or q ≤ 2g+ 1. To see this, apply [43], 2.15, in the case where
tK = 0. Since in our case the component group is divisible by the prime N ≥ 11,
we find that the reduction at (2) has positive toric rank. �

Remark 3.9 Curves of genus 2 whose Jacobians have Q-rational points of order
N ∈ {13, 15, 17} ∪ {19, . . . , 27} ∪ {29} can be found in [37], [38], and [39]. See [18]
for examples with N = 32, 34, 39 and 40. No examples are known with N = 31 or
37 (for these values of N , we would have N | c2 and N | c3), or with N = 61, when
N would divide c2, c3, and c5.

Remark 3.10 E. Howe has kindly informed us that no abelian surfaces A/F2 have
A(F2) cyclic of order 25. We do not know whether there exists a semiabelian variety
V/F2 of the form 0→ T → V → E → 0, with T/F2 a 1-dimensional torus and E/F2

an elliptic curve, and with V (F2) cyclic of order 9.

We now consider abelian surfaces defined over the rational function field Q(λ).

Proposition 3.11. Let A/Q(λ) be an abelian surface such that A(Q(λ)) contains
a point of prime order N ≥ 11. Suppose that A/Q(λ) has a place v of bad reduction
which has degree 1. Then N | cv. Moreover, the reduction at v has positive toric
rank.
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Proof. Since v is a place of Q(λ) of degree 1, the special fiber of the Néron model is
a commutative group scheme Av/Q, of dimension 2. To show that N | cv, it suffices
to show that N - |A0

v(Q)tors|.
Recall that if G/Q is a smooth connected commutative group scheme of dimension

1, then either |G(Q)tors| = 1 (G unipotent), |G(Q)tors| | 12 (G toric), or |G(Q)tors| ∈
{1, . . . , 10, 12} (G elliptic curve).

If A0
v/Q is purely unipotent, it is isomorphic to G2

a/Q, and A0
v(Q)tors = (0). Tori

of dimension 2 are described for instance in [36], 4.5. The group GL2(Z) contains
two maximal finite subgroups, of order 8 and 12. Thus, a torus T/Q of dimension 2
is split by an extension L/Q of degree dividing 8 or 12. Since T (L) is isomorphic to
L∗ × L∗, the torsion subgroup of T (Q) does not contain elements of order ≥ 11. It
follows that N - |A0

v(Q)tors|. That the reduction at v has positive toric rank follows
as in 3.8 (f). �

Remark 3.12 In view of the previous proposition, we recall here that an abelian
variety B/Q(λ) of dimension g > 0 has at least one place of bad reduction [59], 2.3.
Similarly, an abelian variety A/Q of dimension g > 0 has at least one place of bad
reduction [25].

There are examples of curves X/Q(λ) of genus 2 whose Jacobians have a point of
order N with N = 11, 13, 15, 17, 19, 20, 21, and 23 ([23], [37], [39], [58]). See [18] for
N = 32. In each case, such a curve has bad reduction at at least one place of degree
1. In fact, the number of such places of bad reduction is (roughly) increasing with
N : two for N = 11, 13, 20, three for N = 15, 17, 21, 23, and four for N = 19.

An equation for a curve X/Q(λ) of genus 2 whose Jacobian has a point of order
N = 22 is given in [60], page 355. Unfortunately, the Jacobian of the curve defined by
the given equation does not have a Q(λ)-rational torsion point of order 22. But the
curve over Q in this family obtained by setting λ = 1, y2 = x6+2x4+4x3−7x2−4x+4,
has a Jacobian with a Q-rational point of order N = 22.

