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Abstract. Let M denote the Laplacian matrix of a graph G. Associated with G is
a finite group Φ(G), obtained from the Smith normal form of M , and whose order is
the number of spanning trees of G. We provide some general results on the relationship
between the eigenvalues of M and the structure of Φ(G), and address the question of
how often the group Φ(G) is cyclic.

1. Introduction

Let G be a connected graph with n > 1 vertices v1, . . . , vn and m edges (adjacent
vertices may be linked by more than one edge). Let A denote its adjacency matrix. Let di

denote the degree of vi, and set D := diag(d1, . . . , dn), the diagonal matrix of the degrees.
Let M := D − A, the Laplacian matrix of G.

This article considers a circle of problems related to the finitely generated abelian group
Zn/Im(M). This group can be computed in practice using the Smith normal form of M ,
as follows. Given any (n × n)-invertible integer matrices P and Q and any (n × n)-
integer matrix N with PNQ = diag(s1, . . . , sn), it is easy to show that Zn/Im(N) is
isomorphic to

∏n
i=1 Z/siZ. In our case, the rank of M is n − 1, with kernel generated by

the transpose of the vector (1, . . . , 1). If M is row and column equivalent over the integers
to diag(s1, . . . , sn−1, 0), then Zn/Im(M) ∼=

∏n−1
i=1 Z/siZ×Z. A canonical diagonal matrix

equivalent to a given matrix N is obtained as follows: let ∆r := ∆r(N) denote the greatest
common divisor of the determinants of all (r × r)-minors of N . The matrix N is row and
column equivalent to diag(∆1, ∆2/∆1, . . . , ∆n/∆n−1).

Denote by Φ(G) the torsion part of this group, so that Φ(G) is a finite abelian group,
and Zn/Im(M) is isomorphic to Z×Φ(G). The order of Φ(G) is ∆n−1(M), and this integer
is a well-known graph invariant, the number κ(G) of spanning trees of G, also called the
complexity of G. We have thus a factorization of κ(G) given by ∆1 ·∆2/∆1·. . .·∆n−1/∆n−2.
It is natural to wonder what properties of a graph are reflected in this factorization.

Maybe the earliest result in the literature concerning this factorization is a result of
Berman ([4] (1986), page 7, prop. 4.1), which states that the factorizations of the com-
plexities of a planar graph and its dual are identical. This result was rediscovered in [15],
and in [3] Prop. 8, and generalized in [26].

The group Φ(G) occurs in the literature under at least four different names, depending
on the context in which it is used. It may have first appeared in the literature in 1970
in [34], 8.1.2, page 64, in the context of arithmetic geometry. This material can now also
found be in the main reference text for the subject, [9], 9.6.

(a) In 1989, motivated by problems in arithmetic geometry, the author initiated a purely
graph theoretical study of Φ(G) in [28], where the group Φ(G) is called the group of
components, in keeping with the terminology used in arithmetic geometry.

(b) In 1990, Dhar considered this group in the context of physics in [19], where the group
is called the sandpile group.
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(c) In 1997, motivated by the theory of algebraic curves, Bacher at al. considered Φ(G) in
[3], where Φ(G) is called the Picard group, shown to be isomorphic to a group called
the jacobian group.

(d) In 1999, Biggs studied chip firing games in [6], where the group Φ(G) is called the
critical group.

(e) In 1990, the analogous group associated with the Smith normal form of the adjacency
matrix A of G is called Smith group in [35].

The group Φ(G) can obviously be generated by at most n − 1 generators, and also by at
most β(G) := m− n + 1 generators ([28], p. 281). If a graph G is obtained from a graph
G0 by adding a single edge, then the minimal number of generators of the groups Φ(G)
and Φ(G0) can differ by at most 1 ([27], 5.2). If a graph G is obtained from two graphs
G′ and G′′ by gluing one vertex of G′ to a vertex of G′′, then Φ(G) = Φ(G′) × Φ(G′′).
Little else is known in general on the minimal number of generators of Φ(G), and on how
the structure of the group Φ(G) reflects the combinatorial properties of G.

There is a very large body of knowledge regarding the Laplacian eigenvalues of a graph.
It is thus natural, when searching for relationships between the structure of Φ(G) and the
combinatorial properties of the graph, to start by understanding first the relationships
between the eigenvalues of M and its Smith normal form. This general study is done
in the next section of this article. The eigenvalues of M do contribute to the structure
of the group Φ(G), but they do not determine it. In the third section, we completely
determine the structure of the group Φ(G) when G is a conference graph on n vertices,
with n squarefree.

The explicit determination of the structure of Φ(G) in a given family of graphs is not
always easy, and one finds in the literature in the last ten years a series of papers whose
goal is to explicitly determine the structure of classes of groups Φ(G). For instance,
examples of families containing exactly one graph on n vertices for each integer n are
found in [6], [7], [17], and [23]. Larger families are studied in [14], [24], and [38].

We say that G is cyclic when the group Φ(G) is cyclic. When considering very ‘sym-
metric’ graphs, one often finds that the associated group Φ(G) is not cyclic. On the other
hand, if one randomly picks a graph G and computes its group Φ(G), should one expect
that G is often cyclic? In other words, should one expect that ∆n−2(M) = 1 often, where
M is the Laplacian of G? Obviously, this question as phrased is rather vague, and we
discuss various rigorous density notions of cyclic graphs in section 4.

In the fifth section, we study one family of graphs where the proportion of cyclic
groups, when counted appropriately, is at least 6/π2. In the last section of this article, we
introduce a simple criterion (6.5) for a graph G to have a cyclic group Φ(G), and we show
that for many graphs G with Φ(G) cyclic, this criterion can be used to produce infinitely
many non-isomorphic other graphs with cyclic groups.

I thank Grant Fiddyment for computations in 3.4, for the data in 4.3, and for the
example in 6.4; thanks also to Brandon Samples and Nathan Walters for computations in
3.3 and 3.4, to Andrew Granville for the proof of 4.10, to G. Michael Guy for sharing his
Maple scripts and computations for 5.5 and 5.12, and to the participants in the Graph
Seminar at the University of Georgia for helpful comments. I would also like to thank the
referee for helpful comments and corrections.

2. Eigenvalues and Smith Normal form

We study in this section the relationships between the eigenvalues and the Smith normal
form of the Laplacian of a graph, and, more generally, of any integer (n × n)-matrix M
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of rank n − 1. In the more general context of any integer matrix M , this question is
considered in [33] and [36]. In the special case of the adjacency matrix of a graph G, this
question is considered in [35].

Let n > 1 be an integer, and let M be any (n × n)-integer matrix of rank n − 1. Let
Φ(M) denote the torsion subgroup of Zn/Im(M). As we shall see, when λ = 0 is a simple
eigenvalue of M , the other eigenvalues are indeed related to the order of the group Φ(M),
but they do not in general determine the structure of Φ(M).

Let R denote an integer vector generating the kernel of M . Write the transpose of R
as (r1, . . . , rn), and assume that gcd(r1, . . . , rn) = 1. Let R′ be the corresponding vector
for the transpose tM of M , and write tR′ = (r′1, . . . , r

′
n), with gcd(r′1, . . . , r

′
n) = 1. Let

r := R · R′ denote the dot product of R and R′. We always choose R and R′ such that
r ≥ 0. An example where r = 0 is given in 2.15. When M is symmetric, we always
choose R′ = R. When M is the Laplacian of a graph, tR = (1, . . . , 1) and R · R = n. Let
M∗ denote the comatrix of M (also called the adjoint matrix of M): the matrix M∗ has
coefficient in row i and column j equal to (−1)i+j times the determinant of the minor of M
obtained by removing row j and column i from M . We have MM∗ = M∗M = det(M)Idn.

Let G be a connected graph, and let λ1 ≥ · · · ≥ λn−1 denote the non-zero eigenvalues
of its Laplacian M . Our first proposition generalizes the well-known relation between the
spectrum of M and the complexity of G (see, e.g., [21], 13.2.4):

(1) λ1 · . . . · λn−1 = nκ(G).

Proposition 2.1. Let M be any (n×n)-integer matrix of rank n− 1, with characteristic
polynomial charM(x) = x

∏n−1
i=1 (x − λi). Then M∗ = ±|Φ(M)|R (tR′), and

n−1∏

i=1

λi = ±|Φ(M)|(R′ · R).

