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1. Introduction

Let K be a complete field with a discrete valuation v, ring of integers OK , and maximal
ideal (πK). Let k := OK/(πK) be the residue field, assumed to be separably closed of
characteristic p ≥ 0. Let A/K be any abelian variety of dimension g. Let A/OK denote
its Néron model, with special fiber Ak/k and group of components ΦA,K . Let A′/K
denote the dual abelian variety, with Néron model A′/OK and group of components
ΦA′,K . Grothendieck’s pairing

〈 , 〉K : ΦA,K × ΦA′,K −→ Q/Z
is introduced in [9], IX, 1.2. This pairing is known to be perfect in many cases ([2], [5],
[6], [13], and [9], IX, 11.3 and 11.4, completed in [3] and [18]). The pairing is conjectured
to be perfect when the residue field k is perfect. It was shown not to be perfect1 in general
in [4]. A further counter-example when k is not perfect is provided in 2.2.

Let X/K be a smooth proper geometrically connected curve of genus g ≥ 1. Let J/K
denote its Jacobian. Let X/OK denote a regular model of X/K. Let Xk =

∑v
i=1 riCi be

its special fiber, where Ci/k is an irreducible component of Xk of multiplicity ri. Let M =
M(X ) = ((Ci · Cj)) denote the associated intersection matrix. When gcd(r1, . . . , rv) = 1
and the components of Xk are geometrically reduced, the group ΦJ,K is described in terms
of the matrix M . Under the hypothesis that X(K) 6= ∅, the authors of [6] described how
Grothendieck’s pairing can be identified with an explicit pairing induced by M . Our goal
in this paper is to prove that this identification remains possible in certain cases where
X(K) = ∅. More precisely, we will show that it is possible to describe Grothendieck’s
pairing only in terms of M when X/K has a regular model X/OK whose special fiber has
smooth components with normal crossings, and there exist two such components (Ci, ri)
and (Cj, rj) with gcd(ri, rj) = 1 intersecting in at least one point. As a consequence, we
obtain that the pairing is perfect for the Jacobians of such curves. To prove our result,
we apply the results of [6] to the curve XF/F obtained after an appropriate base change
F/K such that X(F ) 6= ∅. The effect of the base change F/K on the model X and on
Grothendieck’s pairing are studied in sections 2 and 4.

We are very much indebted to A. Bertapelle for providing us with Example 2.4, and
to Qing Liu for discussions leading to Lemma 3.5. We also thank the referee for valuable
suggestions.

2. Grothendieck’s pairing under base change

Let A/K denote any abelian variety. The pairing 〈 , 〉K behaves very nicely under
extensions of the ground field. Let F/K be any finite extension with residue field kF .
Denote by ΦA,F the group of components of the Néron model of AF/F . Let eF/K denote

Date: December 10, 2007.
1Note that it follows from the perfectness of the pairing that ΦA,K and ΦA′,K are isomorphic. It is

not known in general whether ΦA,K and ΦA′,K are always isomorphic.
1
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the ramification index of F/K, with eF/K [kF : k] = [F : K]. Let γ : ΦA,K → ΦA,F

and γ′ : ΦA′,K → ΦA′,F denote the natural maps induced by the base change map from
A ×OK

OF to the Néron model of AF/F , and from A′ ×OK
OF to the Néron model of

A′F/F , respectively. The following key formula can be inferred from [9], VIII, (7.3.5.2)
and (7.3.1.2). Let x ∈ ΦA,K and y ∈ ΦA′,K . Then

(2.0.1) 〈γ(x), γ′(y)〉F = eF/K〈x, y〉K .

Our next proposition is an immediate consequence of this formula.

Proposition 2.1. Let A/K be an abelian variety. Assume that Grothendieck’s pairing
〈 , 〉K is perfect. Then, for any finite extension F/K, the kernel ΨK,F of the map γ :
ΦA,K → ΦAF ,F is killed by eF/K.

Proof: Let x ∈ ΨK,F and y ∈ ΦA′,K . Then

〈eF/Kx, y〉K = eF/K〈x, y〉K = 〈γ(x), γ′(y)〉F = 0.

