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Abstract. Let K be the field of fractions of a Henselian discrete valuation ring
OK . Let XK/K be a smooth proper geometrically connected scheme admitting a
regular model X/OK . We show that the index δ(XK/K) of XK/K can be explicitly
computed using data pertaining only to the special fiber Xk/k of the model X.

We give two proofs of this theorem, using two moving lemmas. One moving lemma
pertains to horizontal 1-cycles on a regular projective scheme X over the spectrum
of a semi-local Dedekind domain, and the second moving lemma can be applied to
0-cycles on an FA-scheme X which need not be regular.

The study of the local algebra needed to prove these moving lemmas led us to
introduce an invariant γ(A) of a singular local ring (A,m): the greatest common
divisor of all the Hilbert-Samuel multiplicities e(Q,A), over all m-primary ideals Q
in m. We relate this invariant γ(A) to the index of the exceptional divisor in a
resolution of the singularity of SpecA, and we give a new way of computing the index
of a smooth subvariety X/K of Pn

K over any field K, using the invariant γ of the local
ring at the vertex of a cone over X.

KEYWORDS. Index of a variety, separable index, moving lemma, 1-cycles, 0-cycles,
rationally equivalent, Hilbert-Samuel multiplicity, resolution of singularities, cone.
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Let W be a non-empty scheme of finite type over a field F . Let D(W/F ) denote
the set of all degrees of closed points of W . The index δ(W/F ) of W/F is the greatest
common divisor of the elements of D(W/F ). The index is also the smallest positive
integer occurring as the degree of a 0-cycle on W . When W is integral, let W reg denote
the regular locus of W , open in W . We note in 6.8 that δ(W reg/F ) is a birational
invariant of W/F .

Let now K be the field of fractions of a discrete valuation ring OK with residue
field k. Let S := SpecOK . Let X → S be a proper flat morphism, with X regular
and irreducible. Let XK/K be the generic fiber of X/S. Write the special fiber Xk,
viewed as a divisor on X, as

∑n
i=1 riΓi, where for each i = 1, . . . , n, Γi is irreducible,

of multiplicity ri in Xk. Using the intersection of Cartier divisors with 1-cycles on the
regular scheme X, we easily find that gcdi{riδ(Γi/k)} divides δ(XK/K) (see 8.1). Our
theorem below strengthens this divisibility, and shows that when OK is Henselian, the
index of the generic fiber can be computed using only data pertaining to the special
fiber.

Theorem 8.2 Keep the above assumptions on X/S.

(a) Then gcdi{riδ(Γ
reg
i /k)} divides δ(XK/K).

(b) When OK is Henselian, then δ(XK/K) = gcdi{riδ(Γ
reg
i /k)}.
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Theorem 8.2 answers positively a question of Clark ([10], Conj. 16). This theorem
is known already when k is a finite field ([5], 1.6, see also [13], 3.1), or when k is
algebraically closed (same proof as in [5]), or when XK/K is a curve with semi-stable
reduction ([10], Thm. 9).

We give two proofs of Theorem 8.2, using two different moving lemmas which may
be of independent interest. The first proof uses the Moving Lemma 2.3 stated below. A
slightly strengthened version is proved in the text. The definition and main properties
of the notion of rational equivalence of cycles are recalled in section 1.

Theorem 2.3 Let R be a semi-local Dedekind domain, and let S := Spec(R). Let X/S
be flat and quasi-projective, with X regular. Let C be a 1-cycle on X, closure in X of
a closed point of the generic fiber of X. Let F be a closed subset of X such that for all
s ∈ S, F ∩Xs has codimension at least 1 in Xs. Then C is rationally equivalent to a
cycle C ′ on X whose support does not meet F .

Our second proof of Theorem 8.2 uses the Moving Lemma 6.5 below, which allows
some moving of a multiple of a cycle on a scheme X which need not be regular. Recall
(2.2) that X is an FA-scheme if every finite subset of X is contained in an affine open
subset of X.

Theorem 6.5 Let X be a noetherian FA-scheme. Let F be a closed subset of X of
positive codimension in X. Let x0 ∈ X. Let Q be a mX,x0-primary ideal of OX,x0,

with Hilbert-Samuel multiplicity e(Q,OX,x0). Then the cycle e(Q)[{x0}] is rationally
equivalent in X to a cycle Z such that no irreducible cycle occurring in Z is contained
in F .

Theorem 6.5 is a consequence of a local analysis of the noetherian local ring OX,x0

found in section 4, and in particular in Theorem 4.5. Our investigation of the local
algebra needed to prove Theorem 6.5 led us to introduce the following local invariant
in 5.1. Let (A,m) be any noetherian local ring. Let E(A) denote the set of all Hilbert-
Samuel multiplicities e(Q,A), for all m-primary ideals Q of A. Define γ(A) to be the
greatest common divisor of the elements of E(A). Theorem 6.5 and the definition of
γ(A) show that:

Corollary 6.7. Let X/k be a reduced scheme of finite type over a field k and let x0 ∈ X
be a closed point. Then δ(Xreg/k) divides γ(OX,x0) degk(x0).

This statement is slightly strengthened when OX,x0 is not equidimensional in 7.13.
Recall that the Hilbert-Samuel multiplicity e(m, A) is the smallest element in the set
E(A), and that it is a measure of the singularity of the ring A: if the completion of A
is a domain (or, more generally, is unmixed [27], 6.8 and 6.9), then A is regular if and
only if e(m, A) = 1. The invariant γ(A) is also related to the singularity of the ring A:
our next theorem shows that γ(A) is equal to the index of the exceptional divisor of a
desingularization of SpecA.

Theorem 5.6 and 7.3. Let A be an excellent noetherian equidimensional local ring
of positive dimension. Let X := SpecA, with closed point x0. Let f : Y → X
be a proper birational morphism such that Y is regular. Let E := f−1(x0). Then
γ(A) = δ(E/k(x0)).
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Note that in the above theorem, the set of degreesD(E) and the set of Hilbert-Samuel
multiplicities E(A) need not be equal, and neither needs to contain the greatest common
divisors of its elements. The proof that γ(A) = δ(E/k(x0)) involves a third set N of
integers attached to A, which is an ideal in Z, so that the greatest common divisor
n(A) of the elements of N belongs to N (5.4). The proof shows that γ(A) = n(A) and
n(A) = δ(E/k(x0)). The properties of the invariant n(A) are further studied in section
7.

As an application of Theorem 7.3, we obtain a new description of the index of a
projective variety.

Theorem 7.4. Let K be any field. Let V/K be a regular closed integral subscheme of
PnK. Denote by W a cone over V in Pn+1

K . Let w0 ∈ W denote the vertex of the cone.
Then δ(V/K) = γ(OW,w0).

The variant of Hilbert’s Tenth Problem, which asks whether there exists an algorithm
which decides given a geometrically irreducible variety V/Q, whether V/Q has a Q-
rational point, is an open question to this date ([46], p. 348). So is the possibly
weaker question of the existence of an algorithm which decides, given V/Q, whether
δ(V/Q) = 1 (7.7). In view of Theorem 7.4, we may also ask whether there exists an
algorithm which decides, given a Q-rational point w0 on a scheme of finite type W/Q,
whether γ(OW,wo) = 1.

In the last section of this article, we settle a question of Lang and Tate [36], page
670, when the ground field K is imperfect, and prove:

Theorem 9.2. Let X be a regular and generically smooth non-empty scheme of finite
type over a field K. Then the index δ(X/K) is equal to the separable index δsep(X/K).

We thank the referee for a meticulous reading of the article and for many useful
comments.
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1. Rational equivalence

We review below the basic notation needed to state our moving lemmas. Let X be
a noetherian scheme. Let Z(X) denote the free abelian group on the set of closed
integral subschemes of X. An element of Z(X) is called a cycle, and if Y is an integral
closed subscheme of X, we denote by [Y ] the associated element in Z(X).
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Let KX denote the sheaf of meromorphic functions on a noetherian scheme X (see
[32], top of page 204 or [39], Definition 7.1.13). Let f ∈ K∗X(X). Its associated principal
Cartier divisor is denoted by div(f) and defines a cycle on X:

[div(f)] =
∑
x

ordx(fx)[{x}]

where x ranges through the points of codimension 1 in X (i.e., the points x such

that the closure {x} has codimension 1 in X; this latter condition is equivalent to
the condition dimOX,x = 1). The function ordx : K∗X,x → Z is defined, for a regular
element of g ∈ OX,x, to be the length of the OX,x-module OX,x/(g).

A cycle Z is rationally equivalent to 0 ([33], §2), or rationally trivial, if there are
finitely many integral closed subschemes Yi and principal Cartier divisors div(fi) on
Yi, such that Z =

∑
i[div(fi)]. Two cycles Z and Z ′ are rationally equivalent in X if

Z − Z ′ is rationally equivalent to 0. We denote by A(X) the quotient of Z(X) by the
subgroup of rationally trivial cycles.

1.1 We will need the following facts. Given a ring A and an A-module M , we denote
by `A(M) the length of M . Let (A,m) be a noetherian local ring of dimension 1. Let
p1, . . . , pt be its minimal prime ideals. Let Frac(A) be the total ring of fractions of A
(with Frac(A) = KX(X) for X = SpecA) and denote by ordA : Frac(A)∗ → Z the
associated order function. Then

(1) Let f ∈ Frac(A)∗, and let fi denote the image of f in Frac(A/pi)
∗. Using [4],

Lemma 9.1/6, we obtain that

ordA(f) =
∑

1≤i≤t

`Api
(Api) ordA/pi(fi).

(2) If A is reduced, then the canonical homomorphism

Frac(A) −→ ⊕iApi = ⊕i Frac(A/pi)

is an isomorphism.
(3) Let A ⊆ B ⊆ Frac(A) be a subring such that B/A is finite. Let n1, . . . , nr be

the maximal ideals of B, and let b ∈ Frac(A)∗. Then

ordA(b) =
∑

1≤i≤r

[B/ni : A/m] ordBni
(b).

Indeed, our hypothesis implies that the A-module B/A has finite length, so for
a regular element b ∈ A, `A(A/bA) = `A(B/bB). Conclude using [20], A.1.3,
and the isomorphism B/bB →

∏r
i=1Bni/bBni .

Remark 1.2 Let Γ1, . . . ,Γr be the irreducible components of X, endowed with the
reduced structure. Let ξ1, . . . , ξr, denote their generic points. Let f ∈ K∗X(X), and
let f |Γi be the meromorphic function restricted to Γi. If for all i ≤ r, [div(f |Γi)] only
involves codimension 1 points of X, then [div(f)] is rationally equivalent to 0 on X,
since [div(f)] =

∑r
i=1[div((f |Γi)`(OX,ξi ))] (use 1.1 (1)).

However, in general [div(f)] is not rationally equivalent to 0. Consider for instance
the projective variety X over a field k, union of P1

k and P2
k intersecting transversally at

a single point∞ ∈ P1
k. Let x be a coordinate function on P1

k with [divP1
k
(x)] = [0]−[∞].

Let f be a rational function on X which restricts to x on P1
k and is equal to 1 on P2

k.
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Then [divX(f)] is the 0-cycle [0], since the point ∞ does not have codimension 1 in
X. It is clear however that [0] is not rationally trivial in X. This shows that the
implication (1) ⇒ (3) in the proposition in [21], §1.8, does not hold in general.

A proper morphism of schemes π : Y → X induces by push forward of cycles a
group homomorphism π∗ : Z(Y ) → Z(X). If Z is any integral subscheme of Y , then
π∗(Z) := [k(Z) : k(π(Z))][π(Z)], with the convention that [k(Z) : k(π(Z))] = 0 if the
extension k(Z)/k(π(Z)) is not algebraic. It is known ([33], [54], and 1.5 below) that
in general further assumptions are needed for a proper morphism π to induce a group
homomorphism π∗ : A(Y )→ A(X). This is illustrated by our next example, also used
later in 2.7, 7.2, and 7.17. (This example contradicts [20], Example 20.1.3.)

Example 1.3 We exhibit below a finite birational morphism π : Y → X of affine
integral noetherian schemes with Y regular, and a closed point y1 ∈ Y of codimension
1 with [y1] rationally equivalent to 0 on Y , but such that π∗([y1]) is not rationally
equivalent to 0 on X. The key feature in this example is that π maps the point y1 of
codimension 1 in Y to a point of codimension 2 in X = SpecA. It turns out that A is
not universally catenary. Our example is similar to that of [23], IV.5.6.11. The idea of
the construction of a ring that is not universally catenary by gluing two closed points
of distinct codimensions is due to Nagata (see [41], 14.E).

Let k0 be any field. Let k := k0(tα)α∈N be the field of rational functions with
countably many variables. Consider the polynomial ring in one variable k[S] and the
discrete valuation ring R := k[S](Sk[S]). Let Y := SpecR[T ]. Let P (T ) ∈ k[T ] be an
irreducible polynomial of degree d ≥ 1. Let y0 ∈ Y be the closed point corresponding
to p := (P (T ), S) and let y1 be the closed point corresponding to q := (ST − 1)R[T ].

Then dim {yi} = 0 and dimOY,yi = 2− i. The residue field k(y0) := k[T ]/(P (T )) is a
finite extension of k of degree d, and k(y1) = Frac(R) = k(S).

Choose a field isomorphism ϕ : k → k(S). Let X := SpecA be the scheme obtained
by identifying y1 and y0 via ϕ (see [45], Teorema 1, [51], 3.4, or [16], 5.4):

A := {f ∈ R[T ] | f(y0) ∈ k, ϕ(f(y0)) = f(y1)}.

By definition, A is the pre-image of the field {(λ, ϕ(λ)) | λ ∈ k} under the canonical
surjective homomorphism R[T ] → k(y0) ⊕ k(y1). The ideal m := p ∩ q of R[T ] is
then a maximal ideal of A, defining a closed point x0 ∈ X whose residue field k(x0)
is isomorphic to {(λ, ϕ(λ)) | λ ∈ k}. The inclusion A → R[T ] induces a morphism
π : Y → X.

It is easy to see that R[T ]/m is finitely generated over A/m. Since m ⊆ A, we can
thus produce a finite system of generators for the A-module R[T ]. More precisely, we
have R[T ] = A + T (TS − 1)A + · · · + T d−1(TS − 1)A + TSA. Therefore, π is finite
and, hence, A is noetherian by Eakin-Nagata’s theorem. The ring A has dimension
2 and, thus, is catenary. The induced morphism π : Y \ {y0, y1} → X \ {x0} is an
isomorphism. Indeed, for any special open subset D(h) ⊆ X \ {x0} (i.e., h ∈ m \ {0}),
we have hR[T ] ⊆ m ⊆ A. So any fraction g/hn with g ∈ R[T ] is equal to gh/hn+1 with
gh ∈ A, and R[T ]h = Ah.

Fix now d ≥ 2. Let f := ST − 1 ∈ q. Then [div(f)] = [y1]. By construction, π
induces an isomorphism k(x0) ' k(y1), so that π∗([y1]) = [x0]. We claim that [x0] is not
rationally trivial on X. Indeed, let C be a closed integral subscheme of X containing
x0 as a point of codimension 1. As OX,x0 and X are of dimension 2, we must have
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dimC = 1. Let C̃ be the schematic closure of π−1(C \ {x0}) in Y , and let ρ : C̃ → C
be the restriction of π. Then ρ is a finite birational morphism of integral noetherian
schemes of dimension 1. The point y1 cannot belong to C̃, since otherwise the prime
ideal q would properly contain the prime ideal of height 1 corresponding to the generic
point of C̃. Hence, ρ−1(x0) = {y0}.

Now let div(g) be a principal Cartier divisor on C. Then, using 1.1 (3), ordx0(g) =
[k(y0) : k(x0)] ordy0(g) = d ordy0(g). Therefore, if n[x0] is rationally equivalent to 0,
then d | n. It follows that [x0] is not rationally equivalent to 0 when d ≥ 2; in fact,
[x0] has order d in the group A(X). The same proof shows that [x0] has order d in the
group A(SpecOX,x0).

1.4 For general noetherian schemes, Thorup introduced a notion of rational equivalence
depending on a grading δX on X, which turns the quotient A(X, δX) of Z(X) by this
equivalence into a covariant functor for proper morphisms and a contravariant functor
for flat equitranscendental morphisms ([54], Proposition 6.5).

We briefly recall Thorup’s theory below. A grading on a non-empty scheme X is
a map δX : X → Z such that if x ∈ {y}, then ht(x/y) ≤ δX(y) − δX(x) ([54], 3.1).
A grading δX is catenary if the above inequality is always an equality ([54], 3.6). An
example of a grading on X is the canonical grading δcan(x) := − dimOX,x. This grading
is catenary if and only if X is catenary and every local ring is equidimensional1 ([54],
p. 266) at every point.

Let Y be an integral closed subscheme of X with generic point η, and let f ∈ k(Y )∗.

Denote by [div(f)](1) the cycle [div(f)] where we discount all components {x} such
that δX(x) < δX(η) − 1. One defines the graded rational equivalence on Z(X) using
the subgroup generated by the cycles [div(f)](1), for all closed integral subschemes of
X. If δX is catenary, then the graded rational equivalence is the same as the usual
(ungraded) one ([54], Note 6.6). Denote by A(X, δX) the (graded) Chow group defined
by the graded rational equivalence.

Let f : Y → X be a morphism essentially of finite type. Let δX be a grading on X.
Then f induces a grading δf on Y defined in [54] (3.4), by

δf (y) := δX(f(y)) + trdeg(k(y)/k(f(y))).

If f is proper, then f induces a homomorphism f∗ : A(Y, δf ) → A(X, δX) ([54],
Proposition 6.5). If X is universally catenary and equidimensional at every point,
and δX = δcan, then δf is a catenary grading on Y ([54], 3.11). It is also true that if X
is universally catenary and δX is a catenary grading, then δf is a catenary grading on
Y ([54], p. 266, second paragraph).

1.5 In particular, assume that both X/S and Y/S are schemes of finite type over a
noetherian scheme S which is universally catenary and equidimensional at every point,
and f : Y → X is a proper morphism of S-schemes. Let C and C ′ be two cycles on
Y (classically) rationally equivalent. Then f∗(C) and f∗(C

′) are (classically) rationally
equivalent on X.

In Example 1.3, endow X with the canonical grading, and Y with the grading δπ.
Then δX is catenary but δπ is not, because y1 has virtual codimension 2. Computations
show that A(Y, δπ) = Z⊕Z, generated by the classes of [y1] and [Y ]. The group A(Y )

1Recall that a ring A of finite Krull dimension is equidimensional if dimA/p = dimA for every
minimal prime ideal p of A. A point x ∈ X is equidimensional if OX,x is.
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is isomorphic to Z, generated by the class of [Y ]. The group A(X) is isomorphic to
A(X, δcan) = (Z/dZ)⊕ Z, generated by the classes of [x0] and [X], with the former of
order d.

1.6 Let S be a separated integral noetherian regular scheme of dimension at most 1.
Let η denote its generic point. Endow S with the catenary grading 1 + δcan (which is
also the usual topological grading). Let f : X → S be a morphism of finite type, and
endow X with the grading δf . This grading is catenary (1.4).

Let n ≥ 1 and let x ∈ X be such that δf (x) = n. Then [{x}] is an n-cycle on (X, δf ).

If dim(S) = 1 and f(x) is a closed point s ∈ S, then {x} is a subscheme of dimension

n of the fiber Xs. If f(x) = η, then {x} → S is dominant and dim {x}η = n − 1. In

the latter case, dim {x} = n − 1 if and only if S is semi-local and {x} is contained in

Xη. Otherwise, dim {x} = n.
In particular, the irreducible 1-cycles on (X, δf ) are of two types: the integral closed

subschemes C of X of dimension 1 such that C meets at least one closed fiber, and the
closed points of X contained in Xη (in which case S must be semi-local). We say that
a 1-cycle is horizontal if its support is quasi-finite over S, and that it is vertical if its
support is not dominant over S.