In particular, λ = 0 is a simple root of charM(x) if and only if (R′ · R) 6= 0.
If (R′ ·R) = 0, then M is not diagonalizable. When M is diagonalizable, (R′ ·R) divides

the product of the distinct non-zero eigenvalues of M .

Proof. Since MM∗ = 0, we find that each column vector of M∗ is an integer multiple
of R. Thus there exists an integer vector A whose transpose tA = (a1, . . . , an) is such
that M∗ = R(a1, . . . , an). Similarly, from M∗M = 0, there exists an integer vector B
whose transpose (b1, . . . , bn) is such that M∗ = B(tR′). Clearly, since M has rank n − 1,
the vectors R, R′, A, and B, are all not zero. Pick an index i such that r′i 6= 0. Then
aiR = r′iB. It follows that ai 6= 0. Since gcd(r1, . . . , rn) = 1, we conclude that r′i | ai, so
that B = cR for some integer c 6= 0. Similarly, we find that A = dR′ for some d 6= 0. It
follows that c = d and M∗ = cR(tR′). The coefficients of M∗ are the determinants of the
(n − 1)-minors of M . Since the coefficients of R and R′ are coprime, we conclude that c
is up to a sign the greatest common divisor of the (n − 1)-minors of M . In other words,
since det(M) = 0, we find that c = ±|Φ(M)|.

Consider the relation M
∏n−1

i=1 (M − λiIdn) = 0. Let N :=
∏n−1

i=1 (M − λiIdn). The
same argument as above shows that there exists an integer a such that N = aR(tR′).

Thus, NR = ((−1)n−1
∏n−1

i=1 λi)R = arR. Since the coordinates of R are coprime,

(−1)n−1
∏n−1

i=1 λi = ar. To show that a = ±|Φ(M)|, we recall that the coefficient of x
in the characteristic polynomial of any matrix can be computed as the sum of the deter-
minants of the principal (n − 1)-minors of M . In our case, using our description of M∗,
we find that this sum is ±|Φ(M)|(

∑n
i=1 rir

′
i) = ±|Φ(M)|(R · R′), as desired.
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Assume that M is diagonalizable. Let λ1, . . . , λt denote the distinct non-zero eigenvalues
of M . Then M

∏t
i=1(M −λiIdn) = 0. As before, we find that

∏t
i=1(M −λiIdn) = bR(tR′)

for some non-zero integer b. Thus, ±(
∏t

i=1 λi)R = b(R · R′)R 6= 0, and (R · R′) 6= 0. �

2.2 Since the order of Φ(M) is so obviously related to the eigenvalues of M when r > 0,
it is natural to wonder whether it is possible to construct explicit non-trivial elements of
Φ(M) using eigenvectors of M . We do so first for integer eigenvalues.

Let w := (w1, . . . , wn) ∈ Zn be an eigenvector of M for a non-zero integer eigen-
value λ. Then the class of w in Φ(M) has order dividing λ. Indeed, Mw = λw shows
that λw ∈ Im(M). It may happen however that the class of w is trivial in Φ(M),
even when gcd(w1, . . . , wn) = 1. For instance, when G = Kn, f1 = (1,−1, 0, . . . , 0),
f2 = (1, 0,−1, . . . , 0), . . . , and fn−1 = (1, 0, . . . , 0,−1), are n − 1 linearly independent
eigenvectors for the eigenvalue n. Clearly, w :=

∑
fi is also an eigenvector for n, but

w ∈ Im(M).
Let ordp(x) denote the largest power of a prime p that divides the integer x.

Proposition 2.3. Let M be any (n×n)-integer matrix of rank n−1 as above, with r > 0.
Let λ 6= ±1 be a non-zero integer eigenvalue of multiplicity m(λ). Let µ(λ) denote the
maximal number of linearly independent eigenvectors for the eigenvalue λ.

(1) Let w be an integer eigenvector of M for λ. Assume that the greatest common divisor
of its coefficients is 1. Then the order of the class of w in Φ(M) is divisible by
λ/ gcd(λ, r) and divides λ (2.2). Let w′ be any integer eigenvector of tM for λ, with
w · w′ 6= 0. Then the order of the class of w in Φ(M) is divisible by λ/ gcd(λ, w · w′).

(2) If there exists a prime p such that p | λ but p - r, then Φ(M) contains a subgroup
isomorphic to (Z/pordp(λ)Z)µ(λ).

(3) If M is symmetric and the vector R has one entry ri with ri = ±1, then Φ(M) contains
a subgroup isomorphic to (Z/λZ)µ(λ)−1.

Proof. (1) We know from 2.2 that the order c of the class of w in Φ(M) divides λ. Thus
there exists an integer vector u such that Mu = cw and, hence, M((λ/c)u − w) = 0. We
can thus find an integer d such that (λ/c)u − w = dR. If d = 0, then λ/c divides each
coefficient of w, so c = λ. Assume now that d 6= 0. Taking the dot product of the latter
equality with the vector R′ shows that

(λ/c)(u · R′) = dr.

It follows that λ
c gcd(λ/c,r)

divides d. Since w = (λ/c)u− dR has all its coefficients divisible

by λ
c gcd(λ/c,r)

, we find that λ/c = gcd(λ/c, r), so that λ/c | r. It follows that λ/ gcd(λ, r)

divides c.
Since tw′MR = 0 = λw′ · R, we conclude that w′ · R = 0. Assume that d > 0. From

(λ/c)u − w = dR, we obtain that (λ/c)(u · w′) = (w · w′). Thus, λ/ gcd(λ, w · w′) divides
c w·w′

gcd(λ,w·w′)
, and c is divisible by λ/ gcd(λ, w · w′).

(2) Let Vλ ⊆ Zn denote the Z-submodule generated by the set of eigenvectors in Zn for
the eigenvalue λ ∈ Z. Consider a basis w(1), . . . , w(µ(λ)) for the Z-module Vλ ⊆ Zn. Note
that the submodule Vλ is saturated, that is, if v ∈ Zn and tv ∈ Vλ for some integer t, then
v ∈ Vλ.

Suppose that there exist integers ai and an integer vector u such that Mu =
∑

aiw
(i).

Then we can find an integer d such that λu −
∑

aiw
(i) = dR. Taking the dot prod-

uct of this expression with R′, we find that λ/ gcd(λ, r) divides d. Since
∑

aiw
(i) =

λu − dR = (λ/ gcd(λ, r))w′ with w′ ∈ Vλ, we can find integers bi such that
∑

aiw
(i) =

(λ/ gcd(λ, r))
∑

biw
(i). It follows that λ/ gcd(λ, r) divides ai for all i = 1, . . . , µ(λ).
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Let pe denote the exact power of p dividing λ. Part (1) implies that the class of w(i) has
order divisible by λ/ gcd(λ, r). By assumption, p - r. Let then v(i) := giw

(i) denote the
smallest multiple of w(i) whose order in Φ(M) is pe. Our hypothesis implies that p - gi for
all i. Suppose that

∑
di(class of v(i)) = 0 in Φ(M). Then there exists an integer vector

u such that Mu =
∑

div
(i). The above discussion shows that λ/ gcd(λ, r) divides digi for

all i. Then pe | di for all i, and we find that Φ(M) contains a subgroup isomorphic to
(Z/peZ)µ(λ).

(3) Without loss of generality, we may assume that r1 = ±1. Adding (or subtracting)
all rows to the first row and all columns to the first column shows that the group Φ(M)
is isomorphic to the group Φ(M (1,1)). The minor M (1,1) is nonsingular, and thus we can
use [36], Theorem 4, to show that Φ(M (1,1)) contains a subgroup isomorphic to (Z/λZ)ν

if M (1,1) has ν linearly independent eigenvectors for the eigenvalue λ.
Recall (see, e.g., [21], 9.1) that if λ1 ≥ · · · ≥ λn denote the eigenvalues of M , and

θ1 ≥ · · · ≥ θn−1 denote the eigenvalues of M (1,1), then

λ1 ≥ θ1 ≥ λ2 ≥ · · · ≥ θn−1 ≥ λn.

Thus, if λ is an eigenvalue for M with multiplicity m(λ), then it is also an eigenvalue for
M (1,1) with multiplicity at least m(λ) − 1. �

Remark 2.4 The statement (3) is meaningful when µ(λ) > 1. When M is not symmetric,
the weaker condition m(λ) > 1 is not sufficient, as the following example shows. Let

M :=




λ 1 0
0 λ 1
0 0 0


 .