Since 〈 , 〉K is perfect, eF/Kx = 0.

The group ΨK,F is killed by [F : K] even when 〈 , 〉K is not perfect (see [8]). We show
in 2.2 that the conclusion of Proposition 2.1 does not hold when 〈 , 〉K is not assumed to
be perfect. Example 2.4 shows that the converse of 2.1 does not hold in general when k
is imperfect.

Example 2.2 The example below will show that when 〈 , 〉K is not perfect, the conclusion
of Proposition 2.1 does not hold in general. This example is also a new example of an
abelian variety with 〈 , 〉K not perfect.

Let p = 2. Consider an abelian variety A/K of dimension g which has good ordinary
reduction over OK (i.e., Ak is an ordinary abelian variety). Assume in addition that every
point of order 2 in Ak(k) lifts to a point of order 2 in A(K). Pick a Galois extension
L/K of degree 2 with associated residue field extension kL/k. Consider the twist2 B/K
of A/K obtained from the natural map Gal(L/K) → {±id} ⊂ Aut(A/K). The abelian
variety B/K has purely additive reduction. Indeed, A × B is isogenous over K to the
Weil restriction RL/K(AL) ([14], Prop.7), and this Weil restriction has abelian rank over
K equal to the abelian rank of A/K since the kernel of the norm map RL/K(AL) → A
has unipotent reduction (see, e.g., [8], proof of Thm. 1).

Since the points of order 2 of A(K) are invariant under the action of Gal(L/K), we
find that B[2](K) contains a subgroup C of order 2g. Indeed, consider an isomorphism
ρ : BL → AL defined over L. Then the map c : G→ Aut(A/K) given by cσ := ρσ ◦ ρ−1 is
the cocycle giving the twist B/K. If P is a point of order 2 in A(K), then ρ−1(P ) has order
2 in B(K). To show that ρ−1(P ) belongs to B(K), we note that since P is a fixed point
of the inverse map, we must have cσ(P ) = P for all σ. Thus, ρ−1(P ) = (ρ−1(P ))σ for all
σ, and ρ−1(P ) ∈ B(K). We claim that the natural reduction map red : B(K) → ΦB,K is
not trivial when restricted to C, which implies that ΦB,K 6= (0). Indeed, let B0

k denote the
connected component of the special fiber of the Néron model of B/K over OK . The group
scheme B0

k is unipotent. If red(C) ⊆ B0
k, we find that the image of C under the reduction

map B(L) → BL,kL
, where BL/OL is the Néron model of BL/L, is trivial, contradicting

the hypothesis that the points of C reduce to the points of order 2 in BL,kL
= Ak ×k kL.

Thus, ΦB,K 6= (0).

2In the equicharacteristic case with g = 1, we can choose A/K to be given by a Weierstrass equation
y2 + xy = x3 + 1, with 2-torsion point (0, 1). When L = K(z) with z2 + z + D = 0, D ∈ K, the twist is
y2 + xy = x3 + Dx2 + 1.



GROTHENDIECK’S PAIRING FOR JACOBIANS AND BASE CHANGE 3

Now choose L/K such that eL/K = 1. By construction, the map ΦB,K → ΦB,L = (0) is
not injective. Hence, Ker(ΦB,K → ΦB,L) is not killed by eL/K . Thus, 〈 , 〉K is not perfect.

Remark 2.3 In the above example, the group of components of the abelian variety
RL/K(AL) is isomorphic to the group ΦAL,L and, thus, is trivial. In particular, Grothendieck’s
pairing for RL/K(AL) is perfect. On the other hand, Grothendieck’s pairing for A× B is
not perfect, as the example above shows, even though A×B and RL/K(AL) are isogenous.

Example 2.4 Let K ′/K be an extension of degree n > 1 and ramification index e = 1
(in particular, k is imperfect). Let B/K ′ be an abelian variety with semi-stable reduction.
Let A/K denote the Weil restriction of B/K ′ to K. From [4], Corollary 2.2, it is possible
to choose B/K ′ such that Grothendieck’s pairing is not perfect for A/K and its dual.