2. Moving Lemma for 1-cycles on regular X/S with S semi-local

LetX be a quasi-projective scheme of pure dimension d a field k. LetXsing denote the
non-smooth locus of X. The classical Chow’s Moving Lemma [49] and its generalization
([14], II.9, assuming k algebraically closed) immediately imply the following statement:

2.1 Let 0 ≤ r ≤ d. Let Z be a r-cycle on X with Supp(Z) ∩Xsing = ∅. Assume that
dim(Xsing) < d − r. Let F be a closed subset of X of codimension at least r + 1 in
X. Then there exists an r-cycle Z ′ on X, rationally equivalent to Z, and such that
Supp(Z ′) ∩ (F ∪Xsing) = ∅.

Our goal in this section is to prove a variant of this statement for a scheme X over a
semi-local Dedekind base S = SpecR. An application of such a relative moving lemma
is given in Theorem 8.2.

2.2 Let X be a scheme. We say that X is an FA-scheme, or simply that X is FA, if
every finite subset of X is contained in an affine open subset of X. In particular, an
FA-scheme is separated. The following examples of FA-schemes are well-known:

(1) Any affine scheme is FA. Any quasi-projective scheme over an affine scheme is
FA ([39], Proposition 3.3.36). More generally, a scheme admitting an ample invertible
sheaf is FA ([23], II.4.5.4).

(2) If X is FA, then any closed subscheme of X is clearly FA. The same holds for
any open subset U of X. Indeed, let F be a finite subset of U , then F is contained in
an affine open subset V of X. Hence, F ⊆ U ∩ V with U ∩ V quasi-affine. By (1), F
is contained in an affine open subset of U ∩ V .

(3) More generally, if Y is FA and f : X → Y is a morphism of finite type admitting a
relatively ample invertible sheaf, then X is FA. Indeed, any finite subset of X has finite
image in Y , so we can suppose that Y is affine. Then X admits an ample invertible
sheaf [23], II.4.6.6, and we are reduced to the case (1).

(4) A noetherian separated scheme of dimension 1 is FA ([48], Prop. VIII.1).
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Suppose k is an algebraically closed field, and that X/k is a regular FA-scheme of finite
type. Let S/k be a separated scheme of finite type. Then any proper k-morphism
X → S is projective ([31], Cor. 2).

For the purpose of our next theorem, we will call a noetherian integral domain R a
Dedekind domain if it is integrally closed of dimension 0 or 1. A version of this theorem
where R is not assumed to be semi-local is proved in [22], 7.2.

Theorem 2.3. Let S be the spectrum of a semi-local Dedekind domain R. Let f :
X → S be a separated morphism of finite type, with X regular and FA. Let C be a
horizontal 1-cycle on X with Supp(C) finite over S. Let F be a closed subset of X
such that for every s ∈ S, any irreducible component of F ∩ Xs that meets C is not
an irreducible component of Xs. Then there exists a horizontal 1-cycle C ′ on X with
f|C′ : Supp(C ′)→ S finite, rationally equivalent to C, and such that Supp(C ′)∩F = ∅.

In addition, since S is semi-local, C consists of finitely many points, and since X is
FA, there exists an affine open subset V of X which contains C. Then, for any such
open subset V , the horizontal 1-cycle C ′ can be chosen to be contained in V , and to be
such that if g : Y → S is any separated morphism of finite type with an open embedding
V → Y over S, then C and C ′ are closed and rationally equivalent on Y .

Proof. It suffices to prove the theorem when C is irreducible and Supp(C) ∩ F 6= ∅.
Choose an affine open subset V of X containing C. Since C is closed in V , it is affine.

Proposition 3.2 shows the existence of a finite birational morphism D → C such that
the composition D → C → S is a local complete intersection morphism (l.c.i). Clearly,
when S is excellent, we can take D → C to be the normalization morphism, in which
case D is even regular, and 3.2 is not needed. Since C is affine and D → C is finite,
there exists for some N ∈ N a closed immersion D → C ×S AN

S ⊆ V ×S AN
S .

Let U := V ×S AN
S . We claim that it suffices to prove the theorem for the 1-cycle

D and the closed subset F := F ×S AN
S in the affine scheme f ′ : U → S. Indeed, let

D′ be a horizontal 1-cycle whose existence is asserted by the theorem in this case. In
particular, Supp(D′) ∩ F = ∅. Let V → Y be any open immersion over S. Consider
the associated open immersion U → Y ×S PNS and the projection p : Y ×S PNS → Y . By
hypothesis, D and D′ are closed and rationally equivalent in Y ×SPNS . One easily checks
that p∗(D) = C because D → C is birational. It follows from 1.5 that p∗(D) = C is
rationally equivalent to C ′ := p∗(D

′) on Y . Moreover, Supp(C ′) ∩ F = ∅.
The existence of D′ with the required properties follows from Proposition 2.4 below.

Indeed, first note that since D/S is l.c.i., each local ring OD,x, x ∈ D, is an absolute
complete intersection ring ([23], IV.19.3.2). It follows that the closed immersion D → U
is a regular immersion ([23], IV.19.3.2).

Let d := codim(D,U). We note that d > 0 since Supp(C)∩F 6= ∅ and for each point
in Supp(C)∩F over s ∈ S, F ∩Vs is not an irreducible component of Vs. Let x ∈ D be
a closed point, and let s := f ′(x). Then dimOD,x = dim(S), dimOU,x = d + dim(S),
and dimOUs,x = d. Our assumption on F implies that the irreducible components of
F ∩ Us passing through x have dimension at most d− 1. We can thus apply 2.4 below
to conclude the proof of 2.3. �

Proposition 2.4. Let S be any semi-local affine noetherian scheme. Let U → S be
a morphism of finite type with U affine. Let C be an integral closed subscheme of U ,
of codimension d ≥ 1, and finite over S. Suppose that the closed immersion C → U
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is regular. Let F be a closed subset of U such that for all closed points s ∈ S, the
irreducible components of F ∩ Us that intersect C all have dimension at most d − 1.
Then there exists a cycle C ′ on U rationally equivalent to C and such that:

(1) The support of C ′ is finite over S and does not meet F ∪ C. Moreover, for any
closed point s ∈ S, Supp(C ′) does not contain any irreducible component of Us.

(2) Suppose that S is universally catenary. Let Y → S be any separated morphism
of finite type and let h : U → Y be any S-morphism. Then h∗(C) is rationally
equivalent to h∗(C

′) on Y .

Proof. Reduction to the case d = 1. Write U := SpecA and C := V (J). Suppose d ≥ 2.
By hypothesis, the (A/J)-module J/J2 is locally free, hence free of rank d. Now lift a
basis of J/J2 to elements f1, . . . , fd ∈ J . For all p ∈ C, we have Jp = f1Ap + · · ·+ fdAp

by Nakayama’s Lemma. As Jp is generated by a regular sequence by hypothesis, Lemma
2.6 implies that f1, . . . , fd is a regular sequence in Ap.

Let Γ1, . . . ,Γn denote the irreducible components of F ∩ Us that intersect C, with s
ranging through the finitely many closed points of S. By hypothesis, dim Γi ≤ d−1 for
all i. Apply Lemma 2.5 to A, J , Γ1, . . . ,Γn, and f1, . . . , fd−1 as above. We obtain the
existence of g1, . . . , gd−1, such that C ⊆ V (g1, . . . , gd−1), and such that every irreducible
component of V (g1, . . . , gd−1) ∩ Γi either has dimension 0 or is contained in C.

Lemma 2.6 implies that g1, . . . , gd−1, fd is a regular sequence at the points of C, so
the immersion C → V (g1, . . . , gd−1) is regular. It is easy to check that the proposition
is proved if it can be proved for the closed subsets C and F ∩ V (g1, . . . , gd−1) inside
the affine scheme V (g1, . . . , gd−1). Moreover, we note that now

(a) at any point p of C, C is defined in V (g1, . . . , gd−1) by the regular element fd, and
(b) any irreducible component of F∩V (g1, . . . , gd−1)s is either contained in C or disjoint

from C.

We make one further reduction if V := V (g1, . . . , gd−1) is not integral. For every
x ∈ C, fd is a regular element of OV,x, and OC,x ' OV,x/(fd). This easily implies
that OV,x is a domain. Thus, there is a unique irreducible component W of V through
x. Clearly, W is independent of x, and in a neighborhood of C, V coincides with W
endowed with the reduced subscheme structure. The morphism C → W is still regular.
We may thus replace V with the integral subscheme W .

We assume henceforth that U is integral and that d = 1. Fix now an open S-
immersion U → X, with X/S projective and X integral. Let F be the Zariski closure
of F in X. Let Z denote the closed subset of X consisting in the finite union of the
following closed sets:

(a) X \ U ;
(b) All irreducible components of F ∩ Xs which do not intersect C, for each closed

point s ∈ S; and
(c) One closed point of Γ which does not belong to C, for each irreducible component

Γ of Us which is not contained in C, and for each closed point s ∈ S.

By construction, Z ∩ C = ∅.
Since C is proper over S, it is closed in X. Since d = 1, C is in fact a Cartier divisor

on U , and since it is closed in X, we can extend it to a Cartier divisor on X. Let J
be the sheaf of ideals on X defining C. This is then an invertible sheaf, and as usual
we let OX(nC) := J −n.



THE INDEX OF AN ALGEBRAIC VARIETY 10

Let I be the sheaf of ideals on X defining the reduced induced structure on Z. Let
I(nC) denote the image of I ⊗ OX(nC) in OX(nC). For all n ≥ 2, we have a natural
exact sequence

0→ I((n− 1)C)→ I(nC)→ Fn → 0,

where Fn is a coherent sheaf annihilated by J and, hence, supported on C. Applying
H1(X,−) to the above exact sequence, we get

H1(X, I((n− 1)C))→ H1(X, I(nC))→ 0

because C is affine. Since X/S is projective, we have obtained a system of finitely
generated OS(S)-modules with surjective transition maps. Since OS(S) is noetherian,
the transition maps are eventually isomorphisms. Hence, there exists n0 ≥ 0 such that
for all n ≥ n0, H0(X, I(nC))→ H0(C,Fn) is surjective.

By hypothesis, the stalk Jx at each x ∈ C is generated by a regular element. Since
C is semi-local and closed in the affine scheme U , we can find an affine open subset V
in X \ Z containing C such that J|V is principal, say generated by a function ϕ. For

all n ≥ 0, ϕ−n induces a generator ϕ−n of O(nC)|C . Since Z ∩ C = ∅, we find for all
n ≥ 0 that (Fn)|C is isomorphic to O(nC)|C . Thus, for all n ≥ n0, we can find a global

section fn of I(nC) which lifts the generator ϕ−n of OX(nC)|C .
Fix n ≥ n0, and consider g := (1 + fn+1)/(1 + fn) ∈ KX(X). Let

C ′ := C + [divX(g)].

Then Supp(C ′) is projective over S because it is closed in X. By construction,
[divV (g)] = −C, and [divX(g)] has support disjoint from Z. Thus, C ∩ Supp(C ′) = ∅,
and since Z contains X \U , we find that Supp(C ′) ⊆ U . Since U is affine, Supp(C ′) is
finite over S.

Recall that for each closed point s ∈ S, Z contains all irreducible components of
F̄ ∩Xs which do not intersect C. Recall also that by hypothesis (in the case d = 1),
for all closed points s ∈ S, the irreducible components of F ∩Us that intersect C have
dimension 0 and are thus contained in C. It follows that F ∩ Supp(C ′) = ∅.

Finally, recall that for each closed point s ∈ S and for each irreducible component Γ
of Us which is not contained in C, then Z contains a closed point of Γ which does not
belong to C. Then Supp(C ′) does not contain any irreducible component of Us which
is not contained in C. This shows (1).

(2) Now suppose that S is universally catenary. We start with the following reduc-
tion. Recall from the beginning of the proof the existence of an integral subscheme
W of U such that C ⊂ W is a regular embedding and C has codimension 1 in W .
Let T denote the schematic closure of the image of W in S. It suffices to prove (2)
for W → T , and the morphism h′ : W → Y ×S T . We are thus reduced to the case
where both U and S are integral. In particular, S is equidimensional at every point
and universally catenary, and the theory recalled in 1.4 applies.

Fix as in (1) an open S-immersion U → X, with X/S projective and X integral.
Let g be as in (1). Let Γ ⊆ X ×S Y be the schematic closure of the graph of the
rational map X 99K Y induced by h : U → Y . Let p : Γ → X and q : Γ → Y be the
associated projection maps over S. Since Y/S is separated, the graph of h : U → Y
is closed in U ×S Y . Hence, p : p−1(U) → U is an isomorphism. Since Γ is integral
and its generic point maps to the generic point of X, the rational function g on X
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induces a rational function, again denoted by g, on Γ. As p : p−1(U) → U is an
isomorphism, we let p∗(C) and p∗(C ′) denote the preimages of C and C ′ in p−1(U);
they are closed subschemes of Γ. Since g is an invertible function in a neighborhood of
X \ U , [divΓ(g)] = p∗(C) − p∗(C ′), and p∗(C) and p∗(C ′) are rationally equivalent on
Γ. Fix a catenary grading on S and define gradings on schemes of finite type over S
accordingly (1.4). Then, as q is proper, q∗p

∗C and q∗p
∗C ′ are rationally equivalent in

Y . Since h∗C = q∗p
∗C and h∗C

′ = q∗p
∗C ′, (2) follows. �

Lemma 2.5. Let U = SpecA be a noetherian affine scheme. Let C := V (J) be a
closed subset of U . Let Γ1, . . . ,Γn be irreducible closed subsets of U . Let f1, . . . , fδ ∈ J .
Then there exist g1, . . . , gδ ∈ J such that gi ∈ fi + J2 for all i = 1, . . . , δ, and such that
the following property holds. Let i ≤ δ and j ≤ n. Then any irreducible component of
Γj ∩ V (g1, . . . , gi) not contained in C has codimension i in Γj and, hence, dimension
at most dim Γj − i.

Proof. For j = 1, . . . , n, let qj be the prime ideal of A such that Γj = V (qj). If qj
contains J for all j ≤ n, we set gi := fi for all i = 1, . . . , δ, and the lemma is proved.
Suppose that for some j, qj does not contain J . Upon renumbering if necessary, assume
that the ideals q1, . . . , qm do not contain J , and qm+1, . . . , qn contain J . The lemma is
proved if we can prove it for the sets Γ1, . . . ,Γm. We may thus assume that none of
the Γj’s is contained in C or, in other words, that none of the qj’s contain J .

We proceed by induction on δ. When δ = 1, we find that f1A+J2 6⊆ qj for all j ≤ n.
Then there exists a1 ∈ J2 such that g1 := f1 +a1 /∈ ∪1≤j≤nqj ([9], Lemma 1.2.2 or [29],
Theorem 124, page 90). Suppose that Θ is an irreducible component of Γj ∩ V (g1).
Then Θ has codimension 1 in Γj and dim Θ ≤ dim Γj ∩V (g1) ≤ dim Γj − 1, since A/qj
is a domain, and g1 /∈ qj.

If δ ≥ 2, we apply the induction hypothesis to the sequence f1, . . . , fδ−1 to obtain
the desired g1, . . . , gδ−1. We then apply the case δ = 1 to the ring A/(g1, . . . , gδ−1),
the ideal J/(g1, . . . , gδ−1), the image of fδ in A/(g1, . . . , gδ−1), and to the irreducible
components of the Γj∩V (g1, . . . , gδ−1)’s which are not contained in C. We find then an
element ḡδ in f̄δ +(J/(g1, . . . , gδ−1))2, which we lift to g′δ = fδ +g1a1 + · · ·+gδ−1aδ−1 +j
with j ∈ J2 and ai ∈ A. Since the desired property is now achieved for the irreducible
components of Γj ∩ V (g1, . . . , gδ−1, g

′
δ) not contained in C, we find that the sequence

g1, . . . , gδ−1, gδ, with gδ := fδ + j, satisfies the conclusion of the lemma. �

Lemma 2.6. Let A be a noetherian local ring. Let I be a proper ideal of A generated
by a regular sequence f1, . . . , fd. Let g1, . . . , gd ∈ I. If the image of {g1, . . . , gd} in I/I2

is a basis of I/I2 over A/I, then g1, . . . , gd is a regular sequence.

Proof. This is well-known, and follows from the equivalence between quasi-regular se-
quences and regular sequences in noetherian local rings ([41], 15.B, Theorem 27). �

Remark 2.7 We note that the cycle C ′ in Proposition 2.4 (1) is in the same graded
component of Z(U) as C, for every catenary grading on U . Note also that it may
happen in 2.4 (1) that the cycle C ′ is the trivial cycle, with empty support. Indeed,
consider the case where U → S is a finite morphism. According to 2.4 (1), the support
of C ′ does not meet C, and for any closed point s ∈ S, Supp(C ′) does not contain any
point in Us \C. It follows that Supp(C ′) does not contain any closed point of U . Since
U is affine, we find that Supp(C ′) is empty.
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We now modify Example 1.3 to produce an example to show that the statement
of Proposition 2.4 (2) does not hold in general if S is not assumed to be universally
catenary. Indeed, with the notation as in Example 1.3, let d > 1, let Y ′ be the
semi-localization of Y at {y0, y1}, and let X ′ the pinching of Y ′ (that is, the scheme
obtained by identifying y0 and y1 in Y ′). Let again π denote the natural finite morphism
Y ′ → X ′. Then the cycle [y1] is rationally trivial on Y ′, but the cycle π∗([y1]) is not
rationally trivial on X ′. For the desired example where the statement of Proposition
2.4 (2) does not hold, we take S and Y to be X ′, U to be Y ′, and C to be {y1}.

3. Inductive limits of l.c.i. algebras

We prove in this section a technical statement needed when considering base schemes
S which are not excellent, as in the proof of 2.3, or of 6.2 in [22].

Lemma 3.1. Let (R, (π)) be a discrete valuation ring with field of fractions K of
characteristic p > 0. Let L/K be a purely inseparable extension of degree p, and let RL

be the integral closure of R in L. Then there exists a sequence (αn)n∈N∗ with αn ∈ RL

and L = K(αn), such that the R-algebras Bn := R[αn] are finite and local complete
intersections over R, and RL = ∪nBn.

Proof. Recall that since [L : K] = p, RL is also a discrete valuation ring, with maximal
ideal m, and either em/(π)fm/(π) = 1 and RL is not a finitely generated R-module, or
em/(π)fm/(π) = p and RL is a finitely generated R-module (see [6], VI.8.5, Theorem 2).
Moreover, if em/(π) = p and s ∈ m \ m2, then RL = R[s]. If fm/(π) = p and s ∈ RL

reduces modulo m to a t such that RL/m = (R/(π))(t), then RL = R[s].
The lemma is thus completely proved in the case where RL is a finitely generated

R-module by setting Bn = RL for all n. When em/(π)fm/(π) = 1, we can embed RL into

the completion of R̂ of R with respect to (π). Since [L : K] = p, we can choose α ∈ RL

such that L = K(α). For any n ≥ 1, we can approximate the element α by an element
rn ∈ R, such that α = rn + πnαn for some αn ∈ RL. Let Bn := R[αn]. Then (Bn)n≥1

is an increasing sequence of finite l.c.i. algebras over R, and L = K(αn) for all n.
It remains to show that RL = ∪nBn. Let b ∈ RL. Then b =

∑p−1
j=0 tjα

j, with tj ∈ K
for j = 0, . . . , p− 1. Replacing α by rn + πnαn, we see that for n > maxj≥1 | ordπ(tj)|,
we can write b = cn + βn with cn =

∑
j tjr

j
n ∈ K and βn ∈ R[αn]. It follows that

cn ∈ RL and, hence, cn ∈ R = K ∩RL. Therefore, b ∈ R[αn]. �

Proposition 3.2. Let A be a Dedekind domain, with field of fractions K. Let B be an
integral domain containing A, and with field of fractions L. Assume that B is finite
over A. Then there exists a domain C with B ⊆ C ⊆ L such that C is finite over A,
and a local complete intersection over A.