The transposes of R and R′ are (1,−λ, λ2) and (0, 0, 1), respectively. Hence, r = λ2. The
eigenvalue λ clearly has multiplicity 2. It is easy to check that Φ(M) is trivial, so that
Φ(M) does not have an element of order λ.

Remark 2.5 Let G be a connected graph on n vertices without multiple edges. Let Gc

denote the complement of G in Kn, assumed to be connected. If λ1 ≥ · · · ≥ λn−1 > 0 are
the eigenvalues of G, then the eigenvalues of Gc are n − λn−1 ≥ · · · ≥ n − λ1 ≥ 0 ([21],
13.1.3). In particular, an eigenvalue λ for G and the eigenvalue n − λ for Gc have same
multiplicity, m(λ).

Suppose now that G has an integer eigenvalue 1 < λ < n−1 coprime to n, of multiplicity
m(λ) > 1. Then both Φ(G) and Φ(Gc) cannot be generated by fewer than m(λ) elements.
Indeed, 2.3 implies it directly for Φ(G). Under our hypotheses, n− λ > 1 and is coprime
to n, so we may apply 2.3 to obtain that Φ(Gc) cannot be generated by fewer than m(λ)
elements.

The group Φ(G) is completely described in [14] for a large class of graphs G having
only integer (Laplacian) eigenvalues. Conjecture 7 in [14] would imply that for threshold
graphs G with an integer eigenvalue n > λ > 0 of multiplicity m(λ), then Φ(G) always
contains a subgroup isomorphic to (Z/λZ)m(λ), even when λ | n (see [14], Example 14).

Conjecture 7 in [14] also implies for threshold graphs G that each summand of Φ(G) has
order a product of distinct eigenvalues of G, so that Φ(G) is killed by the product of the
distinct eigenvalues of G. This latter fact follows for all graphs from our next proposition,
which generalizes [36], Theorem 2.
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Proposition 2.6. Let M 6= 0 be a diagonalizable (n × n)-integer matrix. Let λ1, . . . , λt

denote the distinct non-zero eigenvalues of M . Let Φ(M) denote the torsion subgroup of
Zn/Im(M). Then Φ(M) is killed by

∏t
i=1 λi.

Proof. Let K denote the splitting field of the characteristic polynomial of M . Let OK

denote its ring of integers. Since M has integer coefficients, each λi is an algebraic integer,
and the product

∏t
i=1 λi is an integer.

Consider the natural map (Zn/M(Zn))tors → (On
K/M(On

K))tors. This map is injective.
Indeed, if v ∈ Zn can be written Mw = v with w ∈ On

K , write PMQ = D with P, Q, and
D integer matrices, and P, Q invertible, D diagonal. The relation DQ−1w = Pv shows
that all coefficients of Q−1w belong to Q, except possibly for (n− rank(M)) of them, say
the (n− rank(M)) last ones. The first rank(M) coefficients of Q−1w are then integral and
rational, so they are integers. Let u denote the vector Q−1w where its last (n− rank(M))
coefficients have been replaced by 0. Then u has integer coefficients, and Du = Pv. Thus
MQu = v, with Qu ∈ Zn, so that the class of v is trivial in (Zn/M(Zn))tors.

We are going to show that
∏t

i=1 λi kills the (additive) group (On
K/M(On

K))tors. Let
v0 ∈ (On

K/M(On
K))tors. Choose a vector v ∈ On

K representing v0. Then there exist
vi ∈ Kn, i = 1, . . . , t, such that v =

∑t
i=1 vi, and for each i = 1, . . . , t, vi is an eigenvector

for λi. Indeed, by assumption there exists d ∈ N such that dv ∈ Im(M), and Im(M) is
generated over K by the eigenvectors for the non-zero eigenvalues. Let w :=

∑t
i=1 vi/λi.

We have Mw = v by construction. We claim that u := (
∏t

i=1 λi)w is a vector with

integral coefficients. Once this claim is proved, it follows from Mu = (
∏t

i=1 λi)v that v

has order dividing (
∏t

i=1 λi) in On
K/M(On

K), as desired.
We use as in [36] an induction on the number of distinct non-zero vectors vi appearing

in the representation v =
∑

vi. If v = v1, then λ1(v1/λ1) = v is integral by hypothesis.

Assume that now v =
∑k

i=1 vi for some k > 1. Then Mv =
∑k

i=1 λivi, and we apply the

induction hypothesis to Mv − λkv =
∑k−1

i=1 (λi − λk)vi, which belongs to On
K . Therefore,

the vector

(
∏k−1

i=1 λi)(
∑k−1

i=1
λi−λk

λi
vi) = (

∏k−1
i=1 λi)(

∑k
i=1 vi) − (

∏k
i=1 λi)(

∑k
i=1 vi/λi)

= (
∏k−1

i=1 λi)v − (
∏k

i=1 λi)w

is integral, and the result follows. �

Remark 2.7 When M is of rank n − 1, we showed in 2.1 that the product
∏t

i=1 λi of
the distinct eigenvalues is divisible by R′ ·R. It is natural to wonder whether Φ(M) may
be killed by (

∏t
i=1 λi)/(R · R′). The answer to this question is negative, as shown by the

bipartite graphs Ka,a, whose eigenvalues are 0, a, and 2a, but Φ(Ka,a) = (Z/aZ)2a−4 ×
Z/a2Z.

If λ is an algebraic number, we let N(λ), the norm of λ, denote the product of the roots
of the minimal polynomial of λ over Q.

Corollary 2.8. (a) Assume that G is a graph with Φ(G) cyclic. Then an eigenvalue λ
of G with N(λ) - n has multiplicity 1. If λ is an integer with λ > 1 and λ | n, then
m(λ) ≤ 2.

(b) Assume that G is a tree. Then all eigenvalues λ of G with N(λ) 6= 1 have m(λ) = 1.

Proof. Let λ1, . . . , λt denote the distinct non-zero eigenvalues of M , and let m(λi) denote

the multiplicity of λi. The group Φ(G) has order 1
n

∏t
i=1 λ

m(λi)
i . If it is cyclic, we find that

1
n

∏t
i=1 λ

m(λi)
i divides

∏t
i=1 λi. If m(λ) > 1, either N(λ) = 1, or N(λ) > 1 and N(λ) | n.

In the latter case, when λ is an integer, 2.3 (3) shows that m(λ) − 1 ≤ 1.
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Assume that G is a tree. Then
∏t

i=1 λ
m(λi)
i = n and n |

∏t
i=1 λi (2.1). It follows that if

m(λ) > 1, then N(λ) = 1. �

Remark 2.9 The converse of the above corollary is not true, that is, Φ(G) not cyclic
does not necessarily imply that some eigenvalue not dividing n has multiplicity greater
than 1. Indeed, consider the graph G with adjacency matrix




0 2 6
2 0 8
6 8 0


 .

Then Φ(G) = Z/2Z × Z/38Z, and the characteristic polynomial of the Laplacian is
t(t2 − 32t + 228), with three eigenvalues of multiplicity 1.

The cycle on n vertices is an example of a graph with Φ(G) cyclic, and eigenvalues of
multiplicity 2. When G is a tree and λ > 1 is an integer, it is shown in [22], Theorem
2.1, that m(λ) = 1. An example of a tree with an eigenvalue λ /∈ Z, of multiplicity 2, and
with N(λ) = 1, is found in [22], 3.5.

When λ is an eigenvalue of M which is not an integer, no eigenvector associated to λ is
in Zn. Thus, the contribution of λ and its eigenvectors to the group Φ(M) is more subtle
than in the case where λ ∈ Z. To discuss it, we introduce the following integer.

Recall that an eigenvalue of M is always an algebraic integer, since it is the root of a
monic polynomial with integer coefficients, the characteristic polynomial of M . Let λ be
any algebraic integer with minimal monic polynomial f(x) = adx

d +ad−1x
d−1 + · · ·+a0 ∈

Z[x]. Define the integer L(λ), the least common multiple of the roots of the minimal
polynomial of λ over Q, to be the smallest positive integer L such that L/λ is an algebraic
integer. This integer is the denominator of 1/λ in [2]. It follows that since both L(λ)/λ
and N(λ)/λ are algebraic integers, so is gcd(L, N)/λ. Hence, L(λ) | N(λ). We give below
a criterion for determining when L(λ) = N(λ).