We claim that, nevertheless, the morphism ΦA,K → ΦAF ,F is injective (in particu-
lar, killed by eF/K) for all finite extensions F/K. First, the morphism ΦA,K → ΦAK′ ,K′

can be identified with the diagonal embedding ΦB,K′ → (ΦB,K′)n, and is thus injec-
tive ([4], Lemma 2.2). Since AK′/K ′ has semi-stable reduction, we find that the mor-
phism ΦAK′ ,K′ → ΦAK′F ,K′F is always injective. It follows that the composition ΦA,K →
ΦAK′ ,K′ → ΦAK′F ,K′F is injective, and so is ΦA,K → ΦAF ,F → ΦAK′F ,K′F . Hence, we find
that the first morphism in this latter composition is injective, as desired.

3. The main result

Let X/K be a smooth geometrically connected proper curve of genus g. Let J/K
denote the Jacobian of X/K, let J denote its Néron model over OK , and let ΦJ,K be
the associated component group. The latter is a finite étale k-group scheme and, thus,
constant, as k is separably closed. We will write the special fiber Xk/k as a Weil divisor
Xk =

∑
C r(C)C, where C runs through the irreducible components of Xk, and where

r(C) is the multiplicity of C in Xk.

3.1 We assume from now on thatX/K has a regular model X/OK such that all irreducible
components of Xk are smooth and such that (Xk)

red has normal crossings. In particular,
all components are geometrically reduced and all intersection points of components are
k-rational. Such a model always exists when k is algebraically closed, but if k is only
separably closed and imperfect, not all curves possess such a model. We also assume that
gcd(r(C), C ⊂ Xk) = 1.

3.2 Our hypotheses that gcd(r(C), C ⊂ Xk) = 1 and all components are geometrically
reduced imply that δX/OK

= 1, so that the hypothesis (i) in [17], (8.2.1), is satisfied.
Thus, X/ Spec(OK) is cohomologically flat ([17], (8.2.1) (iv)). Theorem (8.1.4) (b) in [17]
implies that Qτ/OK is the Néron model of its generic fiber, J/K. We can then use [17],
(8.1.2) (iii), to obtain a description of the group of components ΦJ,K in terms of M , once
we note that when X is regular, the group schemes Qτ/OK in (8.1.4) (b) and Q′/OK in
(8.1.2) (iii) are equal (the group scheme Q′/OK is denoted by Q/OK in the reference [7]).
Let us now recall the description of ΦJ,K in terms of M .

Writing ZI for the free Z-module generated by the irreducible components C of Xk,

we consider the complex of Z-modules ZI α−→ ZI β−→ Z, where the Z-linear maps α, β
are given by α(D) :=

∑
C(D · C)C, and β(C) := r(C). The quotient Ker(β)/Im(α)

is canonically identified with the component group ΦJ,K . To be more precise, let us
introduce the degree map ρ : Pic(X ) −→ ZI , with L 7−→

∑
C degC(L)C, where degC(L)

denotes the degree of a line bundle L on the component C. Let P (X ) be the subgroup
in Pic(X ) consisting of all line bundles of total degree 0 on X . The following diagram is
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commutative:
P (X )

res−−−→ Pic0(X) J(K) = J (OK)

ρ

y y
Ker(β) −−−→ Ker(β)/Im(α) ΦJ,K ,

where the vertical map on the right is the natural composition J (OK) → Jk(k) → ΦJ,K .
That Pic0(X) = J(K) follows from the fact that δX/OK

= 1 ([17], 7.1.4).
Thus, given any point aK ∈ J(K), its image in Ker(β)/Im(α) is constructed as follows.

Choose a divisor DK of degree 0 on X representing aK . Consider the schematic closure D
of DK in X, and let [D] be the line bundle on X associated to the Weil divisor D. Then
the image of aK in ΦJ,K is given by the class of ρ([D]) in Ker(β)/Im(α).