Proof. Let Ksep be the separable closure of K in L and let Bsep be the integral closure
of A in Ksep. Then Bsep is a Dedekind domain finite over A. Let B′ be the sub-A-
algebra of L generated by B and Bsep. Then it is finite over Bsep. If we can find C
containing B′, finite and l.c.i. over Bsep, then C contains B and is finite and l.c.i. over
A. Therefore, it is enough to treat the case when K = Ksep. We thus assume now that
L is purely inseparable over K, and we prove the proposition by induction on [L : K].
The case [L : K] = 1 is trivial. Suppose [L : K] > 1 and that the proposition is true
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for any Dedekind domain A′ and for any purely inseparable extension L′ of Frac(A′)
of degree strictly less than [L : K].

We will construct C as the global sections of a coherent sheaf of A-algebras C over
SpecA. Let L′ be a subextension of L of index p. Consider the sub-A-algebra B∩L′ of
L′. It is finite over A because B is finite over A. By induction hypothesis, it is contained
in a finite l.c.i. A-algebra B′ ⊆ L′. Let α ∈ B be such that L = L′[α]. We claim that
B′[α] is l.c.i. over B′, so that B′[α] is a finite l.c.i. A-algebra. Indeed, the minimal
polynomial of α over L′ is xp − αp ∈ B′[x], since by hypothesis, αp ∈ L′ ∩ B ⊆ B′.
Therefore, the map B′[x]/(xp − αp)→ B′[α] is an isomorphism.

As B′[α] and B are both finite over A and have the same field of fractions, there
exists f ∈ A \ {0} such that B′[α]f = Bf (where as usual Bf denotes the localization
of B with respect to the multiplicative set {1, f, f 2, . . . }). The algebra Bf is finite and
l.c.i. over Af , and we define C(D(f)) to be Bf .

Let now p be any maximal ideal of A, and let q be the unique maximal ideal of
B lying over p. Let us show that Bq is contained in some finite l.c.i. Ap-algebra Cp
contained in L. First, note that the localization of B at the multiplicative set A \ p is
equal in L to Bq, because x[L:K] ∈ A\p for all x ∈ B \ q. In particular, Bq is finite over
Ap. Write Bq =

∑
1≤i≤r biAp, with bi ∈ B. Let R be the integral closure of Ap in L′. It

follows from Lemma 3.1 that there exists α ∈ L, integral over R with L = L′(α), and
such that bi ∈ R[α] for all i ≤ r. Then there also exists a finite sub-Ap-algebra D of
L′, with αp ∈ D and bi ∈ D[α] for all i ≤ r, and such that Frac(D) = L′. Apply now
the induction hypothesis to the extension Ap ⊆ D: there exists D ⊆ E ⊆ R such that
E is finite and l.c.i. over Ap. Set Cp := E[α]. We have Frac(Cp) = L′[α] = L. Since
αp ∈ D, the minimal polynomial of α over L′ is in D[x]. As earlier, we find that E[α]
is l.c.i. over E and, therefore, also over Ap.

Write SpecA = D(f) ∪ {p1, . . . , ps}. For each i = 1, . . . , s, there exists an open
neighborhood Ui of pi with Ui \ {pi} ⊆ D(f), and a finite sub-O(Ui)-algebra Ci of L
such that Ci ⊗O(Ui) Api = Cpi and

Ci ⊗O(Ui) O(Ui \ {pi}) = Bf ⊗Af O(Ui \ {pi}).

We then can glue the sheaves (Ci)
∼
/Ui and the sheaf (Bf )

∼
/D(f) into a coherent sheaf C

of A-algebras. The global sections C := C(SpecA) is a finite sub-A-algebra of L which
contains B and is l.c.i. by construction. �

4. Hilbert-Samuel multiplicities

Let (A,m) be a noetherian local ring. Let Q be an m-primary ideal of A (equivalently,
Q is a proper ideal of A containing some power of m). Let M be a non-zero finitely
generated A-module. Recall that there exists a polynomial fQ(x) ∈ Q[x] such that for
all n large enough, fQ(n) = `A(M/QnM). This polynomial has degree d = dimM :=
dimV (Ann(M)).

The Hilbert-Samuel multiplicity e(Q,M) is the coefficient of xd in fQ(x) multiplied
by d!. When there is no need to specify the ring A, we may write e(Q,A) simply as
e(Q). The integer e(A) := e(m, A) is called the Hilbert-Samuel multiplicity of A. If A
is regular, then e(A) = 1.

We prove in Proposition 4.9 below that the Hilbert-Samuel multiplicity e(Q,M) can
be expressed in terms of Hilbert-Samuel multiplicities e((f),M) of ideals generated by
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strict systems of parameters. This result is a key ingredient in the proof of the main
result of this section, Theorem 4.5. A more global geometric version of Theorem 4.5 is
given in the Generic Moving Lemma 6.5.

4.1 Let (A,m) be a noetherian local ring. An ordered sequence f = {f1, . . . , fr} of
r ≥ 1 elements of m is said to be strictly secant if f1 does not belong to any minimal
prime ideal of A and if, for all i ∈ {2, . . . , r}, fi does not belong to any minimal prime
ideal over (f1, . . . , fi−1). The sequence f is called a strict system of parameters of A if
r = dimA. In general, the property of being strictly secant depends on the order of
the fi’s.

A sequence {f1, . . . , fr} of m is called secant if dimA/(f1, . . . , fr) = dimA− r ([7],
VIII.26, Definition 1). The sequence {f1} is secant if and only f1 does not belong to
any minimal prime ideal p of A such that dimA/p = dimA ([7], VIII.27, Proposition
3). By induction, one sees that a strictly secant sequence is secant.

In a noetherian local ring (A,m) of dimension d, a system of parameters of A is a
system f1, . . . , fd of elements of m such that the ideal (f1, . . . , fd) contains a power of
m or, equivalently, such that the A-module A/(f1, . . . , fd) has finite length. Since
a strict system of parameters f = {f1, . . . , fd} is a secant sequence, we find that
dimA/(f1, . . . , fd) = dimA− d = 0, and f is a system of parameters.

4.2 Recall that any ideal in m generated by i elements has height at most i. It follows
that a sequence {f1, . . . , fr} is strictly secant if and only if for all i ≤ r, all minimal
prime ideals over (f1, . . . , fi) have height i.

Lemma 4.3. Let (A,m) be a noetherian catenary equidimensional local ring. Then a
secant sequence (resp. a system of parameters) is strictly secant (resp. a strict system
of parameters).

Proof. Let f ∈ A be such that dimA/fA = dimA − 1. Since A is equidimensional,
f does not belong to any minimal prime ideal of A and, thus, the sequence {f} is
strictly secant. The quotient A/(f) is catenary since A is. We claim that A/fA is
also equidimensional. Indeed, let q be any minimal prime ideal of A over (f) and let
p be a minimal prime ideal of A contained in q. By Krull’s principal ideal theorem,
ht(q/p) = 1. Hence, since A is catenary, ht(m/q) = ht(m/p)− ht(q/p) = dimA− 1 for
any minimal prime q/(f) of A/(f). Therefore, A/(f) is equidimensional.

Let now f := {f1, . . . , fr} be a secant sequence for A. If r = 1, then f is strictly
secant. If r > 1, then {f2, . . . , fr} is secant for A/(f1) and, by induction, strictly secant
for A/(f1). Then f is strictly secant for A. �

Lemma 4.4. Let (A,m) be a noetherian local ring. Let Q be a m-primary ideal, and let
I be a proper ideal of A. Let g := {g1, . . . , gr} be a strictly secant sequence of elements
of (Q + I)/I. Then there exists a strict system of parameters {f1, . . . , fd} in Q such
that for i ≤ r, the map A→ A/I sends fi to gi, and for i > dimA/I, fi ∈ I ∩Q.

Proof. When I = (0), the lemma states that any strictly secant sequence of elements
of Q can always be completed into a strict system of parameters contained in Q. We
leave the proof of this fact to the reader.

Assume that I 6= (0). We first show by induction on r that g can be lifted to a
strictly secant sequence in Q. Let f ′1 ∈ Q be a lift of g1. Let p1, . . . , pm be the minimal
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prime ideals of A. If f ′1 /∈ pi for all i = 1, . . . ,m, then by definition {f ′1} is a strictly
secant sequence.

Suppose now that f ′1 belongs to some pi, and renumber these minimal primes so
that there exists m0 > 0 such that f ′1 ∈ pi if and only if i ≤ m0. Let q1, . . . , qn
be the minimal prime ideals of A over I. If i ≤ m0, then qj 6⊆ pi (otherwise they
would be equal, but f ′1 /∈ qj) and Q 6⊆ pi because dimA ≥ r ≥ 1. So for i ≤ m0,
Q ∩ (∩1≤j≤nqj) ∩ (∩k≥m0+1pk) is not contained in pi and, therefore, there exists

α ∈ Q ∩ I ∩ (∩k≥m0+1pk) \ ∪1≤i≤m0pi.

Let f1 := f ′1 + α ∈ Q. Then {f1} is a strictly secant sequence contained in Q, and f1

maps to g1 in A/I, as desired.
Let us assume by induction that we can lift {g1, . . . , gr−1} to a strictly secant sequence
{f1, . . . , fr−1} in Q. Let J := (f1, . . . , fr−1). Apply the case r = 1 to the ring A′ :=
A/J , with the ideals I ′ := I + J/J and Q′ := Q + J/J : the strictly secant sequence
{ḡr} in A′/I ′ lifts to a strictly secant sequence {f̄r} in Q′, and we let fr denote a lift in
Q of f̄r. Then {f1, . . . , fr−1, fr} in Q is the desired strictly secant sequence lifting g.

Now we complete g into a strict system of parameters in (Q + I)/I and lift it to
a strictly secant sequence f1, . . . , fn in Q (with n := dimA/I ≥ r). It is easy to

check that m =
√
I ∩Q+ (f1, . . . , fn). Then the image of I ∩ Q in A/(f1, . . . , fn)

contains a power of the maximal ideal, and we can use the case ‘I = (0)’ applied to
the ring A/(f1, . . . , fn) to find that there exist fn+1, . . . , fd ∈ I ∩ Q whose images in
A/(f1, . . . , fn) form a strict system of parameters. Then {f1, . . . , fd} is a strict system
of parameters of A as desired. �

The following theorem, whose proof relies heavily on Proposition 4.9, is the main
result of this section. We use Theorem 4.5 to prove the Generic Moving Lemma 6.5,
which in turn is used to prove Theorem 8.2.

Theorem 4.5. Let (A,m) be a noetherian local ring of dimension d ≥ 1, and let Q be
a m-primary ideal of A. Let F be a closed subset of SpecA with dimF < d. Then there
exist integral closed subschemes C1, . . . , Cn of SpecA, of dimension 1, and invertible
rational functions ϕi ∈ k(Ci)

∗ such that:

(i) If F 6= ∅, then for all i ≤ n, Ci ∩ F = {m}.
(ii) e(Q) =

∑
1≤i≤n ordCi(ϕi).

In particular, e(Q)[m] is rationally trivial on SpecA.

We will need the following two facts.

4.6 Let (A,m) be a noetherian local ring, let Q be a m-primary ideal of A. Let
p1, . . . , pt be the minimal prime ideals of A such that dimA/pi = dimA. Then

e(Q,A) =
∑

1≤i≤t

`(Api)e((Q+ pi)/pi, A/pi)

([7], VIII, §7, n◦ 1, Proposition 3). In particular, e(A) =
∑

1≤i≤t `(Api)e(A/pi).

4.7 (Associative Law for Multiplicities.) Let (A,m) be a noetherian local ring of
dimension d. Let f1, . . . , fd be a system of parameters. Denote by f the sequence
f1, . . . , fd and by (f) the ideal generated by the fi’s. Fix s ≤ d. Let p1, . . . , pt be the
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minimal prime ideals of A over (f1, . . . , fs) such that ht(pi) = s and dimA/pi = d− s.
(When s = 0, we interpret (f1, . . . , fs) to be the ideal (0).) Then

e((f), A) =
t∑
i=1

e((f1, . . . , fs)Api , Api)e((fs+1, . . . , fd) + pi/pi, A/pi)

(see [38], or [44], Theorem 18, page 342, or [27] (1.8), or [42], exer. 14.6, page 115).

4.8 Proof of 4.5. It suffices to prove the theorem when F 6= ∅. Let I be a proper ideal
of A such that F = V (I). By hypothesis, r := dimF < d := dimA.

Proposition 4.9 (1) shows that the multiplicity e(Q) can be expressed in terms of
the multiplicity of ideals generated by (strict) systems of parameters. Thus, we are
reduced to proving the theorem in the case Q is generated by a system of parameters.

Proposition 4.9 (2) shows that it is enough to consider the case where Q is generated
by a strict system of parameters f = {f1, . . . , fd} of A such that, when r ≥ 1, the
image of {f1, . . . , fr} in A/I is a strict system of parameters of A/I. Let p1, . . . , pt be
the minimal prime ideals of A over (f1, . . . , fd−1) of height d − 1 with dimA/pi = 1.
The formula in 4.7 gives

e(Q,A) =
∑

1≤i≤t

die(fdA,A/pi),

with di := e((f1, . . . , fd−1)Api , Api). As A/pi is integral, e(fdA,A/pi) = ordA/pi(fd)
where ordA/pi(fd) denotes the order of the image of fd in A/pi. Let Ci := V (pi),

1 ≤ i ≤ t, and let ϕi := fdid |Ci . Then

e(Q,A) =
∑

1≤i≤t

ordCi(ϕi),

as desired. When dimF = r > 0, dimA/(I, f1, . . . , fr) = 0 by construction. Thus,
dim(Ci ∩ F ) = dimV (I + pi) = 0 for all i = 1, . . . , t. That e(Q)[m] is rationally
equivalent to 0 follows immediately from the definition recalled at the beginning of
section 1. �

Part (3) of our next proposition is a slight strengthening of a well-known theorem
([9], Corollary 4.5.10, or [56], VIII, §10, Theorem 22 when M = A). Parts (1) and (2)
are used in 4.5, and Part (4) will be used in 5.2.

Proposition 4.9. Let (A,m) be a noetherian local ring and let M be a non-zero finitely
generated A-module. Let Q be an m-primary ideal of A.

(1) There exist finitely many strict systems of parameters fα, α ∈ A, contained in Q,
such that e(Q,M) =

∑
α∈A±e((fα),M).

(2) Fix a proper ideal I of A with AnnA(M) ⊆ I. Let r := dimV (I). When r > 0,
we can choose the strict system of parameters {fα1 , . . . , fαdimA} in (1) such that for
each α ∈ A, the image of the sequence {fα1 , . . . , fαr } in A/I forms a strict system
of parameters in A/I.

(3) If A/m is infinite, then e(Q,M) = e((f),M) for some strict system of parameters
f contained in Q, satisfying, when applicable, the property in (2).

(4) Let p be a prime ideal of A with ht(p) ≥ 1. Let Q0 be a pAp-primary ideal of Ap.
Then there exist finitely many strictly secant sequences fα in m, α ∈ A, whose
images in Ap are contained in Q0 and such that e(Q0, Ap) =

∑
α∈A±e((fα), Ap).
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Proof. (1) and (2). Let J := AnnA(M). By definition, dimM := dimA/J . We can
consider M as an A/J-module. We have eA(Q,M) = eA/J((Q + J)/J,M) because
JM = 0. Suppose that we can construct strict systems of parameters gα in (Q+ J)/J
such that eA/J((Q+J)/J,M) is a combination of the eA/J((gα),M)’s and such that the
image of {gα1 , . . . , gαr } in A/I is a strict system of parameters for all α. By Lemma 4.4,we
can lift each gα and complete it into a strict system of parameters fα = {fα1 , . . . , fαdimA}
in Q with fαi ∈ J for all i > dimM . Then eA/J((gα),M) = eA((fα),M), and (1) and
(2) hold. Therefore, it remains to prove (1) and (2) when dimM = dimA.

Assume that d := dimM = dimA. We proceed by induction on d. If d = 0, then
a strict system of parameters f for A is empty, and we set f = (0). Then e(Q,M) =
`(M) = e((0),M), and no additional condition is required in (2) since dimA/I = 0.

Assume that d ≥ 1. Let P be the set consisting of the minimal prime ideals of A,
of the associated primes of M , and if dimA/I > 0, of the minimal prime ideals of
A over I. Our hypotheses imply that if m /∈ Ass(M), then m /∈ P . Suppose that
m ∈ Ass(M). Then there exists an exact sequence (0)→ M ′ → M → M ′′ → (0) with
M ′ isomorphic to A/m. Since dim(M) > 0, we find that for any m-primary ideal Q0

of A, e(Q0,M) = e(Q0,M
′′) ([7], VIII.46, Prop. 5, or use the proof2 of [42], 14.6). It

follows that it suffices to prove our statement for modules M with m /∈ Ass(M). In
particular, we can assume that m /∈ P .

We apply Lemma 4.10 with this set P of primes. Pick some s ≥ s0 and xs ∈ Qs,
xs+1 ∈ Qs+1 as in 4.10. By our choice of P , both {xs} and {xs+1} are strictly secant
sequences in Q (4.10(c)). Suppose d = 1. Then e(Q,M) = e((xs+1),M) − e((xs),M)
(4.10(b)). When r = 1, our choice of P shows that the images of {xs} and {xs+1} in
A/I are again strict systems of parameters in A/I. Hence, (1) and (2) are true when
d = 1.

Suppose now that d ≥ 2 and that (1) and (2) hold for d− 1. Lemma 4.10(b) shows
that

e(Q,M) = e(Q,M/xs+1M)− e(Q,M/xsM).

Let B := A/xsA. Then dimB = d − 1 and M/xsM is a B-module of dimension
d − 1 (4.10(a)). Let IB denote the ideal (I + xsA)/xsA of B. By our choice of
primes in P , we find that dimV (IB) = max{0, r− 1}. We also have eA(Q,M/xsM) =
eB(QB,M/xsM). By induction hypothesis, there exist finitely many strict systems of
parameters gα in QB with

e(QB,M/xsM) =
∑
±e((gα),M/xsM)

and such that, if dimV (IB) ≥ 1, the image of gα1 , . . . , g
α
r−1 in B/IB is a strict system

of parameters. Let fα be any lifting of gα in Q. Then {xs, fα} is a strict system of
parameters in Q, and the image in A/I of the first r elements of {xs, fα} is a strict
system of parameters in A/I. By our choice of primes in P , xs is not a zero divisor in
M . It follows from [42], 14.11 that3

e((gα),M/xsM) = e((fα),M/xsM) = e((xs, f
α),M).

2It should be noted that the definition of e(Q,M) taken in [42], page 107, (or in [53], 11.1.5) is
different from the definition taken at the beginning of this section and in [7], VIII.72. Thus the
statement of [42], 14.6, cannot be applied directly.

3Due to the two different definitions of e(Q,M), the proof of [42], 14.11, needs to be slightly adjusted
to prove the second equality.
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Repeating the same argument with xs+1 instead of xs allows us to express the multiplic-
ity e(Q,M/xs+1M) in a similar way. Since e(Q,M) = e(Q,M/xs+1M)−e(Q,M/xsM),
(1) and (2) follow.