Lemma 2.10. Let f(x) = xd + · · ·+ a1x + a0 ∈ Z[x]. Let λ be a root of f(x).

(1) L(λ) is the smallest positive integer L such that aiL
i/a0 ∈ Z for all i = 1, . . . , d. In

particular, N(λ)
L(λ)

| a1, and N(λ) | L(λ)d.

(2) L(λ) = N(λ) if and only if, for each prime p such that p | gcd(a0, a1), ordp(a0) = 1.

Proof. (1) Note that Q(λ) = Q(L(λ)/λ), so that the minimal polynomial over Q of L(λ)/λ
has degree d. The polynomial xdf(L(λ)/x)/a0 has rational coefficients and has L(λ)/λ
as a root. It is thus the minimal polynomial of L(λ)/λ. Since we assume L(λ)/λ to be an
algebraic integer, xdf(L(λ)/x)/a0 ∈ Z[x]. Thus, we find that L(λ) is the smallest positive
integer L such that aiL

i/a0 ∈ Z for all i = 1, . . . , d. The cases where i = 1 and i = d give

(using |a0| = N(λ)) that N(λ)
L(λ)

| a1, and N(λ) | L(λ)d.

We can rewrite the above conditions as
a0

gcd(a0, ai)
| Li, for all i = 1, . . . , d.

Letting dye denote the smallest integer larger than y, we find that

ordp(L(λ)) = max
j

(dordp(a0) − ordp(gcd(a0, aj))

j
e).

(2) Since L := L(λ) divides N := N(λ) and N | Ld, we find that L and N are divisible
by the same primes. Recall that N/L divides a1. Then, if p - a1, ordp(a0) = ordp(N) =
ordp(L). Suppose that p | gcd(a0, a1) and ordp(a0) = 1. Since p | a0, p | L. Since L | N ,
we must have ordp(a0) = ordp(N) = ordp(L) = 1.
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Suppose now that L = N . In particular, for each prime p, ordp(L) = ordp(a0). Let k

denote an index such that ordp(L(λ)) = dordp(a0)−ordp(gcd(a0,ak))
k

e. If k = 1, we find that

p - a1. In particular, when p | a1, we have k > 1. We claim that if k > 1 and da−b
k
e = a

for some integers 0 ≤ b ≤ a, then a = 0 or 1. Indeed, there exists 0 ≤ ε < 1 such that
da−b

k
e = a−b

k
+ ε. Hence, kda−b

k
e = (a − b) + kε = ka. It follows that kε − b = (k − 1)a.

Since k > 1, a ≤ kε/(k − 1) < 2. Thus, a = 0 or 1. It follows that when p | gcd(a0, a1),
ordp(a0) = 1. �

Proposition 2.11. Let M be an integer (n×n)-matrix of rank n−1. Assume that r > 0.
Let λ be an eigenvalue of M .

(1) Then Φ(M) contains an element of order L(λ)/ gcd(L(λ), r).
(2) Assume that M is symmetric, and that the vector R has a coefficient ri with r1 = ±1.

If the multiplicity of λ is greater than 1, then Φ(M) contains an element of order
L(λ).

Proof. (1) Let s1 | · · · | sn−1 denote the non-zero invariant factors of M (si ∈ N, for all
i) so that M has Smith normal form diag(s1, . . . , sn−1, 0). Let λ1, . . . , λn−1 denote the
non-zero eigenvalues of M (in any ordering, possibly with repetitions). Recall (2.1) that∏n−1

i=1 λi = ±|Φ(M)|r. Theorem 6 in [33] states that there exists an algebraic integer c

such that c
∏n−2

i=1 si =
∏n−2

i=1 λi. It follows that

n−1∏

i=1

λi = (c

n−2∏

i=1

si)λn−1 = ±r(

n−1∏

i=1

si).

Hence, cλn−1 = ±rsn−1. In other words, rsn−1/λ is an algebraic integer for any non-

zero eigenvalue λ of M . Therefore, L(λ) | rsn−1, and L(λ)
gcd(L(λ),r)

| sn−1. Since sn−1 is

the exponent of the abelian group Φ(M), there exists an element in Φ(M) of any order
dividing sn−1.

(2) We proceed as in the proof of 2.3 (3). Without loss of generality, we may assume
that r1 = ±1. Adding (or subtracting) all rows to the first row and all columns to
the first column shows that the group Φ(M) is isomorphic to the group Φ(M (1,1)). The
minor M (1,1) is nonsingular, and thus we can use [36], Theorem 1, to show that Φ(M (1,1))
contains an element of order L(λ) if M (1,1) has eigenvalue λ. This latter fact is true if
m(λ) > 1, and is proved in 2.3 (3). �

It is natural to wonder, in view of 2.3, (2) and (3), whether Part (2) of Proposition 2.11
can be sharpened (see for instance 3.7).

Example 2.12 Consider the symmetric matrix

Ma :=




a 4 1 10 3
4 4 1 1 3
1 1 0 0 1
10 1 0 0 1
3 3 1 1 2




.

The reader can verify that tR = (0, 1,−1, 0,−1), r = 3, and

charM1
(t) = t(t4 − 7t3 − 125t2 + 453t + 243), L(λ) = 81, Φ(M1) = Z/3Z × Z/27Z;

charM4
(t) = t(t4 − 10t3 − 107t2 + 468t + 243), L(λ) = 27, Φ(M4) = Z/9Z × Z/9Z;

charM5
(t) = t(t4 − 11t3 − 101t2 + 473t + 243), L(λ) = 243, Φ(M5) = Z/81Z.

All three polynomials of degree 4 above are irreducible over Z.
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It is also possible to exhibit graphs without multiple edges whose Laplacian M has a
characteristic polynomial xf(x) with f(x) irreducible, L(λ) < N(λ), and Φ(G) not cyclic.

Consider for instance a graph H on 8 vertices {1, 2, 3, 4, 5, 6, 7, 8} obtained as fol-
lows. Start with a cycle on 8 vertices, with edges {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7),
(7, 8), (8, 1)}, and add to it the edges {(1, 3), (1, 4), (4, 6), (4, 7)}. The group Φ(H) is cyclic.
Consider now the complement G of H in K8. The Laplacian of G has characteristic poly-
nomial t(t7 − 32t6 +428t5 − 3094t4 +13015t3 − 31722t2 +41223t− 21816), with the factor
of degree 7 irreducible over Z, and the group Φ(G) is isomorphic to Z/3Z × Z/909Z.

Let Φ be an abelian group. It is well known that if |Φ| is squarefree, then Φ is cyclic.
In particular, let M be an integer (n × n)-matrix of rank n − 1 with r > 0. Write
charM(x) = xf(x), with f(x) = xn−1 + · · · + a1x + a0. Then, if a0/r is squarefree, then
Φ(M) is cyclic. This latter statement is slightly generalized in our next lemma, with a
hypothesis reminiscent of 2.10, (2).

Lemma 2.13. Let M be an integer (n × n)-matrix of rank n − 1 with r > 0. Write
charM(x) = xf(x), with f(x) = xn−1 + · · ·+ a1x + a0. Assume that for each prime p with
p | gcd(a0, a1), ordp(a0/r) = 1. Then Φ(M) is cyclic.

Proof. The coefficient a1, which is the coefficient of x2 in the characteristic polynomial
of the matrix M , is, up to a sign, equal to the sum of the determinants of the principal
(n − 2) × (n − 2)-minors of M (see, e.g., [21], top of page 284). Suppose that Φ(M)
is not cyclic. Then ∆n−2(M)/∆n−3(M) > 1. Hence, there exists a prime number p
dividing ∆n−2(M) > 1. Therefore, p | a1 or a1 = 0. Since ∆n−2(M)/∆n−3(M) divides
∆n−1(M)/∆n−2(M), we find that p2 divides ∆n−1(M) = a0/r. �

The proof of Proposition 2.11 only asserts the existence of an element of Φ(M) of order
L(λ)/ gcd(L(λ), r), but does not exhibit such an element. In our next lemma, we provide
an instance where some precise information can be given about the order of a specific
element in Φ(M) related to λ.

Let K := Q(λ), and denote by OK its ring of integers. Let H denote the set of
[K : Q] distinct embeddings σ : K → C. For any eigenvector w ∈ On

K for λ, the vector
t(w) :=

∑
σ∈H σ(w) has integer coefficients, and

∑
σ∈H σ(w

λ
) has rational coefficients. Let

u(w) := L(λ)
∑

σ∈H σ(w
λ
). This latter vector has coefficients in Q ∩ OK = Z. Consider

the relation

Mu(w) = L(λ) t(w).