In order to describe the above maps in terms of matrices, choose a numbering C1, . . . , Cv

of the irreducible components of the special fibre Xk, and consider the intersection matrix
M := (Ci · Cj)1≤i,j≤v, and the vector of multiplicities R = t(r1, . . . , rv) with ri := r(Ci).
Then α : Zv −→ Zv and β : Zv −→ Z are given by the matrices M and tR. We thus obtain

ΦM := Ker(tR)/Im(M) = (Zv/Im(M))tors = Ker β/Imα

as the component group of the Jacobian of X/K.

3.3 We may now consider the pairing 〈 , 〉M : ΦM ×ΦM → Q/Z attached to M in section
1 of [6] (see 4.4). Since the component group ΦJ,K of the Jacobian J of X is canonically
identified with ΦM , the pairing 〈 , 〉M on ΦM , gives rise to a well-defined symmetric
pairing, again denoted by 〈 , 〉M :

〈 , 〉M : ΦJ,K × ΦJ,K −→ Q/Z,

which is independent of the chosen numbering of the components of Xk. The pairing
〈 , 〉M is perfect ([6], 1.3).

Assume that X(F ) 6= ∅, and let P ∈ X(F ). Let h : XF −→ JF , Q 7−→ [Q] − [P ], be
the associated map from XF into its Jacobian. We write M for the universal line bundle
on XF × JF (satisfying M|{P}×JF

= 0 and degM|XF×{y} = 0 for all points y of JF ) and
P for the Poincaré bundle on JF × J ′F , where J ′F is the dual of JF . There is a unique
morphism h′ : J ′F −→ JF satisfying (id× h′)∗M = (h× id)∗P on XF × J ′F . It is given by
the pull-back of line bundles with respect to h : XF −→ JF and is an isomorphism (see
for instance [15], Thm. 6.9).

To describe the inverse of h′, we consider the maps h(i) : X
(i)
F −→ JF , i ∈ N, induced

from h, where X
(i)
F is the i-fold symmetric product of XF . The image of h(g−1) gives rise

to a divisor Θ on JF , the so-called theta divisor, and one knows that the morphism

ϕ[Θ] : JF −→ J ′F , aF 7−→ [T−1
aF

Θ]− [Θ],

is an isomorphism. In fact, −ϕ[Θ] and h′ are inverse to each other by [15], Thm. 6.9. Also
note that ϕ[Θ] and, hence, h′ are independent of the choice of the rational point P on XF ,
as any change of P leads to a translate of Θ. Thus, ϕ[Θ] is already defined over K by
descent theory ([7], page 261).

In the remainder of this paper, we will always identify J ′/K with J/K using the isomor-
phism −ϕ[Θ] : J → J ′ defined over K. Induced by this identification is an identification of
the corresponding Néron models and of their component groups, so that Grothendieck’s
pairing associated to J and J ′ becomes a pairing

〈 , 〉K : ΦJ,K × ΦJ,K −→ Q/Z.
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Theorem 3.4. Let J/K be the Jacobian of a smooth proper and geometrically connected
curve X/K. Identify J/K with its dual J ′/K via the map −ϕ[Θ] : J → J ′ introduced
above. Assume that X/K has a proper flat OK-model X as in 3.1. Assume in addi-
tion the existence of two irreducible components C and D in Xk with (C · D) > 0 and
gcd(r(C), r(D)) = 1. Let M be the intersection matrix of Xk. Identify the component
group ΦJ,K with the group ΦM as in 3.2. Then Grothendieck’s pairing

〈 , 〉K : ΦJ,K × ΦJ,K −→ Q/Z

coincides with the pairing 〈 , 〉M : ΦJ,K × ΦJ,K −→ Q/Z considered in 3.3.

We start with the following lemma.

Lemma 3.5. Let X/K be a smooth geometrically connected proper curve of genus g. Let
X/OK be a regular model for X/K. Assume that two smooth components C and D of Xk,
of multiplicity r and s respectively, intersect with normal crossings in at least one point of
intersection P . Suppose that gcd(r, s) = 1. Let n = αr + βs for some integers α, β > 0.
Then there exists an uniformizer π for OK such that X(F ) 6= ∅, with F := K( n

√
π). In

particular, for all n ≥ rs − r − s + 1, there exists an extension F/K of degree n with
X(F ) 6= ∅.