Example 3.13 We exhibit below an abelian surface B/Q(λ) with a Q(λ)-rational
point of order N = 11 and two places of bad reduction of degree 1, one of which
is not semi-stable. Proposition 3.11 shows that the reduction type is then of mixed
additive-toric type. Indeed, we find in [23], 3.1, that the hyperelliptic curve X/Q(λ)
of genus 2 given by the equation

y2 = x6 + 2x5 + (2λ+ 3)x4 + 2x3 + (λ2 + 1)x2 + 2λ(1− λ)x+ λ2

has a Jacobian B/Q(λ) with a point of order N = 11. The discriminant of this
equation is

d := −4096λ7(16λ3 + 432λ2 − 104λ+ 9).

This curve over Q(λ) has two places of bad reduction of degree 1, at (λ) and at
(λ−1) (i.e., at 0 and at ∞).

The curve X/Q(λ) has semi-stable reduction modulo (λ). Indeed, the given equa-
tion reduced modulo (λ) is y2 = x2(x2 + x + 1)2, which shows that the stable
reduction of X is the union of two projective lines over Q meeting in three points
(over Q). The thicknesses of the singular points are (e1, e2, e3) = (1, 1, 5) (with
(`,m, n) = (7, 2, 1)), so that the component group has order 11 (Liu’s algorithm
[41], Prop. 2).
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Let us consider now the reduction of X at the place (λ−1). Set s := 1/λ. We find
that X can be represented by the integral equation

(3.1) y2 = z6 + 2sz5 + (2s+ 3s2)z4 + 2s3z3 + (s2 + s4)z2 + (2s4 − 2s3)z + s4.

We claim that the reduction of X is semi-stable after a quadratic extension. Indeed,
substitute u2 = s in the above equation, and divide both sides by u6, to get the new
equation over Q(u):

Y 2 = Z6 + 2uZ5 + (2 + 3u2)Z4 + 2u3Z3 + (1 + u4)Z2 + (2u3 − 2u2)Z + u2.

The reduction of this equation modulo (u) is Y 2 = Z2(Z2 + 1)2, which shows that
the stable reduction of X over Q(u) at (u) is the union of two projective lines over
Q meeting in three points (over Q).

The reduction of X at (s) is not stable. Indeed, if it were, it would have to be of
the same type as over Q(u), and the structure of the geometric component group
Φ(Q) at (s) of the Néron model of B could be computed using Liu’s algorithm [41],
Prop. 2. However, in this example, the computation leads to a thickness that is not
an integer. On the other hand, after the quadratic extension of the form u2 = s, the
component group Φ(Q) is cyclic of order 33.

Example 3.14 Consider the fibers X1/Q and X−1/Q at λ = ±1 in the family
X/Q(λ) introduced in Example 3.13. The Jacobian J±1/Q of X±1/Q is an abelian
surface with a Q-rational point of order N = 11, and such that c(J±1/Q) = 1.

The reduction data for the proper smooth genus 2 curve X1/Q, given by the
hyperelliptic equation

y2 = x6 + 2x5 + 5x4 + 2x3 + 2x2 + 1,

can be computed using Liu’s Algorithm [42], implemented in [64]. This curve has
bad reduction at a single prime, p = 353, with conductor p = 353. Indeed, it
has semistable reduction at p = 353, with a special fiber consisting of an elliptic
curve with a double point. The reduction type is I1−0−0 on page 170 of [56]. The
component group of the Jacobian J1/Q is trivial at p = 353. At p = 2, Liu’s
Algorithm only computes the type of potential stable reduction. One finds that the
curve X1 has potentially good reduction. It follows from 3.8 (f) that it has then
good reduction at p = 2.

The curve X−1/Q, given by the hyperelliptic equation

y2 = x6 + 2x5 + x4 + 2x3 + 2x2 − 4x+ 1 = (x3 − x2 + 2x− 1)(x3 + 3x2 + 2x− 1),

has bad reduction at a single prime, p = 23. At p = 23, the reduction is semistable,
and consists in a projective line with two double points: I1−1−0 on page 179 of [56],
with exponent of the conductor f = 2. The component group of the Jacobian J−1/Q
is trivial at p = 23. At p = 2, Liu’s Algorithm computes that the curve X−1 has
potentially good reduction. It follows from 3.8 (f) that it has then good reduction
at p = 2.