Since both t(w) and u(w) are integer vectors, this relation shows that the class of t(w) in
Φ(M) has order dividing L(λ).

When the vector w had integer coefficients, we used in an essential way in the proof
of 2.3 that the greatest common divisor of the coefficients of w was 1. When OK is not
a principal ideal domain, the analogue property is not available, and we need to proceed
as follows. Let p be a prime number, and let Z(p) denote the localization of Z at the
ideal (p). The integral closure of Z(p) in K is the ring of fractions B := T−1OK , where
T := Z \ {(p)} ([30], II.6.19). The ring B is a principal ideal domain since it has only
finitely many prime ideals ([30], III.2.12) and if v ∈ B is such that σ(v) = v for all σ ∈ H ,
then v ∈ Z(p). It is easy to check that the p-part of the group Φ(M) is isomorphic to
Zn

(p)/M(Zn
(p)).

Assume that K/Q is Galois. There exist in B prime elements πi, i = 1, . . . , s (pairwise
not associates), and a unit α ∈ B, such that p = α(π1 · . . .·πs)

e with e > 0 and es | [K : Q]
([30], III.8.1). The ideals (πi) are the only maximal ideals of B.
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Lemma 2.14. Let λ denote an eigenvalue of an integer matrix M of rank n, or of
rank n − 1 with r > 0 as in 2.2. Assume K/Q Galois. Suppose that there exists a
prime p dividing L(λ) such that in B, p = απ1 · . . . · π[K:Q], with π1 | λ, and πi - λ for
i = 2, . . . , [K : Q] ((πi), i = 1, . . . , [K : Q], distinct prime ideals, and α ∈ B∗). Let
w ∈ Bn be an eigenvector of M . Write the transpose of w as (w1, . . . , wn), and assume
that the ideal in B generated by w1, . . . , wn is B. If M has rank n−1, assume in addition
that p - r. Then the class of t(w) in Zn

(p)/M(Zn
(p)) has order pordp(L(λ)).

Proof. We proceed as in 2.3 (1). Suppose that there exists a vector S ∈ Zn
(p) and c ∈ Z(p)

dividing L(λ) such that MS = ct(w). Then M((L(λ)/c)S − u(w)) = 0, and we can find
d ∈ Z(p) such that (L(λ)/c)S − u(w) = dR. Since σ(w) is an eigenvector for M , the dot
product u(w) ·R′ is trivial. Taking the dot product of the latter equality with the vector
R′ shows that

(L(λ)/c)(S · R) = dr.

It follows that L(λ)
c gcd(L(λ)/c,r)

divides d.

Since p - r, we find that ordp(c) < ordp(L(λ)) if and only if p | L(λ)
c gcd(L(λ)/c,r)

. Suppose that

ordp(c) < ordp(L(λ)). Then p divides the coefficients of u(w) since u(w) = (L(λ)/c)S−dR

has all its coefficients divisible by L(λ)
c gcd(λ/c,r)

. Thus π1 must divide the coefficients of

u(w) :=
∑

σ∈H
L(λ)
σ(λ)

σ(w).

Our additional hypothesis on λ (which implies that L(λ) = N(λ)) shows that if σ 6= id,

then π1 | σ(L(λ)
λ

), and π1 - L(λ)
λ

. Hence, π1 | L(λ)
λ

wi for each i = 1, . . . , n, implying that
π1 | wi for all i = 1, . . . , n. This is a contradiction and, thus, ordp(c) = ordp(N(λ)), so
that t(w) has order pordp(N(λ)), as desired. �

Example 2.15 The eigenvalues of M are not, in general, related to |Φ(M)| when r = 0.
Indeed, consider the matrix

M =




4 1 10 3
4 1 1 3
1 0 0 1
3 1 1 2


 .

The reader can verify that charM(t) = t2(t2−7t−13) and Φ(M) = Z/9Z. The matrix has
rank n − 1, with R = (1,−1, 0,−1) and R′ = (0, 1,−1,−1), so r = 0. The prime p = 13
satisfies the hypotheses of the lemma regarding its factorization in OQ(λ), but Φ(M) does
not contain an element of order 13.

Example 2.16 Consider the graph G, without multiple edges, on n = 26 vertices, ob-
tained as follows. Link a vertex v1 to a vertex v2 by three edges, and then divide each
edges in 9. The resulting graph has 26 vertices. Add one more edge between v1 and v2 to
get the graph G, with Φ(G) = Z/9Z × Z/108Z. The characteristic polynomial of G is

(t − 3)2(t3 − 6t2 + 9t − 3)2(t5 − 14t4 + 69t3 − 144t2 + 117t − 24)×
×(t − 1)2(t3 − 6t2 + 9t − 1)2(t4 − 10t3 + 33t2 − 40t + 13)t.

The results of this section produce elements of order 3 in Φ(G): two ‘independent’ such
elements from the factor (t − 3)2 (see 2.3), and one element each from the factors (t3 −
6t2 + 9t− 3) and (t5 − 14t4 + 69t3 − 144t2 + 117t− 24) (see 2.11). Each of these elements
generates a subgroup of order 3. None of these subgroups is a direct factor of Φ(G). Note
that Φ(G) has an element of order 27, so that the bound in 2.6 for the 3-part of the
exponent of Φ(G) is achieved.
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Let Gc denote the complement of G in K26. The 5-part of the group Φ(Gc) is isomorphic
to Z/25Z × Z/25Z × Z/5Z. In particular, the group Φ(Gc) cannot be generated by 2
elements, even though the group Φ(G) can, and the multiplicities of the eigenvalues of G
and Gc are the same (see 2.5). The characteristic polynomial of Gc is

(t5 − 116t4 + 5373t3 − 124214t2 + 1433185t− 6602130)(t− 25)2(t − 23)2×
×(t3−72t2+1725t−13753)2(t3−72t2+1725t−13751)2(t4−94t3+3309t2−51700t+302497)t.

For the prime p = 5 (which is coprime to n = 26), the exponent of the 5-part of Φ(Gc)
strictly divides the 5-part of the product of the distinct eigenvalues of Gc (the bound
given in 2.6 for the exponent).

Example 2.17 We show in this example how to associate to each graph H on n vertices
a graph G on 2n vertices whose group Φ(G) cannot be generated by fewer than n − 1
elements.

Let H be a graph with adjacency matrix A and Laplacian eigenvalues λ1 ≥ · · · ≥ λn =
0. Let di denote the degree of the i-th vertex. Consider the graph G with Laplacian
matrix (

2D − A −A
−A 2D − A

)
.

The Laplacian eigenvalues of G are determined in [18] 3.6, and consists of 2λi and 2di, for
i = 1, . . . , n. For instance, an eigenvector w for 2d1 is the transpose of (1, 0, . . . , 0,−1, 0, . . . , 0),
with −1 in the (n + 1)-position. Since w · w = 2, we can conclude from 2.3 (1) that the
class of w in Φ(G) has order d1 or 2d1.

We note that if H has a non-integer eigenvalue λ, then the eigenvalue 2λ of G has the
property that L(2λ) < N(2λ). Indeed, it is easy to check that for any algebraic integer λ
of degree d and any integer s > 0, N(sλ) = sdN(λ), while L(sλ) = sL(λ).

Straightforward row and column operations reduce the Laplacian of G to the matrix

N :=

(
2D 0
−A 2D − 2A

)
.

Let Z2n → Zn denote the projection onto the first n coordinates. This map induces
a surjective group homomorphism µ : Z2n/Im(N) → Z/2d1Z ⊕ · · · ⊕ Z/2dnZ. Since
Φ(G) ⊆ Z2n/Im(N) we obtain a group homomorphism Φ(G) → Z/2d1Z ⊕ · · · ⊕ Z/2dnZ.
The image I of this latter homomorphism cannot be generated by fewer than n − 1
elements. Indeed, the quotient of Z2n/Im(N) by Φ(G) is cyclic. Hence, the quotient of
Z/2d1Z ⊕ · · · ⊕ Z/2dnZ by I is also cyclic. Therefore, the image cannot be generated by
fewer than n − 1 elements.

The fact that Φ(G) cannot be generated by fewer than n − 1 elements (even when
Φ(H) is cyclic) is not due, in general, to the presence of an integer eigenvalue of G with
high multiplicity. For a general group Φ(G), the presence of a large number of integer
eigenvalues with a common factor, or the presence of eigenvalues λ with L(λ) < N(λ),
could contribute distinct factors to the group Φ(G).