(3) When A/m is infinite, instead of choosing two elements xs and xs+1 as we did
above, Part (3) is proved by modifying the proof of (1) and (2), using only the element
x1 whose existence is asserted in 4.10(d), with e(Q,M) = e(Q,M/x1M). We leave the
details to the reader.

(4) Let R be the preimage of Q0 in A under the natural map A → Ap. Clearly,
R ⊆ p. Consider the graded rings

Gr(A) := ⊕n≥0R
n/Rn+1 and Gr(Ap) := ⊕n≥0Q

n
0/Q

n+1
0 ,

and the natural homomorphism of graded rings ρ : Gr(A) → Gr(Ap). Let q′1, . . . , q
′
k

be the associated prime ideals of Gr(Ap) not containing Gr+(Ap). Then {ρ−1(q′j), j =
1, . . . , k} is a set of homogeneous prime ideals of Gr(A) not containing Gr+(A). Let
q1, . . . , qm be the minimal prime ideals of A. We are going to associate below to each qi
a homogeneous prime ideal q̃i of Gr(A) which does not contain Gr+(A). We will then
apply the Prime Avoidance Lemma 4.11 to the ideal I := Gr+(A) in the ring Gr(A)
with the set of homogeneous ideals {ρ−1(q′j), j = 1, . . . , k} ∪ {q̃i, i = 1, . . . ,m}.

For any prime ideal q of A, let qhom := ⊕n≥0(q ∩ Rn)/(q ∩ Rn+1), which we view
in a natural way as an ideal in Gr(A). This ideal is homogeneous, but may not be

prime. We claim that when p 6⊆ q, then
√

qhom does not contain Gr+(A). Indeed, if√
qhom contains Gr+(A), then qhom contains a power of Gr+(A). So for some n > 0,

Rn = Rn+1 + (q ∩ Rn). Hence, modulo q, R
n

= R
n+1

. Since ∩m≥nR
m

= (0) = R
n
, we

find that Rn ⊆ q, and passing to radicals, we find that p ⊆ q, a contradiction. Now
by standard results,

√
qhom is homogeneous, and it is the intersection of all the prime

ideals minimal above it, which are also homogeneous. For each i = 1, . . . ,m, we let q̃i
denote one of the minimal prime ideals of

√
qhomi that does not contain Gr+(A).

We conclude from Lemma 4.11, applied to the ideal I := Gr+(A) in the ring Gr(A)
with the set of homogeneous ideals {ρ−1(q′j), j = 1, . . . , k} ∪ {q̃i, i = 1, . . . ,m}, that

there exists s0 ≥ 0 such that, for all s ≥ s0, there exists xs ∈ Rs whose class in Rs/Rs+1

does not belong to ∪jρ−1(q′j)∪ (∪iq̃i). In particular, xs /∈ qi for all i = 1, . . . ,m, which
by definition implies that {xs} is strictly secant in A. Moreover, let ξ denote the image
of xs in Qs

0/Q
s+1
0 . Then, by construction, ξ /∈ q′j, for all j = 1, . . . , k.

As in 4.10, we use this latter fact to be able to apply [7], VIII.79, Prop. 9 and Lemma
3, to verify a hypothesis needed in [7], VIII.77, Prop. 8.b). It follows immediately from
VIII.77, Prop. 8.b), (i) and (ii), because ht(p) ≥ 1, that

se(Q0, Ap) =

{
e(Q0, Ap/xsAp) if dimAp ≥ 2,
e((xs), Ap) if dimAp = 1.

We can now prove (4) when ht(p) = 1. Fix s ≥ s0 as above, and consider xs and
xs+1. We find that

e(Q0, Ap) = e((xs+1), Ap)− e((xs), Ap),

with both {xs} and {xs+1} strictly secant in A, as desired. When ht(p) ≥ 2, we proceed
by induction on ht(p). Since {xs} is strictly secant in A, it is secant in Ap, so that
dimAp/(xs) = ht(p/(xs)) = ht(p) − 1. Let B := A/(xs). We apply the induction
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hypothesis to the ring B, prime ideal pB and mB-primary ideal Q0B. The details are
left to the reader. �

Lemma 4.10. Let (A,m) be a noetherian local ring. Let Q be a proper ideal of A. Let
M be a finitely generated A-module with dimM ≥ 1 and M/QM of finite length. Let
P be a finite set of prime ideals of A with m /∈ P . Then there exists s0 ≥ 1 such that
for all s ≥ s0, there exists xs ∈ Qs with the following properties:

(a) dim(M/xsM) = dimM − 1.

(b) se(Q,M) =

{
e(Q,M/xsM) if dimM ≥ 2, and
e(xsA,M) if dimM = 1.

(c) xs /∈ p for every p ∈ P .
(d) If A/m is infinite, then there exists an element x1 ∈ Q\Q2 with the above properties.

Proof. Consider the graded ring Gr(A) := ⊕n≥0Q
n/Qn+1. For any A-module N , the

group Gr(N) := ⊕n≥0Q
nN/Qn+1N is a Gr(A)-module in a natural way. Consider

then the Gr(A)-graded module L := Gr(M) ⊕ (⊕p∈P Gr(A/p)). Let p1, ..., pr be the
associated prime ideals of L not containing Gr+(A). These are homogeneous ideals of
Gr(A) ([41], (10.B)). By Lemma 4.11 applied to I = Gr+(A), there exists s0 ≥ 1 such
that for all s ≥ s0, Grs(A) is not contained in ∪ipi.

For s ≥ s0, let xs ∈ Qs whose class ξ in Grs(A) does not belong to ∪ipi. Let
ϕ : L → L be the multiplication-by-ξ map. By [7], VIII.79, Prop. 9 and Lemma 3,
Kerϕ has finite length over Gr(A) and, hence, over A/Q. This is one of the hypotheses
needed to now apply [7], VIII.77, Prop. 8.b). Moreover, our hypothesis that m /∈ P
shows that dimA/p ≥ 1 for all p ∈ P . Since we also assumed that dimM ≥ 1, we
can now use [7], VIII.77, Prop. 8.b), to obtain that dimM/xsM = dimM − 1 (proving
(a)), and for each p ∈ P , dim(A/(xs, p)) = dim(A/p)− 1. In particular, it follows that
xs /∈ p, proving (c). Part (b) follows immediately from VIII.77, Prop. 8.b), (i) and (ii).
Remarque 4) on [7], VIII.79, shows that when A/m is infinite, we can apply the above
proof to an element x1 ∈ Q \Q2. �

The following Prime Avoidance Lemma for graded rings is needed in the proofs of
4.9 and 4.10. (For related statements, see [53], Theorem A.1.2., or [6], III, 1.4, Prop.
8, page 161.)

Lemma 4.11. Let B = ⊕s≥0Bs be a graded ring. Let p1, . . . , pr be homogeneous prime
ideals of B not containing B1. Let I = ⊕s≥0Is be a homogeneous ideal such that I 6⊆ pi
for all i ≤ r. Then there exists an integer s0 ≥ 1 such that for all s ≥ s0, Is 6⊆ ∪1≤i≤rpi.

Proof. We proceed by induction on r. If r = 1, choose t ∈ B1 \ p1 and a homogeneous
element α ∈ I \ p1, say of degree s0. Then ts−s0α ∈ Is \ p1 for all s ≥ s0, as desired.
Let r ≥ 2 and suppose that the lemma is true for r − 1. We can suppose that pi is
not contained in pr for all i 6= r, so that Ip1 · · · pr−1 6⊆ pr. Similarly, we can suppose
that pr is not contained in pi for all i 6= r, so that Ipr 6⊆ (p1 ∪ . . . ∪ pr−1). Hence,
we can apply the case r = 1 and the induction hypothesis to obtain that there exists
s0 such that for all s ≥ s0, there are homogeneous elements fs ∈ Ip1 · · · pr−1 \ pr and
gs ∈ Ipr \ (p1 ∪ . . . ∪ pr−1) of degree s. It is easy to check that fs + gs ∈ Is \ ∪1≤i≤rpi,
as desired. �

Example 4.12 Let (A,m) be a noetherian local ring, and let Q be an m-primary ideal
of A. Proposition 4.9 (3), states that when A/m is infinite, there exists a system of
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parameters f contained in Q such that e(Q,A) = e((f), A)). We show below that when
A/m is finite, such a system of parameters f contained in Q may not exist.

Consider the ring A := F2[[x, y]]/(xy(x + y)), with m = (x, y). It is clear that
e(m, A) = 3. Since this ring has dimension 1, the multiplicity e((f), A) is equal to the
length of A/(f). It is shown in [25], 3.2, that there exists no regular element f ∈ m
such that m3 ⊆ (f). This implies that A/(f) cannot have length 3.

Note that in the ring B := F4[[x, y]]/(xy(x + y)), the element z := x − ty, with
t ∈ F4 \ F2, is such that B/(z) has length 3.

5. Two local invariants

Let (A,m) be a noetherian local ring of positive dimension. We introduce in this
section two new invariants of A, γ(A) in 5.1, and n(A) in 5.4. We show in Theorem
5.6 below that n(A) = γ(A) when A satisfies some natural hypotheses such as being
reduced, excellent, and equidimensional. In 7.3, we will relate n(A) to a resolution of
singularities Y → SpecA when A is universally catenary.

5.1 Let (A,m) be a noetherian local ring. Consider the set E of all Hilbert-Samuel
multiplicities e(Q,A), for all m-primary ideals Q of A. Let γ(A) denote the greatest
common divisor of the elements of E . Clearly, γ(A) divides e(m).

Proposition 4.9 (1) shows that the greatest common divisor of the integers e(Q),
taken only over the subset of all ideals Q generated by strict systems of parameters,
is equal to γ(A). Theorem 4.5 implies that γ(A)[m] is rationally equivalent to zero in
SpecA. It is obvious that γ(A) = 1 when A is regular. When dimA = 0, it follows
from the definitions that γ(A) = `A(A).

Let d := dimA ≥ 1, and let U ⊆ SpecA be any dense open subset. Fix d′ ∈ [0, d−1],
and let

U(d′) := {p ∈ U | ht(p) = d′, dim(A/p) = d− d′}.
Let

g(U) := gcd
p∈U(d′)

{γ(Ap)γ(A/p)}.

If V ⊆ U is another dense open subset, then g(U) divides g(V ). When d′ = 0, it follows
immediately from 4.6 and the definitions that g(U) divides γ(A). We generalize this
statement in our next proposition; the case d′ = d − 1 will be used in the proof of
Theorem 5.6.

Proposition 5.2. Let (A,m) be a noetherian local ring of dimension d ≥ 1, and let
U ⊆ SpecA be any dense open subset. Fix d′ ∈ [0, d− 1]. Then U(d′) 6= ∅ and

γ(A) = gcd
p∈U(d′)

{γ(A/p)γ(Ap)}.

Proof. Let us first prove that g(U) divides γ(A). As mentioned above, the case d′ = 0
follows from 4.6, so we now assume that d′ ≥ 1. It suffices to prove the divisibility
for any open dense V ⊆ U , so shrinking U if necessary, we can suppose that the
complement V (I) of U in SpecA has dimension d− 1. Moreover, ht(I) > 0 since U is
dense.

Let f = f1, . . . , fd be any strict system of parameters of A such that f1, . . . , fd−1 in-
duces a strict system of parameters ofA/I (4.4). In particular, the image of {f1, . . . , fd′}
in A/I is strictly secant. Therefore, any minimal prime ideal of A over (f1, . . . , fd′)
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has height d′, and any minimal prime ideal of A/I over the ideal I+ (f1, . . . , fd′)/I has
height d′ (4.2). Let p be a minimal prime ideal of A over (f1, . . . , fd′). Then p ∈ U ,
since otherwise, I ⊆ p and d′ = ht(p) ≥ ht(p/I) + ht(I) = d′ + ht(I) > d′. Since
dimA/(f1, . . . , fd′) = d − d′, there exists such a p with dimA/p = d − d′, and then
p ∈ U(d′). Using 4.7, we find that g(U) divides e((f), A). Hence, Proposition 4.9 (2)
implies that g(U) divides γ(A).

Let us now prove that γ(A) divides g(U). It suffices to prove this divisibility when
U = SpecA. We start with the case d′ = d−1. Fix p ∈ U(d− 1), so that ht(p) = d−1,
and dimA/p = 1. We need to show that γ(A) divides γ(Ap)γ(A/p). Proposition 4.9
(1) shows that γ(A/p) is equal to the greatest common divisor of the integers ordA/p(φ),
where φ ∈ Frac(A/p)∗. When d = 1, then γ(Ap) = `(Ap). (Recall the convention in 4.7
that if d = 1, then e((f1, . . . , fd−1), Ap) = `(Ap).) Then when d ≥ 1, Proposition 4.9(4)
shows that γ(Ap) can be computed as the greatest common divisor of the integers
e((f1, . . . , fd−1), Ap), where f1, . . . , fd−1 is a strictly secant sequence in p. Therefore, it
is enough to show that γ(A) divides ordA/p(φ)e((f ′), Ap) for all φ ∈ Frac(A/p)∗ and for
all strictly secant sequences f ′ = f1, . . . , fd−1 contained in p.

Fix φ ∈ Frac(A/p)∗ and a strictly secant sequence f ′ = f1, . . . , fd−1 contained in
p. By construction, p1 := p is a minimal prime ideal of A over (f ′). Let p2, . . . , pm
denote the other minimal primes over (f ′). Use the isomorphism Frac(A/

√
(f ′)) →

⊕i Frac(A/pi) to find an invertible rational function φ′ ∈ Frac(A/
√

(f ′)) which restricts
to φ in Frac(A/p) and to 1 in Frac(A/pi) for all i ≥ 2. Let a, b ∈ m\∪i≥1pi be such that

a/b maps to φ′ in Frac(A/
√

(f ′)). The sequences {f ′, a} and {f ′, b} are strict systems
of parameters in m. Then 4.7 gives

e((f ′, a), A) =
∑

e((f ′), Api) ordA/pi(a),

where the sum is over the indices i such that dimA/pi = 1. We proceed similarly for
b to find that

e((f ′, a), A)− e((f ′, b), A) = ordA/p(φ)e((f ′), Ap),

because a = b in A/pi if i ≥ 2. Hence, γ(A) divides ordA/p(φ)e((f ′), Ap) and the
proposition is proved when d′ = d− 1.

The proposition is now true when d = 1. Suppose that d ≥ 2, and proceed by
induction on d. Fix d′ ≤ d − 2. We showed above that (SpecA)(d′) 6= ∅, so let p ∈
(SpecA)(d′), with ht(p) = d′, and dimA/p = d− d′. Since (SpecA/p)(d− d′ − 1) 6= ∅,
let q ⊇ p be any prime ideal of A such that ht(q/p) = d− d′ − 1 and dimA/q = 1. It
follows that ht(q) = d− 1, so that we obtain from the above considerations that

γ(A) divides γ(A/q)γ(Aq).

Since dimAq = d− 1, we can apply the induction hypothesis to Aq; consider the ideal
pAq, with ht(pAq) = d′ and dimAq/pAq) = (dimAq)− d′. It follows that

γ(Aq) divides γ(Aq/pAq)γ((Aq)pAq).

Let B := A/p and q̄ := qB. With this notation, the above two divisibility conditions
give

γ(A) divides γ(B/q̄)γ(Bq̄)γ(Ap).
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Varying q̄ in (SpecB)(dimB − 1), and using the case d′ = d− 1 established above, we
get that γ(B) = gcdq̄ γ(B/q̄)γ(Bq̄), so that γ(A) divides γ(B)γ(Ap). Since B = A/p,
the result follows. �

5.3 Recall that the generic point of an irreducible component of a closed subset F of
a scheme X is called a maximal point of F . For convenience in the statement of our
next definition, we denote by max(F ) the set of the maximal points of F .

Let (A,m) be a noetherian local ring of positive dimension. Let U be any dense open
subset of SpecA. Denote by x0 the unique closed point of SpecA. Let NU denote the
set of all integers n occurring as the order ordx0(f) of some rational function f ∈ K∗C(C)
on any reduced closed curve C in SpecA with max(C) ⊆ U .

We claim that NU is in fact an ideal in Z. Indeed, suppose that for a given open
subset U in SpecA, there exist reduced closed one-dimensional subschemes C and C ′

in SpecA, and f ∈ K∗C(C), f ′ ∈ K∗C′(C ′), such that max(C) ⊆ U , max(C ′) ⊆ U ,
and n = ordx0(f), n′ = ordx0(f ′). Let us use 1.1, (1) and (2), to build functions on
C ∪ C ′. First extend f to a function F on C ∪ C ′, with F = 1 on every component of
C ′ which is not a component of C. Similarly, extend g to G on C ∪ C ′, with G = 1
on every component of C which is not a component of C ′. Then F aGb is such that
ordx0(F aGb) = an+ bn′ ∈ NU .

Denote by n(U,A), or n(U, SpecA), the greatest common divisor of the positive el-
ements of NU . Clearly, if V ⊆ U is dense and open in SpecA, then n(U,A) divides
n(V,A).

5.4 Let A be a noetherian local ring of positive dimension as above. Consider the ideal
N := ∩UNU , where U runs through all dense open subsets of SpecA. Theorem 4.5
immediately implies that N 6= (0). Let n(A) denote the greatest common divisor of
the positive elements of N . The integer n(A) is the positive generator of the ideal N .
When dimA = 0, we let n(A) := 1.

By definition, n(U,A) divides n(A) for any dense open subset U of SpecA. In fact,
n(A) is the smallest positive integer n such that, for every dense open set U of SpecA,
there exists a reduced closed curve C in SpecA with max(C) ⊆ U and a rational
function f ∈ K∗C(C) such that n = ordx0(f). In view of Theorems 4.5 and 6.4, we call
n(A) the moving multiplicity of A.

Lemma 5.5. Let A be a noetherian local ring of positive dimension. There exists a
dense open subset U0 of SpecA such that n(U0, A) = n(A). In particular, for all dense
open subsets V contained in U0, n(V,A) = n(A).

Proof. Since the ring Z/N is Artinian, we can find finitely many dense open sets Ui
such that N = ∩iNUi . We let U0 := ∩iUi. �

Theorem 4.5 motivated our definition of n(A). It follows from this theorem that
n(A) divides e(Q) for all m-primary ideals Q of A. Hence,

n(A) divides γ(A).

In particular, if A is regular, then n(A) = 1, but the converse is false. We now
show that under some natural hypotheses, such as A being reduced, excellent, and
equidimensional of positive dimension, then n(A) = γ(A) (see also 7.12).
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Theorem 5.6. Let A be a noetherian equidimensional local ring of positive dimension.
Suppose that A is catenary and the regular locus of SpecA contains a dense open subset
of SpecA. Then n(A) = γ(A).

Proof. It suffices to show that γ(A) divides n(A). Let U be any dense open subset of
the regular locus of SpecA. By hypothesis, there exist a reduced curve C in SpecA
with max(C) ⊆ U and f ∈ K∗C(C) such that n(A) = ord(f). Let C1, . . . , Cn be the
irreducible components of C. Each Ci corresponds to a prime ideal pi of A. Since
the generic point of Ci belongs to U , Api is regular, so that γ(Api) = 1. Because A
is catenary and equidimensional, we find that ht(pi) = dimA − 1. Proposition 5.2
implies then that γ(A) divides gcdi(γ(A/pi)). Using 1.1 (1) applied to OC(C), we find
that γ(A) divides ord(f) if γ(A) divides ord(f |Ci) for each i. Since A/pi is an integral
domain, ord(g) := `((A/pi)/(g)) = e((g), A/pi) for any non-zero g ∈ A/pi. It follows
from its definition that γ(A/pi) divides ord(g). Hence, γ(A) divides n(A). �

By construction, n(A) = n(A/
√

0). Let Â denote the completion of A with respect to

its maximal ideal. Then it is clear from the definition that γ(A) = γ(Â). Note however

that in general, γ(A) 6= γ(A/
√

0) and, as we show in our next example, n(A) 6= n(Â)
in general.