Recall that the modular curve X0(23)/Q has genus 2, with equation y2 = (x3 −
8x2 + 3x− 7)(x3 − x+ 1). This curve has bad reduction only at p = 23 with f = 2,
with special fiber the union of two projective lines intersecting in three points. Its
Jacobian has a Q-rational point of order 11, as does J−1, but the component group
of J0(23) at p = 23 has order 11. It is possible that J−1 and J0(23) are isogenous
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over Q. Indeed, these two curves have the same number of points over Fp and Fp2
for all primes p ≤ 1000, p 6= 2, 23.

We find in [11] that J1(23)/Q, of dimension 12, has an optimal quotient A of
dimension 2 (denoted by 23A in [11, Table 4]). The conjecture of Birch and
Swinnerton-Dyer and the computations in [11, Table 4], imply conjecturally that
112 divides |A(Q)||A∨(Q)|, and that c23(A) = 1. Here A∨/Q denotes the dual
abelian variety of A/Q. The abelian variety A is the dual of the image of J0(23) in
J1(23) under the map J0(23) → J1(23) obtained by functoriality from the natural
morphism X1(23)→ X0(23). Thus, A is Q-isogenous to J0(23), and it could be that
A is also isogenous to J−1.

We found in the literature two more examples of abelian varieties over Q with a
Q-rational point of order 11 and trivial Tamagawa number. Indeed, the Jacobian
of the curve y2 = −3x6 + 18x4 + 6x3 + 9x2 − 54x+ 57 is such an abelian variety, as
a computer check will show. This curve is denoted by 587a in [9, Table 2], and its
Jacobian has prime conductor 587.

In [11, Table 4], one also finds an optimal quotient2 B/Q of dimension 2 of
J1(67)/Q (denoted by 67B), which conjecturally has 112 dividing |B(Q)||B∨(Q)|,
and 11 - c67(B). We thank A. Brumer for communicating to us the following curve,

y2 = −3x6 − 20x5 − 26x4 + 42x3 + 45x2 − 62x+ 17,

whose Jacobian D/Q has conductor 672, has a Q-rational torsion point of order
11, and Tamagawa number c(D/Q) = 1. It is likely that D/Q is isogenous to the
abelian variety 67B.

Example 3.15 We note here an example of an abelian surface A/Q with a point of
order N = 13, with good reduction at (2), and with c(A/Q) = 1. The hyperelliptic
curve

y2 = −2λx5 + (10λ+ λ2 + 1)x4 − (16λ+ 8λ2)x3 + (8λ+ 24λ2)x2 − 32λ2x+ 16λ2

has a Jacobian with a point of order 13 ([24], Result 2, with g = 2 and r = 0). The
curves with λ = 1 and λ = −1 have the same Igusa invariants and are isomorphic,
with conductor p = 349, and reduction at p of type I1−0−0 on page 170 of [56]. Their
Jacobians have trivial Tamagawa product c.

Remark 3.16 According to the Paramodular Conjecture of Brumer and Kramer,
the primes 349 and 353, appearing in 3.15 and 3.14, are the second and third smallest
possible prime conductors for an abelian surface over Q with EndQ(A) = Z ([62],
1.1 and 1.2, and [9], 1.4). The smallest one is conjectured to be p = 277. Brumer
has given the equation y2 = x6 − 2x5 − x4 + 4x3 + 3x2 + 2x + 1 for a curve whose
Jacobian has prime conductor p = 277, has a Q-rational point of order 15, and has
trivial Tamagawa number. One more example of prime conductor in the literature
([24], after Cor. 1): the Jacobian of the curve y2 + y = x5 + x4 + x2 has prime

2A second optimal quotient of J1(67)/Q of dimension 2, denoted by 67C, is probably isogenous
to the Jacobian of the curve X∗(67)/Q given by the equation y2 = x6+2x5+x4−2x3+2x2−4x+1
[27, Table 2, C67]. It is amusing to note that this latter equation is surprisingly close to the equation
of the curve X−1 given above. A different equation was given earlier for X∗(67)/Q in [54], page
407.
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conductor p = 3637, has a Q-rational point of order 5, and has trivial Tamagawa
number.