3. Strongly regular graphs

Connected graphs having only three distinct Laplacian eigenvalues are discussed in [16].
Such a graph is regular if and only if it is strongly regular ([16], 2.4). It is natural to
wonder whether the Smith normal form of a graph with such restricted eigenvalues could
be completely determined. It turns out that even though the eigenvalues are prescribed,
the Smith normal form can vary. We develop in this section further relationships between
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eigenvalues and Smith normal forms to be able to completely determine the Smith normal
form of a conference graph on a squarefree number of vertices.

Let G be a (connected) strongly regular graph with parameters (n, k, a, c) (see, e.g.,
[21], chapter 10). Let k, θ, and τ , denote the distinct eigenvalues of the adjacency matrix
A of G. The eigenvalues θ and τ are the roots of x2 − (a − c)x − (k − c). Since G is
k-regular, the non-zero eigenvalues of the Laplacian matrix of G are k−θ and k−τ . They
are the roots of x2 − (a − c − 2k)x + nc (use (10.1) in [21]).

Lemma 3.1. Assume that both θ and τ are integers, and that G has a connected com-
plement. Then both integer Laplacian eigenvalues k − θ and k − τ are not coprime to
n.

Proof. Since G is connected, c > 0 and a < k − 1 ([21], 10.1.1). Moreover, since the
complement of G, of type (n, k̄, ā, c̄), is connected, k > c; otherwise, ā := (k̄−1)+(c−k) ≥
k̄ − 1 contradicts the fact that the complement is connected.

Since (k − θ)(k − τ) = nc and c > 0, at least one eigenvalue of the Laplacian is not
coprime to n. If gcd(k − θ, n) = 1, then k − θ divides c. Let us show that k − θ cannot
divide c. Suppose, ab absurdo, that there exists an integer e such that e(k − θ) = c. We
find that θ = k − c/e ≥ k − c > 0. As recalled above, θτ = c − k. Solving for τ , we
find that τ = − k−c

k−c/e
. Since τ is an integer, we obtain that e = 1 and τ = −1. But then

θ = k − c and θ + τ = a − c = k − c − 1 implies that a = k − 1, a contradiction. �

It may happen that k − θ and k − τ both divide n (in which case c | n also). On the
other hand, there are many parameters (n, k, a, c) where at least one of k − θ and k − τ
is divisible by a prime p with p - n. The symplectic graphs Sp(2r) ([21], 10.12.1) have
this property for p = 2. These graphs have parameters (22r − 1, 22r−1, 22r−2, 22r−2), with
eigenvalues k − θ = 2r−1(2r − 1) and k − τ = 2r−1(2r + 1).

Corollary 3.2. Assume that G is a strongly regular graph with parameters (n, k, a, c).
Then Φ(G) is killed by nc.

When both (adjacency) eigenvalues θ and τ are integers, Φ(G) contains subgroups iso-
morphic to (Z/(k − θ)Z)m(θ)−1 and (Z/(k − τ)Z)m(τ)−1. If there exists a prime p with
p | (k − θ) and p - n, then Φ(G) contains a subgroup isomorphic to (Z/pordp(k−θ)Z)m(θ).

Proof. Apply 2.3 and 2.6. �

A conference graph G is a strongly regular graph of the form (n, k, a, c) with a = c− 1,
k = 2c, and1 n = 4c+1; the multiplicities of k−θ and k−τ are equal to k. The Laplacian
eigenvalues of G are λ = (n +

√
n)/2 and λ̄ = (n −√

n)/2, with norm (n2 − n)/4 = nc.
Computations by Nathan Walters using Maple for Paley graphs on a prime number of
vertices lead to the explicit formula of our next result.

Proposition 3.3. Let G be a conference graph (n, k, a, c). The group Φ(G) contains a
subgroup isomorphic to (Z/cZ)2c, and is killed by nc. When n is square free, then

Φ(G) = (Z/cZ)k ⊕ (Z/nZ)k−1.

We postpone the proof of 3.3 to 3.8, after we have proved the more general result 3.7.

1It is known that n is the sum of two squares or, equivalently, that any prime factor p of n congruent
to 3 modulo 4 appears with an even power in the factorization of n. This implies for instance that c 6≡ 5
or 8 (mod 9), since for such a c, 4c + 1 is exactly divisible by 3.
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Remark 3.4 Computations were done by Grant Fiddyment in the case of the 15 strongly
regular graphs with parameters (25, 12, 5, 6) (see [37] for the list of graphs); in this case,
nc = 150, n−1

4
= 6, and the eigenvalues are integral: 15 and 10. As predicted by 2.3, Φ(G)

contains subgroups isomorphic to (Z/10Z)11, (Z/15Z)11, and (Z/6Z)12. The prime-to-5
part of all groups is (Z/6Z)12. There are ten such graphs where the 5-part of the group is

(Z/25Z)10 ⊕ (Z/5Z)2,

four such graphs where the 5-part of the group is

(Z/25Z)9 ⊕ (Z/5Z)4,

and one graph where the 5-part of the group is

(Z/25Z)7 ⊕ (Z/5Z)8.

Note that this example shows that the eigenvalues of a matrix M of rank n − 1 do not
determine the structure of the group Φ(M). Moreover, the theoretical results of the
previous section only establish the existence of elements of order 5 in Φ(G), in the form of
two subgroups isomorphic to (Z/5Z)11, and this example indicates that elements of order
52 are plentiful. Brandon Samples determined that the last group in the above list is the
group of the Paley graph on F52 .

3.5 Let M be any (n × n)-integer matrix of rank n − 1. Let charM(x) denote the char-
acteristic polynomial of M . Let f(x) = xd + · · · + a1x + a0 ∈ Z[x] denote a factor of
charM(x)/x. Write f(x) = xg(x) + a0. Consider the following exact sequence:

0 −→ Im(M)/Im(Mg(M)) −→ Zn/Im(Mg(M)) −→ Zn/Im(M) −→ 0.

The eigenvalues of Mg(M) are {λg(λ), charM(λ) = 0}. (It may happen in particular that
Mg(M) has rank smaller than n − 1.) If N is any (n × n)-integer matrix, let us denote
by Φ(N) the torsion subgroup of Zn/Im(N). Taking the torsion subgroups in the above
exact sequence results in the exact sequence of finite abelian groups:

0 −→ (Im(M)/Im(Mg(M)))tors−→Φ(Mg(M)) −→ Φ(M).

Suppose that f(λ) = 0, and that w is an eigenvector of M for λ. Then w is an
eigenvector of Mg(M) for −a0. Indeed, if Mw = λw, then Mg(M)w = −a0w, since
f(M)w = f(λ)w = 0. Since a0 is an integer and Mg(M) is an integer matrix, we find
that there exists an eigenvector v ∈ Zn of Mg(M) for a0, and that the class of v in
Zn/Im(Mg(M)) is in fact in Φ(Mg(M)), (of order dividing a0, since Mg(M)v = −a0v).
The image in Φ(M) of the class of v in Φ(M(gM)) is thus an interesting element of Φ(M)
‘related to the eigenvectors’ of λ.

Consider the natural map Zn/Im(Mg(M)) −→ Zn/Im(M)×Zn/Im(g(M)), and denote
by

q : Φ(Mg(M)) −→ Φ(M) × Φ(g(M))

the map it induces on the torsion subgroups. As we shall see below, the map q is not
always an isomorphism, but it does provide useful information on Φ(M) in some cases.

Consider the following special case. Let M be any (n× n)-integer matrix of rank n− 1
with r > 0. Assume that charM(x) = xf(x)µ. Then the group Φ(M) has order |a0|µ/r,
and r | a0 (2.1). The matrix Mg(M) has rank n − 1, with characteristic polynomial
x(x + a0)

dµ. If MR = 0 and tR′M = 0, then Mg(M)R = 0 and tR′Mg(M) = 0. We can
apply 2.1 again to find that the group Φ(Mg(M)) has order |a0|dµ/r.
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Let λ1, . . . , λd, denote the non-zero roots of f(x). When a1 6= 0, the matrix g(M) is
invertible, and

| det(g(M))| = |g(0)
d∏

i=1

g(λi)
µ| = |a1

d∏

i=1

(−a0/λi)
µ| = |a1a

dµ−µ
0 |.