Proof: Consider the local ring OX ,P . Its completion is isomorphic to OK [[x, y]]/(xrys−π),

for some uniformizer π. Let πF := n
√
π. Then x 7→ πα

F and y 7→ πβ
F define an F -

rational point of X reducing to P . It is well-known that when gcd(r, s) = 1, the set
{αr + βs | α, β ≥ 0} contains the set {n ∈ N | n ≥ rs− r − s+ 1}. �

Proof of Theorem 3.4. Lemma 3.5 lets us choose a prime ` 6= p and an extension F/K
of degree ` such that ` is coprime to |ΦJ,K | and to all multiplicities of the model X/OK ,
and such that X(F ) 6= ∅.

We need to show that for all x, y ∈ ΦJ,K , 〈x, y〉K = 〈x, y〉M . Since our chosen prime `
is coprime to the order of ΦJ,K , we find that it suffices to show that for all x, y ∈ ΦJ,K ,
`〈x, y〉K = `〈x, y〉M .

Consider the morphism γ : ΦJ,K → ΦJF ,F introduced in section 2. We find from (2.0.1)
that for all x, y ∈ ΦJ,K ,

(3.5.1) 〈γ(x), γ(y)〉F = `〈x, y〉K .

Let W → X ×Spec(OK) OF be the normalization map. Let V → W denote the minimal
desingularization of W . The model V/OF is a regular model of XF/F . As we recall in
4.2, all components of Vk are geometrically reduced. Let M(V) denote the intersection
matrix associated with the special fiber of V/OF . Since X(F ) 6= ∅, Theorem 4.6 in [6]
implies that

(3.5.2) 〈γ(x), γ(y)〉F = 〈γ(x), γ(y)〉M(V).

To conclude the proof of our theorem, it suffices to show that

(3.5.3) 〈γ(x), γ(y)〉M(V) = `〈x, y〉M .

This formula is proved in 4.5 and 4.6. �

Corollary 3.6. Let X/K be as in Theorem 3.4. Then the associated Grothendieck’s
pairing 〈 , 〉K : ΦJ,K × ΦJ,K −→ Q/Z is perfect.

Proof: This follows from the fact that 〈 , 〉M : ΦJ,K × ΦJ,K −→ Q/Z is always perfect.
�
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Remark 3.7 We assume in 3.4 the existence of a model with gcd(r1, . . . , rv) = 1 and
smooth components. When g = 1, the existence of such a model already implies that
X(K) 6= ∅.

When g = 2 and k is algebraically closed, X(K) is empty only when the reduction,
following the notation of [16], is of type IV (p. 155), II∗−II∗−α (p. 163), III∗−II0 (p.
178), or III∗n (p. 184). But in each case, the reader may check that the associated group
ΦM is trivial, so that Grothendieck’s pairing is also trivial (and determined in terms of
the intersection matrix as in 3.4). Note that IV and III∗n do not satisfy the hypothesis
of 3.4 on the existence of two intersecting components with gcd(r(C), r(D)) = 1.

4. Base change for models of curves

Let X/K be a smooth proper geometrically connected curve with a regular model as
in 3.1.

4.1 Let F/K be an extension of prime degree ` 6= p such that ` is coprime to the multi-
plicity of any component of Xk. Consider the normalization W → X ×Spec(OK) OF . Let
V → W denote the minimal desingularization of W . The model V/OF can be explicitly
described in terms of the model X/OK . Such a description is classical in equicharacteristic
zero, and a similar description holds in our context (see for instance [10], 4.3).

Let (C, r) be a component of Xk of multiplicity r, and denote by (Ci, ri), i = 1, . . . , d,
the components of Xk that intersect C. We have the relation

|C · C|r = r1 + · · ·+ rd.