Example 5.7 There exists a local noetherian domain A of dimension 1 such that its

completion Â has a single non-zero minimal prime ideal P =
√

(0), and such that

Â red := Â/P is a discrete valuation ring (see, e.g., [3], (3.0.1)). The ring A satisfies
the hypotheses of Theorem 5.6, so

n(A) = γ(A) = γ(Â) = `(ÂP)γ(Â red) = `(ÂP),

while n(Â) = n(Â red) = 1. Hence, n(A) > n(Â). We provide in 7.17 an example of a
noetherian local ring A with henselization Ah such that n(A) > n(Ah).

6. A generic Moving Lemma

6.1 We extend to schemes the definition of the moving multiplicity in 5.4 as follows.
Let X be a noetherian scheme and let x0 ∈ X be a point with dimOX,x0 ≥ 1. Define

nX(x0) := n(OX,x0).

The main result in this section is Theorem 6.4 below, which details one of the most
useful uses of the invariant nX(x0).

We start with two preliminary propositions. The first one is proved in [8], II.9.3, for
affine noetherian schemes. Recall that an FA-scheme X is a scheme such that every
finite subset of X is contained in an affine open subset of X (2.2).

Proposition 6.2 (Moving Cartier divisors). Let X be a noetherian FA-scheme.
Let D be a Cartier divisor on X and let F be a finite subset of X. Then there exists
a Cartier divisor D′ on X, linearly equivalent to D and such that Supp(D′) ∩ F = ∅.

Proof. Let x1, ..., xm be closed points of X such that every point of F and of Ass(X)
specializes to some of the xi’s. In particular, for any open subset V of X containing
{x1, ..., xm}, the natural restriction map KX(X)→ KX(V ) is an isomorphism (see [39],
7.1.15).
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Let U be an affine open subset containing x1, ..., xm. Recall that by definition, OX(D)
is an invertible subsheaf of KX . The canonical homomorphism

OX(D)(U)→ ⊕1≤i≤mOX(D)⊗ k(xi)

is surjective (Chinese Remainder Theorem), so there exists f ∈ H0(U,OX(D)|U) ⊆
KX(U) such that for all i = 1, . . . ,m, the image of f in OX(D) ⊗ k(xi) is a basis.
Then fxi is a basis of OX(D)xi for all i = 1, . . . ,m. This implies that there exists an
open subset V ⊆ U containing F and Ass(X) such that fx is a basis of OX(D)x for
all x ∈ V . It follows that f ∈ K∗X(V ). Extend f to g ∈ K∗X(X) using the isomorphism
KX(X)→ KX(V ). Then D − div(g) has support disjoint from F . �

Let X be a noetherian scheme, and let F be a closed subset of X. For convenience,
we will say that a cycle Z on X generically avoids F if no irreducible cycle occurring
in Z is contained in F . In particular, no irreducible component of SuppZ is contained
in F .

Proposition 6.3. Let X be a noetherian FA-scheme. Let F be a closed subset of X of
positive codimension in X. Let x0 ∈ X, and j : SpecOX,x0 → X be the canonical injec-
tion. Denote again by x0 the closed point of SpecOX,x0, and let F ′ := j−1(F ). Suppose
that there exist integral closed subschemes C1, . . . , Cr of SpecOX,x0 of dimension 1,
elements fi ∈ k(Ci)

∗ for i = 1, . . . , r, and an integer n ≥ 1, such that Ci ∩ F ′ = {x0}
and n[x0] =

∑
i[div(fi)] in Z(SpecOX,x0).

Then the cycle n[{x0}] in Z(X) is rationally equivalent in X to a cycle which gener-
ically avoids F . More precisely, when x0 ∈ F , let Ci be the scheme-theoretic closure of
j(Ci) in X. Then n[{x0}] is rationally equivalent in ∪iCi to a cycle Z which generically
avoids F ∩(∪iCi), and such that each irreducible cycle occurring in Z is of codimension
1 in some Ci.

Proof. Since Ci is the scheme-theoretic closure of j(Ci) in X and Ci ∩ F ′ = {x0}, the
closed subset Ci is not contained in F . For each i = 1, . . . , r, there exists by hypothesis
a function gi ∈ k(Ci)

∗ defined on a dense open subset of Ci, whose stalk in OCi,x0
is

fi, and such that [divCi(gi)] = ordx0(fi)[{x0}] + Zi for some cycle Zi on Ci whose

support does not contain {x0}. To conclude the proof, it is enough to show that for
all i = 1, . . . , r, Zi is rationally equivalent on Ci to a cycle which generically avoids
F ∩Ci. Then n[{x0}] is rationally equivalent on X to a cycle which generically avoids
F , as desired.

Dropping the subscript i for ease of notation, we are in the following situation.
On the noetherian integral FA-scheme C, we have a cycle Z, all of whose irreducible
components are of codimension 1 in C and whose generic points are all contained in a
dense open subset U of C. Moreover, Z|U = [div(g)]. We claim that Z is rationally
equivalent on C to a cycle which generically avoids a proper closed subset F ∩C of C.

Indeed, let F be the set of points of F ∩ C of codimension 1 in C. Let V :=
C \ SuppZ and W := U ∪ V . Then W is open, and Z|W = [D], where D is the
Cartier divisor on W given by the charts {(U, g), (V, 1)}. By construction, W contains
all codimension 1 points of C, and so contains F . Since W is an FA-scheme (2.2 (2)),
we can use Proposition 6.2 to find an invertible rational function f ∈ k(W )∗ such that
Supp[D + div(f)] does not meet F . Let h ∈ k(C)∗ be the unique rational function
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on C extending f , and consider Z ′ := Z + [div(h)]. Then Z ′|W = [D + div(f)] and,
hence, Supp(Z ′) does not meet F either. In other words, the irreducible components of
Supp(Z ′) are not contained in F . As Z ′ only involves irreducible cycles of codimension
1, it generically avoids F . �

Theorem 6.4 (Generic Moving Lemma). Let X be a noetherian FA-scheme. Let
F be a closed subset of X of positive codimension in X. Let x0 ∈ X, and consider the
cycle [{x0}] in Z(X). Then nX(x0)[{x0}] is rationally equivalent in X to a cycle which
generically avoids F .

Proof. The theorem is obvious when x0 /∈ F . So assume now that x0 ∈ F . Since
codim(F,X) > 0, none of the irreducible components of F are irreducible components
of X. Hence, the preimage F ′ of F under the natural map SpecOX,x0 → X has
dimension smaller than dimOX,x0 . In particular, dimOX,x0 ≥ 1, and we can apply
Lemma 5.5. Denote again by x0 the closed point of SpecOX,x0 . Let then U0 be a dense
open set of SpecOX,x0 contained in SpecOX,x0 \ F ′, and such that n(U0,OX,x0) =
n(OX,x0) = nX(x0) (5.5).

We can thus find integral closed subschemes C1, . . . , Cr of SpecOX,x0 of dimension 1,

and fi ∈ k(Ci)
∗, such that Ci ∩F ′ = {x0} and n[{x0}] =

∑
i[div(fi)] in Z(SpecOX,x0),

with n = nX(x0). The theorem follows from Proposition 6.3. �

The proof of Theorem 8.2 uses only the following version of Theorem 6.4, whose proof
does not require the definition and main properties of the invariant nX(x0) discussed
in the previous section.

Theorem 6.5. Let X be a noetherian FA-scheme. Let F be a closed subset of X of
positive codimension in X. Let x0 ∈ X, and consider the cycle [{x0}] in Z(X). Let Q

be a mX,x0-primary ideal of OX,x0. Then e(Q)[{x0}] is rationally equivalent in X to a
cycle which generically avoids F .

Proof. The proof of this version is completely analogous to the proof of 6.4. The
theorem is obvious when x0 /∈ F . So assume now that x0 ∈ F . Since codim(F,X) > 0,
none of the irreducible components of F are irreducible components of X. Hence, the
preimage F ′ of F under the natural map SpecOX,x0 → X has dimension smaller than
dimOX,x0 . In particular, dimOX,x0 ≥ 1, and we can apply Theorem 4.5. Denote again
by x0 the closed point of SpecOX,x0 . We can thus find integral closed subschemes
C1, . . . , Cr of SpecOX,x0 of dimension 1, and fi ∈ k(Ci)

∗, such that Ci ∩ F ′ = {x0}
and n[{x0}] =

∑
i[div(fi)] in Z(SpecOX,x0), with n = e(Q). The theorem follows from

Proposition 6.3. �

Remark 6.6 In Theorem 6.4, a multiple of the cycle [{x0}] can be moved, but in

general the irreducible cycle [{x0}] itself cannot be moved. Indeed, consider for instance
the singular projective curve X over R defined by the equation x2 + y2 = 0 in P2

R. The
singular point x0 := (0 : 0 : 1) is the unique rational point of X, and all closed points
of X \ {x0} are smooth and have degree 2 = [C : R]. Therefore the 0-cycle [x0] cannot
be rationally equivalent to a 0-cycle with support in Xreg.

Corollary 6.7. Let X be a scheme of finite type over a field k. Let U be any dense
open subset of X. Let x0 ∈ X be a closed point. Let Q be a mX,x0-primary ideal
of OX,x0. Then e(Q) degk(x0) is the degree of some 0-cycle Z with support in U . If
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in addition X is separated, then Z can be chosen to be rationally equivalent in X to
e(Q)[x0]. It follows that when X is reduced, then δ(Xreg/k) divides γ(OX,x0) degk(x0).

Proof. Let V be an affine neighborhood of x0 in X. We let V → V be an open
dense immersion of V into a projective variety V . We apply Theorem 6.5 to V and
the closed subset V \ (U ∩ V ) of positive codimension. Then e(Q)[x0] is rationally
equivalent in V to a 0-cycle Z with support in U ∩ V . Since V is projective, we find
that deg(e(Q)[x0]) = deg(Z) because any principal divisor on a projective curve over
k has degree 0 (see, e.g., [39], Corollary 7.3.18).

Assume now that X is separated. Apply Theorem 6.5 to find a closed curve C in X, a
function f ∈ k(C)∗, and a 0-cycle Z on C\{x0}, such that on C, e(Q)[x0]−Z = [div(f)].
Let U1 := C \ SuppZ, and U2 := C \ {x0}. Then let D be the Cartier divisor given by
the pairs (U1, f) and (U2, 1). By construction, [D] = e(Q)[x0].

Since C is separated, Nagata’s Theorem lets us find an open embedding of C into a
proper curve C ′ over k, and such a curve is known to be also projective. Extend in a
natural way D to a Cartier divisor D′ on C ′. Let F := X \ U . Using 6.2, we can find
a Cartier divisor D′′ linearly equivalent to D′ on C ′ and such that Supp(D′′) does not
intersect (C ′\C)∪(C∩F ). As above, deg(D′′) = deg(D′) since C ′ is a projective curve.
Since C → C ′ is an open immersion, we find that D′′ restricted to C is equivalent to
D on C. �

Let k be any field. An algebraic variety X over k is a scheme of finite type over k
(not necessarily separated). Let D denote the set of all degrees of closed points of X.
When X/k is not empty, the index δ(X/k) of X/k is the greatest common divisor of
the elements of D.

The following proposition is only slightly more general than [12], page 599, or [10],
Lemma 12. See also [15], 1.12.

Proposition 6.8. Let X be a (non necessarily proper) regular non-empty algebraic
variety over a field k. Then δ(U/k) = δ(X/k) for any dense open subset U of X. In
particular, if X1 and X2 are two integral regular algebraic varieties over k which are
birational, then δ(X1/k) = δ(X2/k).

Proof. Clearly, δ(X/k) divides δ(U/k). Let x0 ∈ X be a closed point. Applying
Corollary 6.7, x0 has same degree as some 0-cycle with support in U . Hence δ(U/K)
divides deg(x0), so δ(U/K) divides δ(X/K). �

Remark 6.9 Let X/k be an integral normal algebraic variety. Let k′ be the algebraic
closure of k in the field of rational functions k(X). As k′/k is finite (hence integral),
we have k′ ⊆ OX(X). Therefore, X → Spec(k) factors as X → Spec(k′) → Spec(k).
We will write X/k′ when we regard X as a variety over k′ through the morphism
X → Spec(k′). We have δ(X/k) = [k′ : k]δ(X/k′). Note that as a variety over k′, X is
geometrically irreducible.

Let X be any noetherian scheme. Let U ⊆ X be an open subset. Consider the
natural map Z(U) → A(X), which sends an irreducible cycle on U to its Zariski
closure in X modulo rational equivalence. Denote by A(X,U) the cokernel of Z(U)→
A(X). Our next proposition generalizes [50], Proposition 7.1, where X is assumed to
be integral and regular, and of finite type over the spectrum of a discrete valuation
ring.
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Proposition 6.10. Let U be a dense open subset of a noetherian FA-scheme X.

(1) If X is regular, then A(X,U) = (0).
(2) A(X,U) is a torsion group. Let x0 ∈ X be a point with dimOX,x0 ≥ 1. Then the

class of [{x0}] in the cokernel A(X,U) has order dividing nX(x0), and there exists
one such open subset U where the order is exactly nX(x0).

(3) A(X,U) has finite exponent in the following situations:
(a) X is (quasi-)excellent.
(b) There exists a morphism of finite type f : X → S with S noetherian regular

and f either open or equidimensional.

Proof. (1) and (2) are immediate consequences of Theorem 6.4. Part (3) results from
the fact that the set {e(OX,x) | x ∈ X} is bounded, as discussed in Proposition 6.12
(3) and Remark 6.13 below. �

Remark 6.11 If V ⊂ U are two dense open subsets of an integral scheme X, then
there is a natural surjective group homomorphism fV,U : A(X, V ) → A(X,U). Let O
denote the set of all dense open subsets U of X, with the relation V ≤ U if V ⊇ U .
Define S(X) to be the inverse limit of the projective system {A(X,U)}U∈O. Let x0 ∈ X
be a point with dimOX,x0 ≥ 1. Then Proposition 6.10 implies that the class of [{x0}]
in S(X) has order nX(x0), and that when X is quasi-excellent, S(X) is a torsion group
of finite exponent. In particular, since nX(x0) = 1 when x0 is regular, the group S(X)

is generated by the classes of certain irreducible cycles [{x}] with x singular on X.

Proposition 6.12. Let f : X → S be a morphism of finite type over a noetherian
scheme S. Then

(1) X is the union of finitely many open subsets Xi, each endowed with a quasi-finite
S-morphism fi : Xi → Wi := Adi

S , such that every x ∈ X belongs to some Xi with
dimxXf(x) = di.

(2) Assume that S is irreducible. Suppose in addition that either f is locally4 equidi-
mensional and S is universally catenary, or that f is open. Then, with x ∈ Xi as
in (1), dimOX,x = dimOWi,fi(x).

(3) Suppose that S is regular and that f is either open or locally equidimensional. Then
the set of multiplicities {e(OX,x) | x ∈ X} is bounded.

Proof. (1) By [23], IV.13.3.1.1, for each x ∈ X, there exists an open neighborhood Ux
of x and a quasi-finite S-morphism Ux → Ad

S, where d = dimxXf(x). For any integer
n ≥ 0, let Fn := {x ∈ X | dimxXf(x) ≥ n} and Gn = Fn \ Fn+1. By a theorem
of Chevalley, Fn is closed ([23], IV.13.1.3), and Fn = ∅ if n ≥ n0 for some n0 ([23],
IV.13.1.7). For all n ≤ n0, Gn is quasi-compact and, hence, can be covered by finitely
many open subsets {Un,j}j belonging to the covering {Ux, x ∈ X}. Since x ∈ X belongs
to x ∈ Gd for d = dimxXf(x), x belongs to some Ud,j.

(2) Suppose that x ∈ Xi, with fi : Xi → Wi := Adi
S such that dimxXf(x) = di.

Clearly, dimOWi,fi(x) = dimOXf(x),x + dimOS,f(x). We thus need to show that

dimOX,x = dimOXf(x),x + dimOS,f(x).

That this equality holds when f is flat is remarked in [23], IV.13.2.12 (i), and proved
for f open in [23], IV.14.2.1. The other case follows from [23], IV.13.3.6.

4See [23] IV.13.2.2, with a correction in [23] (ErrIV, 34) on pp. 356-357 of no. 32.
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(3) Since S is regular, it is the disjoint union of finitely many integral regular schemes,
and we are reduced to consider the case where S is integral. Let fi be as in (1). For every
i, there exists an open immersion of u : Xi → Zi and a finite morphism gi : Zi → Wi

with gi ◦ u = fi (Zariski’s Main Theorem [23] IV.8.12.6). Our hypotheses allow us to
apply (1) and (2), and every x ∈ X belongs to some Xi with dimOX,x = dimOWi,fi(x).
For such an x, we find that there exists an affine open neighborhood of fi(x) such that
OWi

(U) injects into OZi(f−1
i (U)), since both of these rings have the same dimensions.

Since gi is finite, there exists a surjective homomorphism OmiWi
→ gi∗(OZi). Then, for

all x ∈ Xi such that dimOX,x = dimOWi,fi(x), we have e(OX,x) ≤ mie(OWi,fi(x)), and
since Wi is regular by hypothesis, e(OWi,fi(x)) = 1 (use [56], VIII, §10, Corollary 1 to
Theorem 24, along with the discussion (3) following Corollary 1). Therefore, the set of
the multiplicities e(OX,x) is bounded by maxi{mi}. �

Remark 6.13 Let X be a noetherian excellent scheme of finite dimension. Then only
a finite number of polynomials appear as Hilbert-Samuel polynomials of OX,x when x
varies in X. In particular, the set of the multiplicities {e(OX,x) | x ∈ X} is bounded.
This statement is found in [2], Remark III.1.3, page 83. Let us explain now how the
latter conclusion still holds if one only assumes that X is a noetherian quasi-excellent
scheme.

Recall that an excellent scheme is a quasi-excellent and universally catenary scheme.
This latter hypothesis is not needed in [2], Remark III.1.3: One finds in the discussion
following [2], II (2.2.1), page 34, that in the use of normal flatness, the needed hypoth-
esis is that the regular locus of a closed subset Y of X is open in Y . This hypothesis
is satisfied when X is quasi-excellent.

Let X be a noetherian quasi-excellent scheme. The results of [2] show that the set of
the multiplicities {e(OX,x) | x ∈ X} is bounded, even when X is not assumed to have
finite dimension. Indeed, first note that there is a finite decreasing sequence of closed
subsets X = F0 ⊃ F1 ⊃ . . . ⊃ Fn = ∅ such that Fi \ Fi+1 with the reduced structure
is regular and X is normally flat along Fi \ Fi+1. This uses “noetherian induction”
and one does not need to argue using the finite dimensionality of X as in [2], Remark
III.1.3. The relevant statement occurs in [2], page 28, just before Theorem (2): For a

local noetherian ring O with Hilbert-Samuel function H
(1)
O (see page 26) and with P a

prime ideal of coheight c and O/P regular, H
(1)
O = H

(1+c)
OP if and only if SpecO normally

flat along SpecO/P at the closed point. The direction that we need is stated in [2],
(2.1.2) Chapter 0, page 33. This implies that if a noetherian scheme X is normally
flat along a connected locally closed regular scheme Y , then the multiplicity of OX,y
(y ∈ Y ) is constant on Y .