As we see in this example when a1 6= 0, the map q is not an isomorphism, since the
integers |Φ(Mg(M))| and |Φ(M)||Φ(g(M))| differ by a factor |a1|.

When M is the Laplacian of a graph, the non-zero eigenvalues are all positive. Thus
the coefficient a1 of any factor f(x) of charM(x)/x is non-zero.

Proposition 3.6. Keep the notation of 3.5, and assume a1 6= 0. The kernel of the map
Zn/Im(Mg(M)) −→ Zn/Im(M) × Zn/Im(g(M)) is killed by a1, and the natural map

q : Φ(Mg(M)) −→ Φ(M) × Φ(g(M))

induces an isomorphism on the prime-to-a1 part of these groups.

Proof. Write g(x) = xh(x) + a1. Suppose that u ∈ Zn is such that there exists v and w
in Zn with Mv = u and g(M)w = u. Then Mv = (Mh(M) + a1)w, from which we get
a1w = M(v−h(M)w). Thus, a1u = a1g(M)w = g(M)M(v−h(M)w). It follows that the
class of a1u is trivial in Zn/Im(Mg(M)). In particular, the class of u is in Φ(Mg(M)).

Let v ∈ Zn represent an element of Φ(M) of order s, and let w ∈ Zn represent an element
of Φ(g(M)) of order t. Consider the element u := g(M)v − Mh(M)w. Clearly, u ≡ a1v
(mod Im(M)), and u ≡ a1w (mod Im(g(M))). We claim that u represents an element
of Φ(Mg(M)). Indeed, the class of stu is in the kernel of the map Zn/Im(Mg(M)) →
Zn/Im(M) × Zn/Im(g(M)) by our choice of v and w, and we showed above that this
kernel is killed by a1. It follows that u has finite order in Zn/Im(Mg(M)), as desired.

Restrict now the map q to the prime-to-a1 part of Φ(Mg(M)). It is clearly injective
since the order of an element in the kernel divides a1. Given any element (v̄′, w̄′) in
Φ(M) × Φ(g(M)) of order prime to a1, there exists (v̄, w̄) in Φ(M) × Φ(g(M)) such that
a1(v̄, w̄) = (v̄′, w̄′). The above discussion shows that we can find u ∈ Zn whose class
modulo Im(Mg(M)) is in Φ(Mg(M)) and such that q(u) = (a1v̄, a1w̄) = (v̄′, w̄′). Thus,
the map q is surjective when restricted to the prime-to-a1-parts. �

Corollary 3.7. Let M be a symmetric (n × n)- integer matrix of rank n − 1 with r > 0.
Assume that charM(x) = xf(x)µ and a1 6= 0.

(a) The group Φ(Mg(M)) is isomorphic to (Z/a0Z)µd−1 × Z/a0

r
Z.

(b) Let b and c denote, respectively, the largest divisor of r, and the largest divisor of a0/r,
coprime to a1. Then Φ(M) contains a subgroup isomorphic to (Z/bcZ)µ−1 × Z/cZ.

Proof. (a) Let Φ := Φ(Mg(M)). We already discussed above that r | a0 and |Φ| =
|a0|dµ/r. Proposition 2.3 (2) shows that Φ contains a subgroup H isomorphic to (Z/a0Z)dµ−1.
Proposition 2.6 shows that Φ is killed by |a0|. Consider the quotient Φ/H . It has order
|a0|/r. To prove (a), it remains to show that there exists an element in Φ of order |a0|/r
whose image in Φ/H generates Φ/H . To prove this fact, pick any ϕ ∈ Φ whose image in

Φ/H generates Φ/H . Then |a0|
r

ϕ ∈ H , and since |a0| kills Φ, the order of |a0|
r

ϕ divides r.

Since H is isomorphic to (Z/a0Z)dµ−1, we find that any element of order dividing r can

be divided by |a0|
r

in H , that is, there exists ε ∈ H such that |a0|
r

ε = |a0|
r

ϕ. It follows that

the element ϕ − ε has order exactly |a0|
r

in Φ, and its image in Φ/H generates Φ/H , as
desired.
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(b) The prime-to-a1 part Φ′ of the group Φ(Mg(M)) is isomorphic to (Z/bcZ)µd−1 ×
Z/cZ. Proposition 3.6 shows that the prime-to-a1 part Φ(M)′ of Φ(M) is a direct sum-
mand of Φ′ of order cµ. Hence, Φ(M)′ can only be isomorphic to a group of the form
(Z/bcZ)α, or (Z/bcZ)β × Z/cZ for some integers α and β. Since |Φ(M)| = |a0|µ/r, we
find that Φ(M)′ is isomorphic to (Z/bcZ)µ−1 × Z/cZ. �

3.8 Proof of 3.3. The characteristic polynomial of G is x(x2 − nx + nc)2c. When n is a
perfect square, we can apply 2.3 to all primes dividing (

√
n− 1)/2 and (

√
n+1)/2. Since

(
√

n− 1)/2 and (
√

n + 1)/2 are coprime and c = (n− 1)/4, we find that Φ(G) contains a
subgroup isomorphic to (Z/cZ)2c. When n is not a perfect square, this statement follows
directly from 3.7. When n is square free, the fact that nc kills Φ(G) with |Φ(G)| = (nc)2c/n
forces Φ(G) to contain a subgroup isomorphic to (Z/nZ)2c−1. �

4. How often is Φ(G) cyclic?

Let G be a connected graph with n vertices v1, . . . , vn, m edges (adjacent vertices may
be linked by more than one edge), and Laplacian M . Should one expect that Φ(G) is
‘often’ cyclic for a randomly chosen graph? More generally, it would be of interest to know
for a given r the probability that ∆r(M) = 1. (Recall that ∆r(M) denote the greatest
common multiple of the determinants of all (r × r)-minors of M , and that Φ(G) is cyclic
if and only if ∆n−2(M) = 1.) We formulate in this section three precise probabilities of
interest concerning the behaviour of the structure of Φ(G) in the set of all isomorphism
classes of graphs, in 4.1, 4.4, and 4.9.

4.1 For each integer n, let Gv
n be the set of all isomorphism classes of finite connected

graphs G having n vertices and no multiple edges, and having vertex connectivity at least
2 (for any vertex v of G, the topological space G \ {v} is connected). Then Gv

n is a finite
set. Let Cv

n denote the subset of Gv
n consisting of all the graphs G whose group Φ(G) is

cyclic. Consider

(2) ρv(n) :=
|Cv

n|
|Gv

n|
.

Since the cycle Cn on n vertices has Φ(Cn) cyclic of order n, we find that ρv(n) > 0. It

would be of interest to know whether the limits limn→∞ ρv(n) and limn→∞

Pn
i=1

|Cv
i |

Pn
i=1

|Gv
i |

exist.

Had we not asked for Gv
n to contain only graphs having vertex connectivity at least 2,

it would be obvious that |Cv
n| < |Cv

n+1|, so that limn→∞ |Cv
n| = ∞. Indeed, any graph G on

n vertices and cyclic group Φ(G) produces many graphs G′ on n + 1 vertices with cyclic
group Φ(G′): simply attach to any vertex of G a new vertex of degree 1. With our more
restrictive definition:

Proposition 4.2. With the above notation, limn→∞ |Cv
n| = ∞, and limn→∞ |Gv

n\Cv
n| = ∞.

Proof. Consider a cycle G on N vertices, and choose two adjacent vertices v and v′. Pick
a new vertex w and link it to both v and v′ to obtain a graph G′ on N + 1 vertices,
without multiple edges, and with vertex connectivity at least 2. This is an example of a
graph obtained from G by adding a chain, as in 6.6. Since Φ(G) is cyclic, so is Φ(G′). The
maximum degree of a vertex of G′ is 3. We can continue the process of adding chains (as
in 6.5) ` times. We can construct in this way at least `−1 non-isomorphic graphs on N +`
vertices, each with cyclic group Φ: indeed, for M ∈ [4, ` + 2], we can construct a graph
with maximum degree M . These `− 1 graphs are obviously pairwise not isomorphic, and
limn→∞ |Cv

n| = ∞.
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For each integer n > 10, there exist about 3n/10 ways to write n = x + y with
y > x > n/5 and n/2 < y < n/2 + 3n/10. For each such pair (x, y), there exists at
least one connected graph G with x vertices and y edges, with vertex connectivity at least
2, and with β(G) = y − x + 1 > 1 (start for example with a cycle on x vertices, and
keep adding edges to it). Now divide each edge of G in two (i.e., add one vertex on each
edge of G). The resulting graph G′ has n = x + y vertices, and 2y edges, and is without
multiple edges. Since β(G) > 1, the group Φ(G′) is not cyclic ([28], 5.1). Since G′ has
x + y vertices, we have constructed in this way about 3n/10 non-isomorphic graphs on n
vertices whose associated groups are not cyclic. �

Another way of producing many graphs of a given size with non-cyclic groups Φ is given
in 2.17. A criterion for a graph to have Φ(G) contain (Z/rZ)β(G) is given in [12], 7.5.1.