We can use three of the above examples to exhibit abelian surfaces which do not
have a principal polarization. Indeed, 2.1 in [71] implies that End(Jac(C)) = Z
if the curve C/Q is given by an equation y2 = f(x) and the Galois group of the
separable polynomial f(x) of degree n ≥ 5 is isomorphic to Sn or An. Using this
criterion, we find that three of the above curves have no non-trivial endomorphisms,
namely the curve of conductor 349 whose Jacobian has a Q-rational torsion point
of order 13, Brumer’s curve, and the curve y2 + y = x5 + x4 + x2.

Let now A/K be any principally polarized abelian variety of dimension g > 1
such that EndK(A) = Z. Let r : A→ B be a non-trivial isogeny of prime degree d.
We claim that B does not have a principal polarization. Indeed, using r, a principal
polarization s : B → B∨ induces a polarization A → A∨ of degree d2. Since A has
a principal polarization, we obtain by composition an endomorphism of A of degree
d2. Since EndK(A) = Z, any endomorphism of A has degree n2g for some n. Since
g > 1, our claim follows.

We can apply the above claim to each of the three curves C/Q with EndQ(Jac(C)) =
Z. Since in each case Jac(C) has a non-trivial Q-rational torsion point P of prime
order, the abelian variety Jac(C)/ < P > does not have a principal polarization.
We do not know how to compute the rational torsion subgroup and the Tamagawa
product of such an abelian variety.

Example 3.17 The modular curve X1(13)/Q has genus 2, and bad reduction only
at p = 13. Its Jacobian has a Q-rational point of order N = 19, with trivial
component group at p = 13.

For completeness, let us note that J1(16)/Q and J1(18)/Q are also abelian sur-
faces, with a Q-rational point of order 10 and 21, respectively. Equations for the
modular curves can be found for instance in [39], and Liu’s Algorithm for J1(18)/Q
shows that c3(X1(18)) = 1.

Example 3.18 Let K := Q(
√
−3). Consider the elliptic curve E/K introduced in

2.11 with a K-rational point of order 7, and c(E/K) = 1. Let A/Q denote the Weil
restriction of E from K to Q. This abelian surface has a Q-rational point of order
N = 7, and Proposition 3.19 below shows that c(A/Q) = 1.

Let K := Q(
√

5). Consider the elliptic curve E/K introduced in 2.16 with a
K-rational point of order 8, and c(E/K) = 1. Let A/Q denote the Weil restriction
of E from K to Q. This abelian surface has a Q-rational point of order N = 8, and
Proposition 3.19 shows that c(A/Q) = 1.

Let again K := Q(
√

5). Consider the elliptic curve E/K introduced in 2.18 with
a K-rational point of order 9, and c(E/K) = 3. Let A/Q denote the Weil restriction
of E from K to Q. This abelian surface has a Q-rational point of order N = 9, and
Proposition 3.19 shows that c(A/Q) = 3.

The following proposition may be well-known to experts, but we have been unable
to find a reference for it in the literature. We introduce the following notation. Let
OK be a Dedekind domain with field of fractions K. Let L/K be a Galois extension
and denote by OL the integral closure of OK in L. Assume that all residue fields of
OK are perfect. Let B/L be an abelian variety. Let A/K denote the Weil restriction
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of B/L to K. Let B/OL denote the Néron model of B/L. Let A/OK denote the
Néron model of A/K, and recall that A/OK is isomorphic to the Weil restriction of
B/OL from OL to OK (see, e.g., [7], 7.6/6).