Example 6.14 A noetherian domain A of dimension 1 with the following properties is
exhibited in [26], 3.2: SpecA has infinitely many singular maximal ideal mi, i ∈ I, and
such a domain can be found even when, for each i, the efg-numbers at mi are specified

in advance (where miB =
∏g(i)

j=1 n
e(nij/mi)
ij in the integral closure B of A, and f(nij/mi) :=

[B/nij : A/mi]). Moreover, for each i, Bmi is a finitely generated Ami-module ([26], 3.3).
Choosing such an example with g(i) = 1 for all i and limi f(ni1/mi) =∞ produces an
example of a noetherian scheme X of dimension 1 such that the set {e(OX,x) | x ∈ X}
is not bounded. Indeed, since A is a domain of dimension 1, there exist non-zero
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elements ai, bi ∈ A such that e(mi, A) = e((ai), A)− e((bi), A) (4.5). It follows from 1.1
(3) that both e((ai), A) and e((bi), A) are divisible by f(ni1/mi).

7. A different perspective on the index

Let X be a noetherian scheme. Let x0 ∈ X be a point with dimOX,x0 ≥ 1. We study
in this section the invariant nX(x0) introduced in 6.1. In particular, let f : Y → X
be a morphism of finite type, and set E := Y ×X Spec k(x0). We relate in 7.1 the
invariant nX(x0) with the index of the scheme E/k(x0). This leads us in Corollary 7.4
to provide a new way of computing the index of a regular closed subvariety X of a
projective space using data pertaining only to the singular vertex of a cone over X.

Theorem 7.1. Let X be a noetherian scheme. Let f : Y → X be a morphism of finite
type such that the generic point of every irreducible component of Y maps to the generic
point of an irreducible component of X. Let x0 ∈ X be a point with dimOX,x0 ≥ 1,
and set E := Y ×X Spec k(x0). Assume that E 6= ∅.
(a) Assume that f is birational and proper. Then δ(E/k(x0)) divides nX(x0).
(b) Assume that f is birational and finite. Then

gcd{nY (y)[k(y) : k(x0)] | y ∈ f−1(x0), y closed} divides nX(x0).

(c) Assume that OX,x0 is universally catenary. Then

nX(x0) divides gcd{nY (y)[k(y) : k(x0)] | y ∈ f−1(x0), y closed}.

Proof. After the base change SpecOX,x0 → X, we can suppose that X is local with
closed point x0.

(a) Let us show that δ(E/k(x0)) divides nX(x0). Let U be any dense open subset
of X such that f−1(U) → U is an isomorphism. Since U is dense, there exists, by
definition of n(OX,x0), a one-dimensional reduced closed subscheme C of X such that
max(C) ⊆ U and a rational function g ∈ K∗C(C) such that nX(x0)[x0] = [div(g)].

Let C̃ be the strict transform of C in Y . Then we have a finite birational morphism
π : C̃ → C, and

nX(x0)[x0] =
∑

y∈π−1(x0)

ordy(g)[k(y) : k(x0)][x0]

(use 1.1 (3)). As π−1(x0) ⊆ E, we conclude that δ(E/k(x0)) | nX(x0).
(b) We will proceed as in the proof of (a), after carefully choosing the initial dense

open subset U of X. First, we may assume that X and Y are affine. Let y1, . . . , yn
denote the preimages of x0. For each i = 1, . . . , n, choose a dense open subset Vi of
Y such that n(Vi ∩ SpecOY,yi ,OY,yi) = nY (yi) (see 5.5). Since f is birational, let V ⊆
SpecB be a dense open subset such that f|V is an isomorphism. ThenW := (∩iVi)∩V is
a dense open subset of Y , contained in each Vi, and such that n(W∩SpecOY,yi ,OY,yi) =
nY (yi). We let U := f(W ), a dense open subset inX with f−1(U) = W by construction.
As in the proof of (a), we find that

nX(x0)[x0] =
∑

y∈π−1(x0)

ordy(g)[k(y) : k(x0)][x0].

By our choice of W , we find that for each y ∈ π−1(x0), nY (y) divides ordy(g), and the
result follows.
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(c) Recall that we assume X = SpecOX,x0 . Let y0 be a closed point in E. We claim
that nX(x0) divides nY (y0)[k(y0) : k(x0)]. Let W be an open affine neighborhood of
y0 in Y . Since W is of finite type over the affine scheme X, we can find a projective
scheme g : Z → X and an open embedding i : W → Z such that g ◦ i = f|W .
Since nY (y0) = nW (y0) = nZ(y0), it suffices to prove our claim in the case where f is
projective.

Using 5.5, we may find a dense open subset U of X which does not contain x0,
and such that nX(x0) = n(U,OX,x0). Let V := f−1(U). Then V is dense in Y . Let
s : SpecOY,y0 → Y denote the natural morphism, and let V ′ := s−1(V ). Since V ′

is dense in SpecOY,y0 , we can find finitely many integral subschemes Ci of SpecOY,y0

with generic points in V ′, and an invertible rational function g on ∪iCi such that
ordy0(g) = nY (y0). Since Y is noetherian and FA, we can apply Proposition 6.3 and find
that nY (y0)[y0] is rationally equivalent to a cycle Z on Y such that max(SuppZ) ⊆ V .
More precisely, there exist finitely many closed integral subschemes Ci in Y such that y0

has codimension 1 in Ci, such that the generic point of Ci is in V for all i, and such that
nY (y0)[y0] is rationally equivalent on S := ∪iCi to a cycle Z with max(SuppZ) ⊆ V ,
and such that each irreducible cycle occurring in Z is of codimension 1 in some Ci.

Let Di denote the schematic image of Ci in X. Then Di is universally catenary. We
can thus use the dimension formula (see [23], IV.5.6.5.1) for the morphism Ci → Di,

dimOCi,z0 + trdeg(k(z0)/k(x0)) = dimODi,x0
+ trdeg(k(ηi)/k(ξi)),

where z0 is any closed point of Ci, and ηi and ξi denote respectively the generic point
of Ci and Di. Since dimOCi,y0

= 1 by construction, and trdeg(k(y0)/k(x0)) = 0 by
hypothesis, we find that dimODi,x0

= 1 and trdeg(k(ηi)/k(ξi)) = 0. It follows that

dimOCi,z0 = 1 for all z0 closed in Ci, so that dim(Ci) = 1. Since x0 is the only closed

point of Di, we find that dim(Di) = 1. Since dim(Ci) = 1, we find that max(SuppZ)
consists in a set of closed points of Y . Since V does not contain any closed point of Y
by construction, we find that nY (y0)[y0] is rationally trivial on Y .

The morphism f|S : S → f(S) is proper, with f(S) universally catenary. Hence,
the cycle f∗(nY (y0)[y0]) is rationally trivial on f(S) and, thus, on X (use [54], 6.5
and 6.7). Since the irreducible components of S have dimension 1, since the generic
points of f(S) belong to U by construction, and since f∗(nY (y0)[y0]) = nY (y0)[k(y0) :
k(x0)][x0] is rationally trivial on f(S), we find that by definition, n(U,OX,x0) divides
nY (y0)[k(y0) : k(x0)], and the statement of (c) follows. �

Remark 7.2 The hypothesis that X is universally catenary is needed in 7.1 (c). In-
deed, consider the finite birational morphism π : Y → X described in Example 1.3.
The scheme Y is regular, and X is catenary but not universally catenary. The preim-
age of the point x0 ∈ X consists in the two regular points y0 and y1 in Y , with
[k(y0) : k(x0)] = d, and [k(y1) : k(x0)] = 1. It follows from the discussion in 1.3 that
nX(x0) is divisible by d. Thus, when d > 1, the morphism π provides an example
where

gcd{nY (y)[k(y) : k(x0)] | y ∈ f−1(x0), y closed} = δ(E/k(x0)) < nX(x0).

Corollary 7.3. Let X be a universally catenary noetherian scheme. Let x0 ∈ X be
a point with dimOX,x0 ≥ 1. Let f : Y → X be a proper birational morphism such



THE INDEX OF AN ALGEBRAIC VARIETY 31

that f−1(x0) is contained in the regular locus of Y . Let E := Y ×X Spec k(x0). Then
nX(x0) = δ(E/k(x0)).

In particular, if X is an integral excellent scheme of dimension 1, and if f : Y → X
is the normalization morphism, then nX(x0) = gcd{[k(y) : k(x0)] | y ∈ f−1(x0)}.
Proof. The statement follows immediately from the previous theorem, since nY (y) = 1
for any y ∈ f−1(x0) because y is regular on Y by hypothesis. �

Corollary 7.4. Let K be any field. Let V/K be a regular closed integral subscheme of
Pn/K, and denote by W/K a cone over V/K in Pn+1/K. Let w0 denote the vertex of
W . Then δ(V/K) = n(OW,w0) = γ(OW,w0).

Proof. Let Z → W denote the blow-up of the vertex w0 of the cone W . It is well-
known that the exceptional divisor E of Z → W is isomorphic to V/K. When V/K
is regular, the points of E are regular on Z. Theorem 5.6, along with 7.3, shows that
δ(V/K) = n(OW,w0) = γ(OW,w0). �

Keep the notation of Corollary 7.4. Consider the sets

D(V/K) := {degK(P ), P closed point of V }
and

E(OW,w0) := {e(Q,OW,w0), Q is primary}.
Corollary 7.4 shows that gcd(d, d ∈ D) = gcd(e, e ∈ E). Let us note here that the
sets D and E can be very different. For instance, it is known that e(mW,w0) = deg(V ),
and this integer is the minimal element in E . At the same time, it may happen that
V (K) 6= ∅, so that 1 ∈ D(V ).

If Q is a primary ideal of OW,w0 generated by a system of parameters, then any
positive multiple of e(Q,OW,w0) belongs to E ([53], 11.2.9). When K is infinite, this
statement remains true for all mw0-primary ideals of OW,w0 (use [56], Thm. 22). In view
of the property of the set D in Proposition 7.5, one may wonder whether an analogous
property holds for the set E .

In the next proposition, we call a field K Hilbertian if every separable Hilbert set of
K is non-empty. This is the definition adopted in [17], 12.1, but not the one used in
[35], page 225, for instance. Both definitions agree when char(K) = 0, such as in the
case of number fields, and the reader will see that the proof of 7.5 is simpler in this
case5. A scheme V/K of finite type is called generically smooth if it contains a dense
open subset U/K which is smooth over K.

Proposition 7.5. Let K be a Hilbertian field. Let V/K be an irreducible regular
generically smooth algebraic variety of positive dimension. Then there exists n0 > 0
such that

{nδ(V/K), n ≥ n0} ⊆ D(V/K).

Proof. Let K ′ denote the subfield of elements of K(V ) algebraic over K. Then V/K ′ is
geometrically irreducible and δ(V/K) = [K ′ : K]δ(V/K ′) (see 6.9). It is thus sufficient
to prove the proposition when V/K is geometrically irreducible. Choose an affine
open subset U of V . Then δ(U/K) = δ(V/K) (6.8). We can thus find finitely many

5The case of inseparable extensions requires careful consideration (see for instance the Notes on
page 230 of [17]). We also note that Proposition 5.2 in Chapter 9 of [35], page 240, requires further
hypotheses to ensure that the element y in its proof exists.
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closed points P1, . . . , Pr in U such that gcd(degK(Pi), i = 1, . . . , r) = δ(V/K). In
case char(K) > 0, we use 9.2 to show that we can assume that each point Pi has its
residue field K(Pi) separable over K. Since U/K is quasi-projective, we can use [43],
2.3, and find a geometrically integral curve C/K in U which contains P1, . . . , Pr in its
smooth locus Csm (the proof of [43], 2.3, uses Bertini’s Theorem in [28], where the
only hypothesis on K is that it is infinite). Let C ′/K denote a regular projective curve
containing Csm as a dense open subset. Clearly, δ(C ′/K) = δ(Csm/K) and δ(Csm/K)
divides gcd(degK(Pi), i = 1, . . . , r) = δ(V/K).

Since C ′ \ Csm is a finite set, it suffices to prove the proposition in the case where
V/K is the smooth locus of a regular projective geometrically integral curve V , of
arithmetical genus g(V ) = dimH1(V ,OV ).

Let again P1, . . . , Pr in V be such that gcd(degK(Pi), i = 1, . . . , r) = δ(V/K).
Clearly, every large enough integer multiple j of δ(V/K) can be written as j =∑r

i=1 xi degK(Pi) with xi ≥ 0. Suppose that j ≥ 2g(V ) − 1 + maxi(degK(Pi)). Then

by the Riemann-Roch Theorem there exists a function f ∈ H0(V ,
∑r

i=1 xiPi) which

does not belong to H0(V ,O(D)) for any effective D < (
∑r

i=1 xiPi). It follows that f

defines a morphism f : V → P1 over K of degree equal to j. If the induced extension
K(V )/K(P1) is separable, then our assumption that K is Hilbertian implies that f has
irreducible fibers, and so, that points of degree j on V exist.

If char(K) > 0, we can modify the argument as follows. Consider a closed point
P0 of V with residue field K(P0) separable over K, and such that P0 is distinct from
P1, . . . , Pr. Then every large enough integer multiple j of δ(V/K) can be written as
j = degK(P0) +

∑r
i=1 xi degK(Pi) with xi ≥ 0. As before, when j ≥ 2g(V ) − 1 +

max(degK(Pi), i = 0, . . . , r), we use the Riemann-Roch theorem to define a morphism
f : V → P1 over K of degree equal to j. This morphism now has the property that the
induced extension K(V )/K(P1) is separable, and we can conclude using the fact that
K is Hilbertian, as above. �

Remark 7.6 The statement 7.5 does not hold if V/K is not assumed to be regular.
Indeed, consider the curve X/Q defined by x2 + y2 = 0. Then δ(X/Q) = 1, and (0, 0)
is the only point of odd degree.

Remark 7.7 When X/F is a smooth proper geometrically connected curve of genus
g > 1 over any field F , slightly more can be said about the set D(X/F ). Since the
canonical class can be represented by an effective divisor, the curve X/F has at least
one point of degree at most 2g − 2. Let Q be a point of minimal degree on X.

We claim that there exists a divisor
∑s

i=1 aiPi of degree δ(X/F ) such that for all
i = 1, . . . , s,

deg(Pi) < g + deg(Q) ≤ 3g − 2.

Indeed, let D :=
∑s

i=1 aiPi be a divisor of degree δ(X/F ) such that maxi(deg(Pi)) is
minimum among all such divisors. We may clearly choose such a divisor D such that the
degrees of the closed points in the support of D are pairwise distinct. After reordering
if necessary, we may assume that deg(P1) < . . . < deg(Ps). If deg(Ps) ≥ deg(Q) + g,
then by the Riemann-Roch theorem, the divisor Ps − Q is equivalent to an effective
divisor

∑k
j=1 bjQj, with bj > 0 and deg(Qj) < deg(Ps). Replacing Ps by Q+

∑k
j=1 bjQj

in D contradicts the minimality of maxi(deg(Pi)).
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Suppose now that there exists an algorithm which determines, given an irreducible
variety V/F , whether V/F has an F -rational point. Then there exists an algorithm
which determines the index δ(X/F ) of a smooth proper geometrically irreducible curve
X/F of genus g. Indeed, for a given d ≥ 1, consider the quotient X(d)/F of the d-fold
product Xd/F by the action of the symmetric group Sd acting by permutation on Xd.
Then a F -rational point on X(d) corresponds to a point of X defined over an extension
L/F of degree [L : F ] dividing d. To compute δ(X/F ), it suffices to determine whether
X(d)/F has a F -rational point for d = 1, . . . , 3g − 3.

Example 7.8 It goes without saying that most often, the explicit determination of
the set D(X/F ) is a very difficult problem. Consider for instance the Fermat curve
Xp/Q given by the equation xp + yp = zp, with p > 3 prime. This curve has obvious
points of degrees 1, p− 1, and p. Points of degree 2 on the line x + y = z were noted
already by Cauchy and Liouville ([55], Introduction). Indeed, a point (x : y : 1) on the
intersection of Xp with the line x+ y = z satisfies:

xp + (1− x)p − 1 = x(x− 1)(x2 − x+ 1)bEp(x),

with Ep(x) ∈ Z[x], and b = 1 if p ≡ 2 (mod 3) and b = 2 if p ≡ 1 (mod 3). Mirimanoff
conjectured in 1903 that Ep(x) is irreducible over Q for all primes p ≥ 11. Klassen and
Tzermias conjecture in [30] that any point P on Xp/Q of degree at most p− 2 lies on
the line x+ y = z. Putting these two conjectures together when p ≥ 11, we would find
that

D(Xp/Q) = {1, 2, deg(Ep(x)), p− 1, p, . . . }.

Example 7.9 Let A be any noetherian local ring of dimension d > 0. Set X = SpecA,
with closed point x0. Our next example shows that nX(x0) is not bounded when d is
fixed.

Let k be a field which has finite extensions of any given degree. Let Y = SpecB be
an affine normal integral algebraic variety of dimension d > 0 over k. Let y0 ∈ Y be
a closed point corresponding to a maximal ideal m of B. Let r ≥ 1, let A := k + mr,
and let X = Spec(A). Let π : Y → X be the induced morphism. Then π is finite
birational, x0 := π(y0) ∈ X(k), and π : Y \ {y0} → X \ {x0} is an isomorphism.
Theorem 7.1 shows that nX(x0) = nY (y0)[k(y0) : k]. A straightforward computation
shows that e(OX,x0) = e(OY,y0)[k(y0) : k]rdimB.

Remark 7.10 Let (A,m) be a noetherian local ring of positive dimension. Let s(A)
denote the smallest positive integer s such that there exist a reduced closed one-
dimensional subscheme C in SpecA, and f ∈ K∗C(C), with s = ordm(f). In other
words, s(A) is the order of the class of [m] in the Chow group A(SpecA), and in the
notation of 5.4, s(A) = n(SpecA,A). It is clear that s(A) divides n(A), and we note
in the example below that it may happen that s(A) < n(A).

Let k := R. Consider the projective plane curve C/k given by the equation y2z +
x2z + x3 = 0. Let X/k denote the affine cone over C in A3/k. Let c0 ∈ C denote the
singular point corresponding to (0 : 0 : 1). The preimage of c0 in the normalization
of C consists of a single point with residue field C. Hence, it follows from 7.3 that
nC(c0) = 2. Let now x0 := (0, 0, 1) ∈ X(k). Using a desingularization of x0 and 7.3,
we find that nX(x0) = 2. We claim that s(OX,x0) = 1. Indeed, the ring OX,x0 is the
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localization at (x, y, z−1) of the ring k[x, y, z]/(y2z+x2z+x3). The ideal (x, y) defines
a closed subscheme of SpecOX,x0 on which ordx0(z − 1) = 1.

We conclude this section with a further study of the integer nX(x0) which will not
be used in the remainder of this article.

Proposition 7.11. Let X be a noetherian scheme and let x0 ∈ X be a point with
dimOX,x0 ≥ 1. Let Γ1, . . . ,Γr be the irreducible components of X passing through x0,
each endowed with the structure of integral subscheme. Then

nX(x0) = gcd{nΓi(x0) | 1 ≤ i ≤ r}.

Proof. We can suppose that X is local with closed point x0. Let U be a dense open
subset of X and let i ≤ r. Then U ∩ Γi is dense in Γi. So nΓi(x0) = ord(f) for some
f ∈ K∗C(C) where C is a reduced curve in Γi, with max(C) ⊆ U ∩ Γi ⊆ U . Hence.
nX(x0) divides nΓi(x0) for all i ≤ r.