We let C ′ denote the preimage of C in W under the natural map W → X . Similarly,
let C ′

i be the preimage of Ci in W . Since ` is coprime to the multiplicity of any component
of Xk, we find that C ′ and C ′

i are irreducible of multiplicity r and ri, respectively (for all
i = 1, . . . , d), and the maps C ′ → C and C ′

i → Ci are birational.
For each i = 1, . . . , d, the preimage P ′

i in W of the intersection point Pi := C ∩ Ci

consists of a single point. The point P ′
i is singular on W because [F : K] is coprime to

both r and ri. Denote by C ′′ and C ′′
i the strict transforms in V of C ′ and C ′

i, respectively.

4.2 The singularity P ′
i is resolved by a chain of smooth rational curves that we now

describe. Let q1(i) denote the smallest positive integer such that ` | q1(i)r + ri. Since
` - rri by hypothesis, 1 ≤ q1(i) < `.

If q1(i) = 1, then the singularity Pi is resolved by a single rational curve D1(i) of
multiplicity (r + ri)/` in Vk, with (D1(i) · D1(i))V = −`. Moreover, (C ′′ · D1(i))V =
(D1(i) · C ′′

i )V = 1.
When q1(i) > 1, the pair (`, q1(i)) uniquely determines the following (ni × ni)-square

matrix Ni and vector tRi = (q1(i), q2(i), . . . , qni
(i)), where the coefficients bj(i) and qj(i)

are positive integers, with ` > q1(i) > · · · > qni
(i) = 1:

−b1(i) 1 0 . . . 0

1 −b2(i) 1
. . .

...

0
. . . . . . . . . 0

...
. . . 1 −bni−1(i) 1

0 . . . 0 1 −bni
(i)




q1(i)
q2(i)

...

...
qni

(i) = 1

 =


−`
0
...
...
0

 .

In V , the preimage of P ′
i consists in a chain of rational curves Dj = Dj(i), j = 1, . . . , ni,

such that

(C ′′ ·D1)V = (Dj ·Dj+1)V = (Dni
· C ′′

i )V = 1
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for all j = 1, . . . , ni − 1. Moreover, for all j = 1, . . . , ni,

(Dj ·Dj)V = −bj(i).
The resolution of P ′

i can be computed explicitly because the completion of the local ring
OW,P ′

i
is isomorphic to OF [[x, y]]/(xryri − π`

F ). The complex case is discussed in [1], ii)
after 5.2. See also [11], pp. 206-212.

The multiplicity of Dj(i) in Vk is described as follows. Given the matrix Ni, we can
uniquely determine a vector R′

i = (qni
(i)′, . . . , q2(i)

′, q1(i)
′), with ` > q1(i)

′ > · · · > q′ni
=

1, and

NiR
′
i = t(0, . . . , 0,−`).

We find that det(Ni) = ±`, and that q1(i)q1(i)
′ ≡ 1 (mod `) ([12], 2.6). When ni > 1,

there exists a unique vector T such that NiT = t(−r, 0, . . . , 0,−ri), and it is easy to check
that

Ni(
r

`
Ri +

ri

`
R′

i) = t(−r, 0, . . . , 0,−ri).

We note that the coefficients of the vector r
`
Ri + ri

`
R′

i are integers; this can be checked
by induction, using the fact that the first coefficient (q1(i)r + ri)/` is an integer by con-
struction. The multiplicity of Dj in Vk is the j-th coefficient of the vector ( r

`
Ri + ri

`
R′

i).
We have

|C ′′ · C ′′| =
∑d

i=1(q1(i)r + ri)

r`
=

(
∑d

i=1 q1(i)) + |C · C|
`

.

4.3 Consider the intersection matrix M(X ) as a linear map ⊕C⊆Xk
ZC → ⊕C⊆Xk

ZC. Sim-
ilarly, consider the matrix M(V) as a linear map ⊕B⊆Vk

ZB → ⊕B⊆Vk
ZB. Let ΦM(X ) and

ΦM(V) denote the torsion subgroup of (⊕C⊆Xk
ZC)/Im(M(X )) and (⊕B⊆Vk

ZB)/Im(M(V)),
respectively. Consider the purely combinatorial group homomorphism

ϕ : (⊕C⊆Xk
ZC) −→ (⊕B⊆Vk

ZB), C 7→ C ′′.