For each prime P of OL with residue field kP, denote by ΦB,P/kP the group
scheme of connected components of the Néron model B/OL at P. Similarly, for P
a prime of OK , we denote by ΦA,P/kP the group scheme of connected components
of the Néron model A/OK at P .

Let P be a prime of OK and write POL = (
∏s

i=1Pi)
e. Fix an algebraic closure

kP of kP . For each i, fix an embedding of kPi
into kP . Use this embedding to

identify Gal(kPi
/kPi

) with a subgroup Hi of Gal(kP/kP ), and to view ΦB,Pi
(kPi

) as
an Hi-module.

Proposition 3.19. Let L/K be a Galois extension. Let B/L be an abelian variety
and let A/K denote the Weil restriction of B/L to K. Keep the notation and
hypotheses introduced above. Then ΦA,P (kP ) is isomorphic, as Gal(kP/kP )-module,
to

s∏
i=1

Ind
Gal(kP /kP )
Hi

ΦB,Pi
(kPi

).

Moreover, when K is a global field, then c(A/K) = c(B/L).

Proof. We may assume that OK is local. There exist two intermediate extensions
K ⊆ K ′ ⊆ K ′′ ⊆ L such that L/K ′′ is totally ramified at every maximal ideal
of OK′′ , every maximal ideal of OK′ is inert in OK′′ , and P splits completely in
OK′ . Since the formation of the Weil restriction is transitive, it suffices to prove the
proposition in each of the three above cases.

a) Let us assume first that OK is local and P is totally ramified in OL, so that
POL = P[L:K]. In particular, kP = kP. We claim that ΦA,P (kP ) is isomorphic, as

Gal(kP/kP )-module, to ΦB,P(kP).
Let R := (OL/POL). The ring R is an Artin kP -algebra with residue field kP =

kP . Consider the smooth commutative group scheme G := B ×OL
R over R. By

construction, the Weil restriction ResR/kP (G) is isomorphic over kP to the special
fiber of A/OK . The base change G×R kP is isomorphic to the special fiber of B/OL.

Given any group scheme D/R, the universal property of the Weil restriction pro-
duces a natural morphism of kP -group schemes ResR/kP (D)→ D×RkP . The natural
morphism ResR/kP (G) → BkP has connected fibers. To show this, one shows that
the group scheme ResR/kP (G) has a filtration by subgroup schemes Fi+1 ⊂ Fi, with
F1 = Ker(ResR/kP (G) → BkP), and the quotients Fi/Fi+1 for i ≥ 1 isomorphic to
affine spaces; see e.g., [16], proof of Theorem 1, or [15], 5.1 (the proof given there is
done with an abelian variety B/L of the form CL/L for some C/K, but the same
proof applies more generally to any B/L). See also [57], A.3.5, when B/L is affine.
It follows from this fact that ΦResR/kP

(G) is isomorphic to ΦBkP .

b) Let us assume now that OK is local and P is inert in OL, so that POL = P,
with [kP : kP ] = [L : K]. We claim that ΦA,P (kP ) is isomorphic, as Gal(kP/kP )-

module, to Ind
Gal(kP /kP )
H ΦB,P(kP), with H identified with Gal(kP/kP). Consider the

exact sequence of H-modules

(0) −→ B0
kP

(kP ) −→ BkP(kP ) −→ ΦB(kP ) −→ (0).
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We then have an exact sequence of Gal(kP/kP )-modules,

(0) −→ Ind
Gal(kP /kP )
H B0

kP
(kP ) −→ Ind

Gal(kP /kP )
H BkP(kP ) −→ Ind

Gal(kP /kP )
H ΦB(kP ) −→ (0).

Consider now the exact sequence of Gal(kP/kP )-modules associated with the Weil
restriction:

(0) −→ (AkP )0(kP ) −→ AkP (kP ) −→ ΦA(kP ) −→ (0).