For each i, fix a dense open subset Ui of Γi \ ∪j 6=iΓj such that nΓi(x0) = n(Ui,Γi)
(see 5.5). Let U be a dense open subset of X such that nX(x0) = n(U,X). Replacing
each Ui by Ui ∩ U and U by ∪i(Ui ∩ U) if necessary, we can suppose that U := ∪iUi
satisfies nX(x0) = n(U,X). Let C be a reduced curve in X such that max(C) ⊆ U and
nX(x0) = ord(f) for some f ∈ K∗C(C). Let Ci = Γi ∩ C. Then nX(x0) =

∑
i ord(fi)

where fi is the image of f in K∗Ci(Ci). As max(Ci) ⊆ Ui, we have nΓi(x0) = n(Ui,Γi) |
ord(fi). Therefore nX(x0) is divisible by the gcd of the nΓi(x0)’s. �

Remark 7.12 Let (A,m) be a noetherian local ring of dimension d ≥ 1. Let p1, . . . , pr
be the minimal prime ideals of A, and assume that dimA/pi = d if and only if i ≤ s.
Proposition 5.2 implies that

γ(A) = gcd{`(Api)γ(A/pi) | 1 ≤ i ≤ s}.

Proposition 7.11 implies that

n(A) = gcd{n(A/pi) | 1 ≤ i ≤ r}.

We produced in 5.6 a class of rings where n(A) = γ(A). The above formulas indicate
that the hypotheses in 5.6 that A be equidimensional (s = r) and that pi ∈ Reg(A) for
all i = 1, . . . , r, are optimal.

Our next proposition strengthens Corollary 6.7 when nX(x0) < γ(OX,x0).

Proposition 7.13. Let X/k be a reduced scheme of finite type over a field k and let
x0 ∈ X be a closed point with dimOX,x0 ≥ 1. Then δ(Xreg/k) divides nX(x0) degk(x0).

Proof. Let Γ1, . . . ,Γr be the irreducible components of X passing through x0, each
endowed with the structure of integral subscheme. Since δ(Xreg/k) divides δ(Γreg

i /k)
for all i = 1, . . . , r, we find from 7.11 that it suffices to prove the statement when X
is irreducible. When X is irreducible, nX(x0) = γ(OX,x0) (5.6), and the results follows
immediately from Corollary 6.7. �

Proposition 7.14. Let A be noetherian excellent local ring (e.g., the local ring at some
point of a scheme of finite type over a field) with dim(A) ≥ 1. If the residue field k of
A is algebraically closed, then n(A) = 1.
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Proof. Let X := SpecA, with closed point x0. Proposition 7.11 shows that it suffices
to prove the statement when X is integral. Let U be a dense open subset of SpecOX,x0 .
There exists an integral curve C in X that contains x0 and some point of U (Theorem
4.5). Consider the normalization map C̃ → C. Applying 7.3 to this map and using
the fact that k is algebraically closed, we find that nC(x0) = 1. By definition, given
the dense open subset U ∩ C of C, there exists f ∈ KC(C)∗ such that ord(f) = 1. It
follows from the definitions that nX(x0) = 1. �

Proposition 7.15. Let X/k be a scheme of finite type over a field k. Let x0 ∈ X be
a k-rational closed point with dim(OX,x0) ≥ 1. For any extension F/k, denote by x0,F

the unique preimage of x0 under the natural base change map XF → X. Then there
exists a finite extension F/k such that nXF (x0,F ) = 1. Moreover, any such extension
F/k has degree divisible by nX(x0).

Proof. Assume first that X/k is geometrically integral. We find then that for any
extension F/k, nXF (x0,F ) = γ(OXF ,x0,F

) (5.6). Let k/k denote an algebraic closure of
k. Since 7.14 shows that nXk(x0,k) = 1, we can find ideals of definition Q1, . . . , Qr ⊂
OXk,x0,k

such that gcdi(e(Qi,OXk,x0,k
)) = 1. For each i = 1, . . . , r, choose a system of

generators for Qi, and denote by F/k the extension of k generated by the coefficients
of the rational functions needed to define all these generators. Thus, the generators
of Qi are elements of OXF ,x0,F

, and generate in this ring an ideal of definition that we
shall denote by Pi. To conclude the proof, it suffices to note that e(Qi,OXk,x0,k

) =

e(Pi,OXF ,x0,F
).

Assume now that X/k is not geometrically integral. First make a finite extension
k′/k such that each irreducible component of Xk′/k

′ is geometrically integral. Let x′0
be the preimage of x0 under Xk′ → X. For each irreducible component Γ/k′ of Xk′/k

′

passing through x′0, we can find using our earlier argument an extension FΓ/k
′ such

that the moving multiplicity of the unique preimage of x′0 under ΓFΓ
→ Γ is equal to

1. Let F/k be one of the extensions FΓ. It follows then from Proposition 7.11 that the
moving multiplicity of the preimage of x′0 under XF → Xk′ is equal to 1.

Let now F/k such that nXF (x0,F ) = 1. Consider the finite flat base change f :
XF → X, with f(x0,F ) = x0 and k(x0) = k. Theorem 7.1 (c) shows that nX(x0)
divides [F : k]nXF (x0,F ). It follows that the degree of the extension F/k is divisible by
nX(x0). �

As the last paragraph of the above proof indicates, when nX(x0) > 1 and F/k is
separable and non-trivial, the étale morphism f : XF → X, with f(x0,F ) = x0, is such
that nXF (x0,F ) < nX(x0). This example shows that the hypothesis on the residue fields
of the points x0 and y0 is necessary in (b) of our next proposition.

Proposition 7.16. Let X be a noetherian scheme, and let f : Y → X be a smooth
morphism. Let x0 ∈ X with dimOX,x0 ≥ 1 and let y0 be any point in the fiber f−1(x0).
Then

(a) nY (y0) divides nX(x0).
(b) Assume that X is universally catenary. If k(x0)→ k(y0) is an isomorphism, then

nY (y0) = nX(x0).
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(c) Assume that X is universally catenary. Let g : Z → X be any smooth morphism
with z0 ∈ g−1(x0) such that k(z0) is isomorphic over k(x0) to k(y0). Then nZ(z0) =
nY (y0).

Proof. (a) Since by definition nX(x0) = n(OX,x0), we can assume that X is local with
closed point x0 by replacing f , if necessary, by Y ×X SpecOX,x0 → SpecOX,x0 . We
can also assume that Y → X is of finite type.

Since f is smooth at y0, replacing Y by an open neighborhood of y0 in Y if necessary,
we can suppose that f factors as the composition of an étale map Y → Ad

X followed by
the canonical projection Ad

X → X. Thus it is enough to prove (a) separately for étale
morphisms and for the projections Ad

X → X for all d ≥ 1.
We now make one further reduction, to the case whereX is local integral of dimension

1. This paragraph and the next only assume that f is flat. Consider the natural
morphism i : SpecOY,y0 → Y . Using Lemma 5.5, we can find a dense open set U ′ of Y
such that n(OY,y0) = n(i−1(U ′),OY,y0). Note as in 5.5 that for any dense open subset
U1 ⊂ U ′, we have n(OY,y0) = n(i−1(U1),OY,y0). We now choose a dense open subset
U ⊆ U ′ such that U is fiberwise empty or dense in Y over X, that is, such that for
all x ∈ X, Ux is either empty or dense in Yx. Indeed, first use [23], IV, 9.7.8 (applied
to each irreducible component of X), to find a dense open subset X1 of X such that

for each x ∈ X1, say belonging to an irreducible component {η} of X, the number of
geometric irreducible components of Yx is equal to the number of geometric irreducible
components of Yη. Note now that f is flat, so the image f(U ′) of U ′ in X is open. Apply
then again [23], IV, 9.7.8, to the morphism f|U ′ : U ′ → f(U ′) and find an appropriate
dense open subset V1 of f(U ′) with similar conditions on the fibers. It follows that
W := V1 ∩X1 is a dense open subset of X, and we take U := f−1

|U ′ (V1 ∩X1) ⊂ U ′. Note

that f(U) = W .
Recall that n(U,OY,y0) = nY (y0), and that n(W,OX,x0) divides nX(x0). To prove

that nY (y0) divides nX(x0), it suffices to prove that n(U,OY,y0) divides n(W,OX,x0).
Thus, it is enough, given any integral curve C in X containing x0 and whose generic
point η belongs to W , and given any non-zero regular function g ∈ O(C), to find a
one dimensional closed subscheme D of SpecOY,y0 , contained in Y ×X C with maximal
points in U , and an element g1 ∈ K∗D(D) such that ordy0(g1) divides ordx0(g). As
U ×X C is fiberwise empty or dense in Y ×X C and dominant as C-scheme, we find
that U×X C is a dense open subset of Y ×X C. Therefore, to prove that nY (y0) divides
nX(x0), it is enough to prove that nY×XC(y0) divides nC(x0); indeed, then there exists
such a D and g1 with ordy0(g1) = nY×XC(y0), and this latter integer divides nC(x0),
which by definition itself divides ordx0(g).

Returning to the case where f is smooth as in the proposition, we find that it
suffices to prove (a) when X is local integral of dimension 1 with generic point η. Now
suppose that f is étale. We keep the notation U and W of the previous paragraphs.
Suppose given a nonzero regular function g on X (X can now play the role of C). Let
D := SpecOY,y0 . As Uη is dense in the discrete set Yη, it is equal to Yη. Hence, the
maximal points of D belong to U . Let g1 := f ∗(g). Then ordy0(g1) = ordx0(g) because
f is étale, and (a) is proved in this case.

Suppose now that f is a projection morphism Ad
X → X. An easy induction in d

reduces the problem to the case d = 1. Consider now f : Y := A1
X → X. Assume first

that y0 is a closed point of Y . Write X = SpecR, with R a local domain with maximal
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ideal m. Fix g ∈ R\{0}. Let F (T ) ∈ R[T ] be a monic polynomial which lifts a generator
of the maximal ideal of k(x0)[T ] corresponding to y0 ∈ Yx0 . Let S := R[T ]/(F (T )),
and D := SpecS. Then S is finite and flat over R, with S/mS = k(y0) a field, so that
S is local. Let g1 = g ∈ S. The element g1 is regular by flatness and we have

ordy0(g1) = `S(S/(g1)) = `S(S ⊗R R/gR) = `R(R/gR) = ordx0(g),

where the third equality holds by flatness and because S/mS = k(y0) is a field (see [20],
A.4.1, or [39], Exercise 7.1.8(b)). To conclude the proof, we need to further specify
the element F (T ), so that D is such that Dη ⊂ U . For this we modify a given F (T )
by an element λ ∈ m as follows. Write Yη \ Uη as V (φ(T )) for some non-zero φ(T ) ∈
Frac(R)[T ]. Since m is infinite, we can find λ ∈ m such that gcd(F (T ) + λ, φ(T )) = 1
in Frac(R)[T ]. Then we take the curve D defined by F (T ) + λ.

Let us consider now the case where y0 is the generic point of the fiber of A1
X → X

above x0. As before, let R := OX,x0 , with maximal ideal m. Then OY,y0 = R[T ]mR[T ] =:
R(T ). Let I be an ideal in R. Then I is m-primary if and only if IR(T ) is mR(T )-
primary, and when I is m-primary, then e(I, R) = e(IR(T ),mR(T )) (as stated for
instance in [53], 8.4.2). It follows that γ(R(T )) divides γ(R). Since n(R(T )) divides
γ(R(T )), we find that n(R(T )) divides n(R) when n(R) = γ(R). When R is a local
domain of dimension 1, the hypotheses of 5.6 are satisfied and n(R) = γ(R).

(b) When X is universally catenary, we can apply Theorem 7.1 (c) (since f is
open, the hypothesis on generic points is satisfied) and obtain that nX(x0) divides
nY (y0)[k(y0) : k(x0)]. This gives the divisibility relation nX(x0) | nY (y0) when [k(y0) :
k(x0)] = 1.

(c) Consider the cartesian diagram

W
β //

α
��

Y

��
Z // X.

Let w denote a point of W := Z×X Y above z0 and y0 inducing isomorphisms k(z0)→
k(w) and k(y0)→ k(w). The morphisms α and β are smooth, and it follows from (b)
applied to α and β that nZ(z0) = nW (w) = nY (y0). �

Example 7.17 We show in this example that there exist a local ring O and an ind-
etale local extension Oh such that SpecOh → SpecO induces an isomorphism on closed
points, and such that n(Oh) < n(O). In our example, the local ring O is not universally
catenary, while the ring Oh is the henselization of O, and is universally catenary.

Consider again the finite birational morphism π : Y → X described in Example
1.3. The scheme Y is regular, and X is catenary but not universally catenary. The
preimage of the point x0 ∈ X consists in the two regular points y0 and y1 in Y , with
[k(y0) : k(x0)] = d, and [k(y1) : k(x0)] = 1. It follows from the discussion in 1.3 that
nX(x0) is divisible by d. Let O := OX,x0 , and consider the henselization Oh of OX,x0 . It
is known that a noetherian local Henselian ring of dimension 2 is universally catenary
(see, e.g, [47], 2.23 (i), with for instance, [53], B.5.1). We let x′0 denote the closed point
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of SpecOh. We have the following diagram with cartesian squares:

YOh

π′

��

// YO

��

// Y

π

��
SpecOh // SpecO // X.

We use 7.1, (b) and (c), on π′ to conclude that

gcd{nYOh (y)[k(y) : k(x′0)] | y ∈ π′−1(x′0), y closed} = n(Oh) = 1.

Thus, when d > 1, we find that 1 = n(Oh) < n(O).

Remark 7.18 It is easy to construct examples of flat morphisms f : Y → X with
y0 ∈ Y such that nY (y0) > nX(f(y0)). Indeed, start with an integral scheme Y of
finite type over a field k with a closed point y0 ∈ Y such that nY (y0) > 1. Choose any
non-constant function f : Y → P1

k. This morphism is then flat, and since P1
k is regular,

nP1
k
(f(y0)) = 1.

8. Index of varieties over a discrete valuation field

8.1 Let K be the field of fractions of a discrete valuation ring OK , with maximal ideal
(π) and residue field k. Let S := Spec(OK). Let X be an integral scheme, and let
f : X → S be a flat, separated, surjective morphism of finite type.

Since f is flat, div(π) is a Cartier divisor on X , and we denote its associated cycle
by [div(π)] =

∑n
i=1 riΓi. Each Γi is an integral variety over k, of multiplicity ri in Xk.

The generic fiber of X/S is denoted by X/K.
For any irreducible 1-cycle C (endowed with the reduced induced structure) on X

and for any Cartier divisor D on X whose support does not contain C, the restriction
D|C is again a Cartier divisor on C. The associated cycle [D|C ] is supported on the
special fiber of X → S. Writing [D|C ] =

∑
x closed(D.C)x[x], then its degree over k is

degk[D|C ] =
∑

x(D.C)x degk(x). Note that if D is effective, then for any closed point
x ∈ C ∩ SuppD, (D.C)x = `(OC,x/OC(−D)x) ≥ 1.

Assume that C → S is finite. Then C is the closure in X of a closed point P ∈ X,
and we have

degK(P ) = degk(div(π)|C).

Assume now that X is locally factorial (e.g., regular). Then the Weil divisors Γi are
Cartier divisors (again denoted by Γi) and we can write that div(π) =

∑n
i=1 riΓi as

Cartier divisors. It follows that

(1) degK(P ) =
∑

x∈Xk∩C

(∑
Γi3x

ri(Γi.C)x degk(x)

)
.

In particular,
gcd
i
{riδ(Γi/k)} divides δ(X/K),

where δ(X/K) denotes the greatest common divisor of the integers degK(P ), with
P ∈ X closed, and whose closure in X is finite over S. This statement is sharpened in
our next theorem.

When f : X → S is proper, the closure of any closed point P ∈ X is finite and flat
over S and, thus, in this case, gcdi{riδ(Γi/k)} divides δ(X/K) = δ(X/K).
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Theorem 8.2. Let f : X → S be as above, with X regular. Let X/K denote the
generic fiber of X/S.

(a) Then gcdi{riδ(Γ
reg
i /k)} divides δ(X/K).

(b) When OK is Henselian, then δ(X/K) = gcdi{riδ(Γ
reg
i /k)}.

Proof. For ease of notation, we will write gcd(Xk) := gcdi{riδ(Γ
reg
i /k)}.

(a) Let P be a closed point of X whose closure in X is finite over S, and let us

show that gcd(Xk) divides degK(P ). If {P} ∩ Γi ⊆ Γreg
i for all i ≤ n, then Formula (1)

above shows that gcd(Xk) divides degK(P ). In general, though, {P} may intersect the
singular locus of some Γi. If that is the case, then we can end the proof in two different
ways.

The first method relies on Theorem 2.3, and assumes in addition that X is FA when
OK is not Henselian. Indeed, 2.3 shows that there exists an affine open subset V
of X which contains the 1-cycle {P} and a 1-cycle C rationally equivalent to {P}
in V , and whose support is proper over S and does not intersect the singular locus
F of (Xk)red. Then P is rationally equivalent on VK to C|VK , whose support is a
union of closed points of X. We claim that degK(P ) = degK C|X . Indeed, since V is
affine, we can consider an open embedding V → Y over S where Y/S is projective.

Theorem 2.3 shows that {P} and C are closed and rationally equivalent in Y . Then
degK(P ) = degK C|YK = degK C|VK = degK C|X . The above discussion shows that each
point in SuppC|X has degree divisible by gcd(Xk), so that gcd(Xk) divides degK(P ),
as desired.

The second method relies in the end on Theorem 6.5 and its corollary 6.7. It consists
in a succession of blowing-ups, starting with the blowing-up of specializations of P in
X as in Lemma 8.3 (3), to produce a new regular model Y , where the specializations
of P belong to the regular locus of (Yk)red. Our initial discussion above implies that
gcd(Yk) divides degK(P ). Then Lemma 8.3 (2) shows that gcd(Yk) = gcd(Xk), and
(a) is proved.

(b) Let Γ0
i := Γreg

i \ ∪j 6=iΓj. Proposition 6.8 shows that δ(Γreg
i /k) = δ(Γ0

i /k). We

use then Proposition 8.4 (3) on each closed point of Γ0
i to find that δ(X/K) divides

gcd(Xk). �

Lemma 8.3. Let f : X → S be as in 8.1, and assume X regular. Let d := dimX. Let
x0 ∈ Xk be a closed point and let Γ1, . . . ,Γs denote the irreducible components of Xk
which contain x0. Let ei denote the Hilbert-Samuel multiplicity of x0 on Γi. Consider
the blowing-up X̃ → X of X along the reduced closed subscheme {x0}.
(1) The scheme X̃ is regular, and the exceptional divisor E1 in X̃ is isomorphic to

Pdk(x0). The multiplicity r(E1) of E1 in X̃k is
∑s

i=1 riei.

(2) We have gcd(X̃k) = gcd(Xk).
(3) Let P be a closed point of X. Then there exists a finite sequence

Xm → Xm−1 → · · · → X0 = X

such that each morphism Xi → Xi−1 is the blowing-up of a closed point in the
special fiber, and such that the closure of P in Xm intersects (Xm)k only in regular
points of ((Xm)k)red.
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Proof. (1) As we blow-up a regular scheme along the regular center Spec k(x0), we
have X̃ regular and E1 ' Pdk(x0) ([39], 8.1.19). In the regular local ring OX ,x0 , factor a

uniformizing element π of OK as π = ugr11 · . . . · grss , where gi is a local equation in X of
the component Γi at x0, and u is a unit. It is not hard to see that the Hilbert-Samuel
multiplicity of x0 on Γi is the positive integer ei such that gi ∈ (mX ,x0)ei \ (mX ,x0)ei+1.

Since the associated graded ring ⊕q≥0(mq
X ,x0

/mq+1
X ,x0

) is a polynomial ring over k(x0),

we find that π ∈ (mX ,x0)
∑
i riei \ (mX ,x0)

∑
i riei+1. Let ξ denote the generic point of E1.

Since X̃ is regular, the local ring OX̃ ,ξ is a discrete valuation ring with normalized

valuation vξ, and the multiplicity of E1 in X̃k is vξ(π). We leave it to the reader to
check that if f ∈ (mX ,x0)r \ (mX ,x0)r+1, then vξ(f) = r.