We claim that this homomorphism induces a homomorphism ϕ : ΦM(X ) −→ ΦM(V). To
prove this claim, it suffices to exhibit, for each relation M(X )S = T , a vector S ′ such
that M(V)S ′ = ϕ(T ). Given M(X )S = T , an appropriate vector S ′ can be constructed
as follows. Let C be any component of Xk, and let s(C) denote the coefficient of S
corresponding to C. Set the coefficient s′(C ′′) of S ′ corresponding to C ′′ to be `s(C). If
Ci is a component of Xk that meets C, let D1(i), . . . , Dni

(i) denote the components of Vk

of the desingularization of C ′ ∩ C ′
i. Then set the coefficient s′(Dj(i)) of S ′ corresponding

to Dj(i) to be:

s′(Dj(i)) := j-th coefficient of s(C)Ri + s(Ci)R
′
i.

(When q1(i) = 1, we have s′(D1(i)) = s(C)+s(Ci).) The reader will check that the vector
S ′ is well-defined, and that M(V)S ′ = ϕ(T ).

4.4 Given a (v×v)-intersection matrix M , recall the pairing 〈 , 〉M : ΦM ×ΦM −→ Q/Z
defined in [6], 1.1. Let τ1 and τ2 denote two elements of ΦM represented by vectors T1

and T2 in Zv. Pick two vectors S1 and S2 such that there exist non-zero integers s1 and
s2 with MS1 = s1T1 and MS2 = s2T2. Then, by definition,

〈τ1, τ2〉M ≡ t(S1/s1)M(S2/s2) (mod Z).

Lemma 4.5. Consider the matrices M(X ) and M(V), and the associated pairings 〈 , 〉M(X )

and 〈 , 〉M(V). Let ϕ : ΦM(X ) → ΦM(V) denote the homomorphism defined in 4.3. Then,
for all τ1 and τ2 in ΦM(X ),

〈ϕ(τ1), ϕ(τ2)〉M(V) = `〈τ1, τ2〉M(X ).
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Proof: Let T1 and T2 be vectors in Zv representing τ1 and τ2. Pick a vector S1 such that
there exists an integer s1 with MS1 = s1T1. Then

〈τ1, τ2〉M(X ) ≡ t(S1/s1)T2 (mod Z).

Let S ′1 be the vector associated as in 4.3 to the vector S1, so that M(V)S ′1 = ϕ(s1T ).
Then

〈ϕ(τ1), ϕ(τ2)〉M(V) ≡ t(S ′1/s1)ϕ(T2) (mod Z).

To prove our lemma, it suffices to note that the coordinates of ϕ(T2) ∈ ⊕ZB are zero,
except for those which correspond to a coordinate C of ⊕ZC. By construction, the
coordinate of the vector S ′1 corresponding to the basis vector C of ⊕ZC is `s(C), where
s(C) denote the coordinate of C of the vector S1. Our claim follows immediately. �

4.6 To conclude the proof of 3.4, it suffices to note the following fact. As recalled in 3.2,
the group ΦJ,K can be canonically identified with ΦM(X ), and ΦJF ,F can be identified with
ΦM(V). We claim that under these natural identifications, the morphism ϕ : ΦM(X ) →
ΦM(V) defined in 4.3 is identified with the natural morphism ψ : ΦJ,K → ΦJF ,F introduced
in section 2. To see this, we lift an element x of ΦJ,K to an element y in Pic0(X) =
Jac(X)(K), we use the natural inclusion map Jac(X)(K) → Jac(X)(F ), which is iden-
tified with the pull-back of line bundles under the natural morphism XF → X, to obtain
the image z of y in Jac(XF )(F ), and then reduce z to an element of ΦJF ,F to obtain
ψ(x) = ϕ(x). We leave the details to the reader. �
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J. of Alg. Geom. 5 (1996), 801-813.
[9] A. Grothendieck, Groupe de monodromie en Géométrie Algébrique SGA 7, I, Springer Verlag
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