Recall that AkP /kP is isomorphic to the Weil restriction ReskP/kP (BkP/kP). We
claim that (AkP )0/kP is isomorphic to ReskP/kP (B0

kP
/kP). Indeed, this follows be-

cause ReskP/kP (B0
kP
/kP) is connected. That this is the case can be seen as follows:

since kP/kP is separable, the base change of ReskP/kP (B0
kP
/kP) to kP is isomorphic

over kP to the product of the conjugates of B0
kP

. Since B0
kP

is smooth over kP, this

product is connected ([28], IV.4.5.8).
Since kP/kP is separable, the Gal(kP/kP )-module structure on A0

kP
(kP ) can be

identified with the module Ind
Gal(kP /kP )
H B0

kP
(kP ), and similarly for the Gal(kP/kP )-

module structure on AkP (kP ). This is briefly mentioned in [52], or [13], 1.3.2, for
abelian varieties. The same argument works for any smooth group scheme G/kP.
The key fact is that kP/kP is separable, so that ReskP/kP (G) ×kP kP is isomor-
phic to the product of the conjugates of G/kP. It follows then from the above ex-

act sequences that there is a natural isomorphism of Gal(kP/kP )-modules between

Ind
Gal(kP /kP )
H ΦB(kP ) and ΦA(kP ).

c) Finally, let us assume that OK is local and P splits completely in OL, so that

POL =
∏[L:K]

i=1 Pi. We claim that ΦA,P (kP ) is isomorphic, as Gal(kP/kP )-module,

to
∏s

i=1 ΦB,Pi
(kPi

). This follows from the fact that Spec(OL/POL) is isomorphic to∐
Spec(kPi

), so that the Weil restriction of the scheme B ×OL
(OL/POL) is simply

the direct product
∏

i BkPi
. Since the product of smooth connected schemes is again

connected ([28], IV.4.5.8), we find that (
∏

i BkPi
)0 =

∏
i B0

kPi
.

The last statement of the proposition, regarding the case when K is a global
field, follows immediately from the first part of the proposition, and the following
standard fact about invariants of induced representations:

(Ind
Gal(kP /kP )
H ΦB,P(kP))Gal(kP /kP ) ' ΦB,P(kP)H ' ΦB,P(kP). �

Remark 3.20 Putting together the examples presented in this section, we see that:

(1) For N = 7, 8, 9, 11, 13 and 19, there exists at least one abelian surface A/Q with
a Q-rational point of order N such that N does not divide c(A) (see 3.14 - 3.18).

Let N = 11, 13, or 19. Consider the set of isomorphism classes of abelian surfaces
A/Q having a Q-rational point of order N and such that N - c(A). It is natural to
wonder whether this set is finite.

(2) For N = 16, 22, 25, 26, and 27, we do not know whether N | c(A) for all abelian
surfaces A/Q with a Q-rational point of order N . (This is mainly due to the
fact that there is as of yet no known algorithm to compute the reduction type
of a genus 2 curve X/Q modulo 2.)

(3) ForN = 3, 5, 6, 12, 15, 21, 24, and 30, there exists infinitely many abelian surfaces
A/Q with a Q-rational point of order N such that N - c(A).
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To prove this statement, we use products of elliptic curves. Recall that the curve
E/Q with label 11a3 has a Q-rational point of order N = 5 and c(E) = 1. Consider
now any elliptic curve E ′/Q with integral j-invariant. Then E ′ has potentially good
reduction everywhere, and c(E ′) can only divisible by the primes p = 2 and 3. It
follows that there are infinitely many abelian surfaces E×E ′ with a Q-rational point
of order N = 5 and N - c(E × E ′).

For each k = 1, 2, 4, 5, 7, 8, 10, choose and elliptic curve E/Q with a Q-rational
point of order k and c(E) coprime to 3. Recall that there exists infinitely many
elliptic curves E ′/Q having a point of order 3 and c = 1 (see 2.26). It follows that
there are infinitely many abelian surfaces E × E ′ with a Q-rational point of order
N = 3k and N - c(E × E ′).
(4) For N = 2, 4, 10, 14, 18, 20, 28, 36, there exists at least one abelian surface A/Q

with a Q-rational point of order N such that N does not divide c(A).