(2) Let Γ̃i denote the strict transform of Γi in X̃ . The blowing-up X̃ → X restricts
to a morphism Γ̃i → Γi which is nothing but the blowing-up of Γi along x0. Hence, the
varieties Γ̃i/k and Γi/k are birational and δ(Γ̃reg

i /k) = δ(Γreg
i /k) (6.8). Recall that

gcd(X̃k) = gcd
1≤i≤n

{riδ(Γ̃reg
i /k), r(E1)δ(E1/k)}.

We thus find that gcd(X̃k) divides gcd(Xk). Clearly, δ(E1/k) = [k(x0) : k] = degk(x0).
Corollary 6.7 implies that for every Γi passing through x0, ei degk(x0) is the degree of
some 0-cycle supported in Γreg

i and, thus, ei degk(x0) is divisible by δ(Γreg
i /k). Therefore

gcd(Xk) divides gcd(X̃k).
(3) Let P be a closed point on X. We describe below how to obtain a new regular

model using a sequence of blowing-ups along closed points

Xm → Xm−1 → · · · → X1 → X
such that the specializations of P in Xm are regular points in ((Xm)k)red.

Suppose {P} meets the singular locus F of (Xk)red. Let Y → X be the blowing-

up of X along {P} ∩ F . Then Y → X is also obtained by successively blowing-up

points of {P}∩F . If P specializes only to regular points of Yk, then the process stops.
Otherwise, let y be a specialization of P in Yk belonging to the singular locus of (Yk)red.
Then y belongs to an exceptional divisor E1, of multiplicity r(E1), and to at least one
strict transform Γ̃i. Using these two facts and Formula (1), we find that

degK(P ) > r(E1).

Consider the blowing-up Z → Y of Y along {P} intersected with the singular locus
of (Yk)red. The exceptional divisor E2 above y has multiplicity r(E2) in Zk, and since
y ∈ E1 ∩ Γ̃i, Part (1) of this lemma implies that r(E2) > r(E1). Repeating the above
argument on E2 shows that degK(P ) > r(E2). Therefore, the process must stop after
at most 1 + degK(P ) steps. �

Let F be any field, and let W/F be a scheme of finite type. Recall that a closed
point P ∈ W is called separable if the residue field extension F (P )/F is a separable
extension.

Proposition 8.4. Let f : X → S be as in 8.1. Let x0 ∈ Xk be a closed point, regular
in X . Let Γ1, . . . ,Γs be the irreducible components of Xk passing through x0. Let
ei := e(OΓi,x0) denote the Hilbert-Samuel multiplicity of x0 on Γi. Then

(1) The Hilbert-Samuel multiplicity e(OXk,x0) of x0 on Xk is equal to
∑s

i=1 riei.
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(2) Any closed point P ∈ X such that x0 ∈ {P} has degK(P ) ≥ e(OXk,x0) degk(x0).
(3) Assume that OK is Henselian. If k is infinite, or if x0 is a regular point of (Xk)red,

then there exists a closed point P ∈ X such that x0 ∈ {P} and

degK(P ) = e(OXk,x0) degk(x0).

If k is finite, then there exists a 0-cycle on X of degree e(OXk,x0) degk(x0) and such
that each closed point in its support specializes to x0 in X .

If X/K is generically smooth, then the point P and the support of the 0-cycle
can be chosen to be separable over K.

Proof. (1) This is the same computation as in Lemma 8.3 (1), or use 4.6.
(2) Let X̃ → X be the blowing-up along x0 with exceptional divisor E1. We saw

in 8.3 (1) that E1 is isomorphic to Pdk(x0) and has multiplicity e(OXk,x0) in X̃k. As P

has a specialization in X̃ belonging to E1, Formula (1) before Theorem 8.2 shows that
degK(P ) ≥ e(OXk,x0) degk(x0).

(3) Let us suppose first that x0 is a regular point of (Xk)red. Since X reg is open in X
([23] IV.6.12.6 (ii)), we may without loss of generality assume that X = SpecA is affine,
irreducible, and regular, with irreducible special fiber. Since OX,x0 is factorial, we may
if necessary replace X by an open dense subset and assume that the uniformizer π ofOK
factors as π = ute in A, with t ∈ A, u ∈ A∗ and e := e(OXk,x0). By hypothesis, there
exists a system of generators {f1, . . . , fd} of the maximal ideal m of A/(t) corresponding
to x0 with d = dim(A/(t)).

For i = 1, . . . , d, let gi ∈ A be any lift of fi. Let T0 be the closed subscheme of
X defined by T0 := SpecA/(g1, . . . , gd). Consider the induced morphism ϕ : T0 → S.
Clearly, ϕ−1((π)) = {x0}. Let T1 ⊆ T0 denote the open subset (see [23], IV.13.1.4)
consisting of all the points of T0 where ϕ is quasi-finite. It is clear that x0 ∈ T1, and
x0 is in fact a regular point of T1 since A/(g1, . . . , gd, t) is a field. Using [23] IV.6.12.6
(ii) again, we find that the regular locus of T1 is open, and we can thus if necessary
replace T1 by a open subset containing x0 and assume that T1 is regular. Since OK is
Henselian, we may use [4], 2.3, Proposition 4 (e), and obtain that there exists an open
neighborhood T of x0 in T1 such that T → S is finite. Since both T and S are regular
and T → S is finite, we find that T → S is also flat. The generic point P of T = {P}
has thus degree e degk(k(x0)) over K, as desired.

Let us now assume in addition that X/K is generically smooth. We claim that we
can find a lift P ∈ X of x0 with K(P )/K separable of degree e degk(k(x0)) over K.
Keep the assumptions in the first paragraph of the proof of (3) above. If d = 0, then
the generic smoothness of X/K implies that the fraction field of A is separable over
K, and our claim is true.

Assume now that d ≥ 1, and let us show that the lifts gi can be chosen such that
the generic point of the associated T is separable over K. To start, we show that there
exists a lift g1 of f1 such that the closed irreducible subscheme V (g1) of X is flat of
finite type over S, with generic fiber generically smooth. We then conclude the proof
by induction on the dimension.

Note that there always exists h ∈ A such that the differential dh in Ω1
A⊗K/K is not

zero. Start with any lift g ∈ A of f1. If the differential dg is zero, replace g by the lift
g + πh and assume now that dg 6= 0. Let Z be the proper closed subset of X where
X → S is not smooth. Then on X \ Z, the sheaf of differentials is locally free, and we
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let Z ′ be the zero locus of dg in X \ Z. By construction, Z ′ is closed in X \ Z, and
Z ∪ Z ′ contains only finitely many irreducible closed subsets of codimension 1 in X .

The ideals (g + πs) of Am, s ∈ N, are infinitely many pairwise distinct prime ideals
(recall that by construction (g) is a prime ideal of Am; and the maximal ideal of Am is
also generated by t, g + πs, g2, . . . , gd). Therefore, we can choose g1 := g + πs for some
s such that in X , V (g1) is not contained in Z ∪ Z ′. Since V (g1) is not contained in
Z, we find that V (g1) intersects the smooth locus of X → S. The generic fiber of the
morphism V (g1)→ S is then smooth at a point outside Z ∪ Z ′ since d(g1) is not zero
at such a point. We conclude the proof of the existence of P with K(P )/K separable
when X/K is generically smooth by induction on the dimension.

In the general case where x0 need not be regular in (Xk)red, consider the blowing-up
X̃ → X of x0 as in (2). If k is infinite, then there exists a k(x0)-rational point x1 in the
interior of E1, and so regular in (X̃k)red. By the above, there exists a closed point P of
X such that degK(P ) = e(OXk,x0) degk(x0) and which specializes to x1 in X̃ . Then P
specializes to x0 in X , as desired.

If k is finite, then δ(Y/k) = 1 for any geometrically irreducible algebraic variety
Y over k ([37], Corollary 3. See also [15], 3.11). Therefore, there exists a 0-cycle
supported in the interior of E1, of degree 1 over k(x0). Then lift this 0-cycle to X as
above. �

Variations on the statement of 8.4 (3) when x0 is a regular point of (Xk)red can be
found in [13], Lemme 2.3, or [4], Corollary 9.1/9. When we relax the hypothesis that
X is regular in Theorem 8.2 (b), we obtain:

Proposition 8.5. Let OK be Henselian. Let f : X → S be as in 8.1, with X regular
in codimension one. Then δ(Xreg/K) divides gcdi{riδ(Γ

reg
i /k)}.

Proof. Indeed, X reg is open in X ([23] IV.6.12.6 (ii)). Since X is regular in codimension
one, X \ X reg is of codimension ≥ 2. Thus, Γreg

i ∩ X reg is not empty, and δ(Γreg
i ∩

X reg/k) = δ(Γreg
i /k) for all i (6.8). Then lift closed points of Γreg

i ∩ X reg to Xreg as in
8.4 (3). �

Remark 8.6 Let Γ/k be an integral normal algebraic variety. Let k′ be the algebraic
closure of k in the field of rational functions k(Γ). Let e(Γ/k′) be the geometric
multiplicity of Γ as k′-scheme ([4], 9.1/3). We claim that when Γ is regular,

e(Γ/k′) divides δ(Γ/k′).

Indeed, let L/k′ be a separable closure of k′. Then e(Γ ×k′ L/L) = e(Γ/k′), and
δ(Γ×k′ L/L) divides δ(Γ/k′). Let x0 ∈ Γ×k′ L be a Cohen-Macaulay closed point,

and let f1, . . . , fd be a maximal regular sequence in mx0OΓ×k′L,x0 of length µ :=
`(OΓ×k′L,x0/(f1, . . . , fd)). By [4], 9.1/7 (b), e(Γ/k′) divides µ degL(x0). Hence, when
Γ is regular, so is Γ ×k′ L and e(Γ/k′) divides δ(Γ/k′). Note that e(Γ/k′) = e(Γ/k) if
k′/k is separable.

Let now X → S be as in Theorem 8.2, with f proper and X regular. Let ki denote
the algebraic closure of k in the function field k(Γi) of the component Γi of Xk. As noted
in 6.9, the scheme Γreg

i is defined over ki, and we have δ(Γreg
i /k) = [ki : k]δ(Γreg

i /ki).
The geometric multiplicity e(Γi/ki) of Γi/ki is also the geometric multiplicity of Γreg

i /ki.
It follows then from above that e(Γi/ki) divides δ(Γreg

i /ki). Hence, Theorem 8.2 (a)
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implies that

gcd
i
{ri[ki : k]e(Γi/ki)} divides δ(X/K),

answering a question in [5], 1.6.

Remark 8.7 (1) In general, if OK is not Henselian, gcdi{riδ(Γ
reg
i /k)} is not equal to

δ(X/K). This can be seen easily when X/OK is of relative dimension 0. We can also
consider a smooth projective conic X over Q without rational point, and with a regular
proper model X over Z. If p is a prime of good reduction of X, then gcd(XFp) = 1
because every smooth conic over Fp has an Fp-rational point, while δ(X/Q) = 2.

(2) In general we cannot replace δ(Γreg
i /k) by δ(Γi/k) in 8.2(b). For example, let

OK = R[[t]] and let X = Proj(OK [x, y, z]/(x2 + y2 + tz2)). Then X is regular, flat
and projective over OK . The special fiber Γ := Xk is integral, with a singular rational
point, and its regular locus is isomorphic to A1

C. In this example, δ(X/K) = 2, but
r(Γ)δ(Γ/R) = 1.

Example 8.8 Let A/K be a central simple K-algebra of dimension n2. The square
root of the degree over K of the skew-field D such that A is isomorphic to Mr(D)
for some r ≥ 1 is called the index ind(A) of A. Associated with A is a Severi-Brauer
variety X/K, a twisted form of Pn−1/K, with δ(X/K) = ind(A).

Suppose that K is a complete discrete valuation field with perfect residue field k.
Let Λ/OK be a hereditary order of A. Associated with Λ is a model X/OK of X/K
called an Artin model ([19], 2.1). Artin ([1], 1.4) shows that when Λ is a maximal
order, the model X is regular. The special fiber Xk is described in some cases in
2.4 and 2.5 of [19]. In particular, the special fiber in the model described in [19] 2.5
contains only irreducible components Γ of multiplicity 1 such that δ(Γ/k) = 1, and
δ(Γreg/k) = δ(X/K).

8.9 Let W be a non-empty scheme of finite type over a field F . Let D be the set of all
degrees of closed points of W . Denote by ν(W/F ) the smallest integer in D. Clearly,
δ(W/F ) divides ν(W/F ).

Let f : X → S be as in 8.1, and assume X regular and f proper. Then Proposition
8.4 (2) shows that

ν(X/K) ≥ min
x0 closed in Xk

{e(OXk,x0) degk(x0)} ,

with equality if in addition OK is Henselian and k is infinite (8.4 (3)).
Lang and Tate asked in [36], page 670, whether ν(W/F ) = δ(W/F ) when W is a

homogeneous space for an abelian variety A/F . Recall that non-empty scheme W/F
is a homogeneous space for A/F if W/F is endowed with a transitive action of A/F ,
in the sense that the natural morphism A ×F W → W ×F W , which sends (a, w) to
(a · w,w), is surjective as a morphism of fppf-sheaves.

Let us say that a field k is WC(0) if every homogeneous space X/k for any abelian
variety B/k has a k-rational point ([11], 1.2). A finite field is WC(0) ([34], Theorem 2),
and it follows from the definitions that a pseudo-algebraically closed field k is WC(0).

Proposition 8.10. Let OK be Henselian with a WC(0) perfect residue field. Let A be
an abelian variety over K having good reduction. Let X/K be a homogeneous space for
A. Then δ(X/K) = ν(X/K).
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Proof. As A is an abelian variety, X is a principal homogeneous space for a quotient
B of A. Let B/OK be the Néron model of B over OK . Then B is an abelian scheme
([52], Corollary 2 to Theorem 1). We know ([40], Proposition 8.1) that X has a regular
proper model X/OK such that Xk = rV with V proper, smooth over k (because
k is perfect), and V/k is a homogeneous space for Bk. Hence, V (k) 6= ∅, so that
δ(V/k) = ν(V/k) = 1. Using Proposition 8.4, we find that ν(X/K) = rν(V/k) = r.
Theorem 8.2 shows that δ(X/K) = rδ(V/k) = r. �

9. The separable index

Let k be any field, and let X/k be a scheme. The set of separable closed points of X
can be empty, even when X/k is regular. This is the case for instance for X = SpecL,
where L/k is a non-trivial purely inseparable extension. On the other hand, when X/k
is smooth, the set of separable closed points of X is dense in X ([4], 2.2/13).

When X/k is generically smooth and non-empty, define the separable index δsep(X/k)
of X/k to be the greatest common divisor of the degrees of the separable closed points
of X. Clearly, δ(X/k) divides δsep(X/k), and the question of whether δ(X/k) and
δsep(X/k) are always equal was raised by Lang and Tate in [36], page 670. In this
section, we answer this question positively. The case where X/k is a smooth projective
curve was treated already in [24], Theorem 3.

Let us note first that our work in the previous section lets us answer the question
positively under the following additional hypotheses.

Corollary 9.1. Let K be the field of fractions of a Henselian discrete valuation ring
OK. Let f : X → S be as in 8.1, with f proper and flat, and X regular. Let X/K
denote the generic fiber of X/S, assumed to be generically smooth. Then

δ(X/K) = δsep(X/K) = gcd
i
{riδ(Γreg

i /k)}.

Proof. Follows immediately from Theorem 8.2 (b) and Proposition 8.4 (3). �

The proof of the next theorem is independent of the results in the previous sections
of the paper.

Theorem 9.2. Let X be a regular and generically smooth non-empty scheme of finite
type over a field k. Then δ(X/k) = δsep(X/k).

Proof. Let Xsm denote the dense open subset of X where X/k is smooth. It follows im-
mediately from Proposition 6.8 and the fact that X is regular that δ(X/k) = δ(Xsm/k).
Thus, it suffices to prove the theorem when X/k is smooth.

Assume that X/k is smooth. It suffices to prove that for any closed point x0 ∈ X,
there exists a separable 0-cycle on X of degree degk(x0). We proceed by induction on
d := dimk(x0) Ω1

k(x0)/k. If d = 0, then x0 is already separable. If d = 1, then by Lemma
9.3, x0 belongs to a closed curve C in X which is smooth at x0, and we can conclude
using Lemma 9.4.

Now fix d ≥ 2, and suppose that the statement holds for any closed point y in
any smooth variety over k such that dimk(y) Ω1

k(y)/k ≤ d − 1. Replacing X by the
smooth locus of the closed subvariety Y whose existence is proved in Lemma 9.3, we
can suppose that dimx0 X = d. Since x0 is smooth in X, we can replace X by an affine
open subset if necessary, and assume that there exists an étale morphism f : X → Ad

k.
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Let π : Ad
k → Ad−1

k be the projection to the first d− 1 coordinates. Let z0 := π(f(x0)).
Then C := X×Ad−1

k
Spec k(z0) is a closed subscheme of X containing x0. It is a smooth

curve over k(z0) because it is étale over the affine line π−1(z0) = A1
k(z0). Therefore,

we can use Lemma 9.4, and obtain that there exists a 0-cycle D on C, separable over
k(z0), and of degree degk(z0)(x0). For any point y in the support of D, we have

dimk(y) Ω1
k(y)/k = dimk(z0) Ω1

k(z0)/k ≤ dimAd−1
k = d− 1.

Thus, we can apply the induction hypothesis to each such point y. It follows that there
exists a separable 0-cycle on X/k of degree degk(x0). �

Lemma 9.3. Let X be a smooth algebraic variety over a field k, and let x0 ∈ X. Then
x0 is contained in a closed subvariety Y of X of pure dimension dimk(x0) Ω1

k(x0)/k which
is smooth at x0.

Proof. Let m0 be the maximal ideal of OX,x0 . When f ∈ m0, denote by f̄ its class in
m0/m

2
0. The closed immersion Spec k(x0) → SpecOX,x0 induces the canonical second

fundamental exact sequence

m0/m
2
0

δ−→ Ω1
X,x0
⊗ k(x0)

µ−→ Ω1
k(x0)/k −→ 0

([41], Theorem 58, page 187). Let f1, . . . , fm ∈ m0 be such that δ(f̄1), . . . , δ(f̄m) form
a basis of Ker(µ). Choose an open neighborhood U of x0 and gi ∈ OX(U) such that
for all i = 1, . . . ,m, fi is the stalk of gi at x0. Let Y be a closed subscheme of X, equal
to V (g1, . . . , gm) in an open neighborhood of x0. As {f1, . . . , fm} is part of a regular
system of parameters of OX,x0 , we find that

dimx0 Y = dimx0 X −m = dimk(x0) Ω1
k(x0)/k.

Since (Ω1
Y/k)x0 ⊗ k(x0) ' Ω1

k(x0)/k, we find that (Ω1
Y/k)x0 is generated by dimx0 Y ele-

ments, and this implies that Y is smooth at x0 (see, e.g., [4], 2.2/15). We may thus
replace Y by its irreducible component which contains x0. �

Lemma 9.4. Let C be a smooth connected curve over k. Let C be a regular scheme,
separated and of finite type over k, such that there exists an open immersion C → C.
Let z ∈ C be a closed point. Then there exists a separable 0-cycle on C which is
rationally equivalent to [z] in C.

Proof. The connected component of C containing C embeds as an open subscheme of
a regular compactification C ′ of C. Lemma 9.4 follows from a stronger statement ([18],
Chapter 3, Lemma 3.16), in the proof of which the smooth compactification (which
may not exist in general) should be replaced by a regular compactification. We thank
O. Wittenberg for the reference to [18]. �
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