Choose an elliptic curve E/Q having a Q-rational 2-torsion point and c = 1. For
k = 1, 5, 7, 9, choose an elliptic curve E ′/Q with a Q-rational k-torsion point and c
odd. Then for n = 2k, N - c(E ×E ′). Similarly, pick an elliptic curve E ′′/Q having
a Q-rational 4-torsion point and c = 2. Then for N = 4k, N - c(E ′′ × E ′).

4. Optimal modular quotients

4.1 Consider an abelian variety A/Q which has analytic rank 0 and is an optimal
quotient of J0(N)/Q attached to a newform. Let A∨/Q denote the abelian variety
dual to A. Then the Birch and Swinnerton-Dyer conjecture, together with the
conjecture that the Manin constant is 1, imply that

the odd part of |A∨(Q)| divides c(A) · |X(A)|,
as proved in [1], end of section 4.3. Here X(A) denotes as usual the Tate-Shafarevich
group of A, and c(A) is the Tamagawa number. When A is principally polarized,
such as when dim(A) = 1, we find that under the above hypotheses, the odd part of
|A(Q)| conjecturally divides c(A) · |X(A)|. Our work on elliptic curves in the second
section of this article, as summarized in 1.1, immediately implies the following,
independently of any conjecture:

Proposition 4.2. Let E/Q be an optimal elliptic curve with a Q-rational point of
order N , and Tamagawa number c(E). If N = 5, . . . , 10, or 12, then N | c(E).

Proof. Proposition 1.1 states that N | c(E) when N = 7, 8, 9, 10, or 12, even when
the elliptic curve is not optimal. When N = 5 or 6, one verifies that none of the four
exceptions to the statement N | c(E) in 2.7 and 2.9 are optimal elliptic curves. �

That N | c(E)|X(E)| when N = 7 is proved in [14]. The statement of the
proposition does not hold when N = 3 (e.g., it does not hold for 189b1 with rank 1,
and 10621c1 with rank 0), or N = 4 (e.g., it does not hold for 205a1 with rank 1, and
for 2405d1 with rank 0; both curves have c = 2). Note also that Mazur shows how
to construct curves E/Q of rank 0 with a 3-torsion point and with trivial 3-part of
X in [46], just before 10.2; examples can also be obtained with, in addition, c = 1.

The conjectural statement in 4.1 can be replaced by an equivalent statement
depending only on A∨, namely: the odd part of |A∨(Q)| divides c(A∨)|X(A∨)|.
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Indeed, |X(A∨)| = |X(A)| since the Cassels-Tate pairing is non-degenerate [51],
I.6.26, and c(A∨) = c(A), as we now explain.

Let K be a discrete valuation field, with residue field k assumed to be perfect. Let
A/K be an abelian variety that is not necessarily principally polarized. Let A∨/K
denote the abelian variety dual to A/K. Let ΦA/k and ΦA∨/k denote the groups
of components of the Néron models of A and A∨ over OK . Grothendieck defined in
[29], IX, 1.2, a Gal(k/k)-invariant pairing

< , >: ΦA(k)× ΦA∨(k) −→ Q/Z,
and he conjectured that this pairing was non-degenerate. This conjecture is proved
for instance in [3] when K is of characteristic 0, in [6], 4.7, for Jacobians of curves
X/K having a K-rational point, and in [48], 4.8, when the residue field is fi-
nite. Clearly, when the pairing is non-degenerate, |ΦA(k)| = |ΦA∨(k)|, and the
Gal(k/k)-module ΦA(k) is isomorphic, as Gal(k/k)-module, to the Gal(k/k)-module
HomZ(ΦA∨(k),Q/Z) (endowed with the natural structure (σ · f)(x) := f(σ−1x)).
Since in general it is not known that ΦA∨(k) is isomorphic, as Gal(k/k)-module, to
HomZ(ΦA∨(k),Q/Z), we cannot conclude without further arguments that |ΦA(k)| =
|ΦA∨(k)|. However, in the case most important to number theorists, we have the
following application of [48], 4.8:

Proposition 4.3. Assume that the residue field k is finite. Then |ΦA(k)| = |ΦA∨(k)|.
In particular, if A/F is an abelian variety over a global field F , then c(A/F ) =
c(A∨/F ).

Proof. When the residue field is finite, Grothendieck’s pairing is perfect ([48], 4.8).
The action of Gal(k/k) on the finite abelian group Φ = ΦA(k) factors through a
finite Galois extension F/k. When the residue field is finite, the extension F/k is
cyclic, with Galois group G generated by an element σ. The sequence

0 −→ ΦG −→ Φ
σ−1−→ Φ −→ Φ/(σ − 1)(Φ) −→ 0

is exact, and shows that |ΦG| = |Φ/(σ − 1)(Φ)|. Dualizing this sequence using
M∗ := HomZ(M,Q/Z) gives that (Φ∗)G is isomorphic to (Φ/(σ − 1)(Φ))∗. �

Example 4.4 We thank D. Benson for the following example of a G-module M
where MG and (M∗)G have different orders. Consider the action of the symmetric
group S3 on M ′ := (F3)

3 by permutations of the standard basis {e1, e2, e3}. Clearly,
the action is trivial on the span M ′′ of e1 + e2 + e3, and we let M := M ′/M ′′. Then
MG = (0), while an easy computation of < (σ − 1)(x), x ∈ M,σ ∈ S3 > shows
that this submodule has F3-rank 1, generated by the class of e2− e1. It follows that
HomZ(M,Q/Z)G has F3-rank 1 too.

We further note the following facts.

Lemma 4.5. Assume that Grothendieck’s pairing is non-degenerate. Let q be prime.
Then

(i) The exponents of the abelian groups ΦA(k)/ΦA(k) and ΦA∨(k)/ΦA∨(k) are
equal. In particular,
(a) If the groups ΦA(k) and ΦA(k) have the same q-parts, then the groups

ΦA∨(k) and ΦA∨(k) have the same q-parts.
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(b) If the q-part of ΦA(k) is cyclic, then the q-parts of |ΦA(k)| and |ΦA∨(k)|
are equal.

(ii) Suppose that k′/k is a Galois extension such that Gal(k/k′) acts trivially on
ΦA(k). If q does not divide [k′ : k], then the q-parts of |ΦA(k)| and |ΦA∨(k)|
are equal.

Proof. (i) Let y ∈ ΦA∨(k). Assume that the exponent of ΦA(k)/ΦA(k) equals m. For
any x ∈ ΦA(k) and for any σ ∈ Gal(k/k), we find that < mx, σ(y)− y >= 0. Since
< mx, σ(y)− y >=< x, σ(my)−my >, and since the pairing is non-degenerate, we
find that σ(my) −my = 0 for all σ ∈ Gal(k/k). It follows that my ∈ ΦA∨(k), and
the exponent of ΦA∨(k)/ΦA∨(k) divides m. Repeating the argument with x ∈ ΦA(k)
shows that m divides the exponent of ΦA∨(k)/ΦA∨(k).

(ii) This is well-known.
�

It is shown in [5], 4.3 (i), that when the reduction of A/K is split semi-stable (i.e.,
the special fiber of the Néron model is an extension of an abelian variety by a split
torus), then ΦA(k) = ΦA(k).

When A/K is an abelian surface and q > 5 is prime, q 6= p, then the q-part of
ΦA(k) is cyclic when the toric rank t of A/K is equal to 1. Indeed, the prime-to-p
part of such a component group contains a subgroup Σ which can be generated
by t elements, and such that the prime-to-p part of the quotient Φ(k)/Σ has order
divisible only by primes ` ≤ 2g + 1 ([43], 2.15).
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