4.3 The following numerical data for some variant of ρv(n) was obtained by sophomore
Grant Fiddyment using the tables of non-isomorphic graphs downloaded from Brendan
McKay’s web page [31]. The table below pertains only to connected graphs on n vertices
contained in the complete graph Kn and without a vertex of degree 1.

The second line of the table exhibits the proportion of such graphs whose complexity
|Φ(G)| is squarefree (in which case Φ(G) is automatically cyclic). The third line exhibits
the proportion of such graphs whose group Φ(G) is cyclic. The fourth line of the table
exhibits the proportion of graphs whose group Φ(G) is cyclic among all graphs (on n
vertices without a vertex of degree 1) whose complexity |Φ(G)| is not squarefree.

n 5 6 7 8 9 10
% squarefree 27.27 29.51 28.60 32.68 37.74 41.49

% cyclic 45.45 52.46 56.80 62.68 68.02 72.41
% cyclic, not squarefree 25 32.56 39.50 44.57 48.64 52.84

This data suggests that, even among the graphs having complexity that is not squarefree,
one could expect to find a substantial proportion of graphs that are cyclic.

4.4 Consider, for each integer κ, the set Gκ of all isomorphism classes of finite connected
graphs G having κ(G) = κ, and having vertex connectivity at least 2. Then Gκ is a finite
set (use 4.5). Let Cκ denote the subset of Gκ consisting of all the graphs G whose group
Φ(G) is cyclic. Consider

(3) ρ(κ) :=
|Cκ|
|Gκ|

.

Since the cycle Cκ on κ vertices has Φ(Cκ) cyclic of order κ, we find that ρ(κ) > 0. It is
clear that if κ is a squarefree integer, then ρ(κ) = 1. Is there a universal constant c > 0
such that ρ(κ) > c for all κ? It would also be of interest to know whether the following

limit exists: limκ→∞

Pκ
i=1

|Ci|
Pκ

i=1
|Gi|

.

Proposition 4.5. Let G be a connected graph with vertex connectivity at least 2. Then
κ(G) ≥ m.

Proof. When G has two vertices and m edges, κ(G) = m. When G has three vertices u,
v, and w, with {uv} = a, {vw} = b, and {wu} = c, the vertex connectivity is at least 2 if
abc 6= 0. In this case, κ(G) = ab+ bc+ac ≥ a+ b+ c. When G has n > 3 vertices and has
vertex connectivity at least 2, consider the graph G1 obtained from G by removing all c
edges between a given pair of vertices {v, v′} of G. Then κ(G1) ≥ 1 since G1 is connected
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by hypothesis. The graph G2 obtained from G1 by identifying v and v′ has n−1 vertices,
and our proof will proceed by induction once we have proved the following claim.

It is always possible to find a pair of vertices {v, v′} of G such that the vertex connectiv-
ity of G2 is at least 2. Indeed, the vertex connectivity of G2 is always greater than or equal
to the vertex connectivity of G minus 1. Thus, to prove our claim, it suffices to show it for
graphs G of vertex connectivity 2. Assume that a pair {v, v′} of adjacent vertices is such
that the associated graph G2 has vertex connectivity 1. Then V (G)\{v, v′} = A1t· · ·tAr

for some r > 1, with A1, . . . , Ar nonempty pairwise disjoint sets of vertices of G producing
pairwise disjoint connected subgraphs H1, . . . , Hr of G such that the complement in G of
∪r

i=1Hi is the set of edges of G having an end point in {v, v′} union the set {v, v′}. Since
G is connected, we may assume that v is connected in G to a vertex a ∈ A1. Then v′ must
be connected in G to a vertex b ∈ Ai for some i > 1, otherwise G has vertex connectivity 1
since G\{v} would be disconnected. Consider now all (the finitely many) possible quadru-
ples (v, v′, A1 3 v, Ai 3 v′) constructed as above, and pick one where max(|A1|, |Ai|) is
maximal among all such quadruples (v, v′, A1 3 v, Ai 3 v′). Without loss of generality, we
may assume that max(|A1|, |Ai|) = |Ai|. Consider now the pair {v, a}. The vertices of Ai

are still connected in G \ {v, a}, and also connected to v′. Thus, by maximality of |Ai|,
we find that V (G) \ {v, a} cannot be the disjoint union of nonempty subsets A′

1, . . . , A
′
r′

producing disjoint connected subgraphs of G. Hence, the vertex connectivity of the graph
G2, obtained by removing the edges between v and a and identifying the vertices v and
a, is 2.

We proceed now by induction on the number n > 3 of vertices of G. Our claim above
implies the existence of a pair of vertices (linked by c > 0 edges) such that the induction
hypothesis can be applied to the associated graph G2, so that κ(G2) ≥ m − c. We find
then that κ(G) = κ(G1) + cκ(G2) ≥ 1 + c(m − c) ≥ m, since m ≥ c + 1. �

�

Example 4.6 For each integer of the form 4(n − 1), there exists several graphs G on
n > 2 vertices with Φ(G) cyclic of order 4(n − 1). Indeed, any graph G obtained from a
cycle on n vertices by ‘doubling’ two existing edges is such a graph. To see this, first note
that all such graphs G have the same dual G∗, with four vertices u, v, w, x, such that u
is linked to v and x; and w is linked to v and x, and v linked to x by n − 2 edges. The
group Φ(G∗) is easily computed to be cyclic of order 4n − 4.

Note that as n → ∞, the number of non-isomorphic graphs G constructed above with
Φ(G) cyclic of order 4(n − 1) tends to infinity. This statement is generalized in 4.8.

When n = 3, we obtain a graph with complexity 8. This graph, along with the cycle
on 8 vertices and their duals, are the only graphs in G8, and we have G8 = C8.

Example 4.7 Consider the graph G = G(x, y, z) having adjacency matrix



0 x y
x 0 z
y z 0



 .

It is not difficult to check that κ(G) = xy + yz + zx, and that Φ(G) is cyclic if and only
if gcd(x, y, z) = 1. If gcd(x, y, z) 6= 1, then Φ(G) is the product of two cyclic groups, of
order gcd(x, y, z) and (xy + yz + zx)/ gcd(x, y, z), respectively.

Taking x = 1 and y = 1, we find that xy + yz + zx = 1 + 2z represents all odd positive
integers greater than 1. Thus, the duals G(1, 1, z)∗ are graphs on z + 1 vertices with
Φ(G(1, 1, z)∗) cyclic of order 2z +1. When 1 ≤ x < y, z, the duals G(x, y, z)∗ are without
multiple edges, and are studied in [9], 9.6/10, or [29], 2.5.
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It turns out that the quadratic form xy + yz + zx represents all positive integers ex-
cept 1, 2, 4, 6, 10, 18, 22, 30, 42, 58, 70, 78, 102, 130, 190, 210, 330, 462, and possibly one ad-
ditional integer (the latter possibility being ruled out when assuming the Generalized Rie-
mann Hypothesis) [8]. In fact, much more is known about the quadratic form xy+yz+zx,
allowing us to deduce the following proposition.

Proposition 4.8. Let Cκ be as in 4.4. Then limκ→∞ |Cκ| = ∞.

Proof. Let T (n) denote the set of integer solutions (x, y, z) of the equation xy+yz+zx = n
with 0 < x < y < z and gcd(x, y, z) = 1. Let h(d) denote the number of equivalence
classes of primitive binary quadratic forms ax2 + by2 + cz2 with a > 0 and b2 − 4ac = −d.
Let w(n) denote the number of different prime factors in the factorization of n. Yuan [39]
(as reported in Math Reviews MR1778804) showed that

2|T (n)| = h(−4n) − 2w(n)

if n is odd or 8 | n, and 2|T (n)| = h(−4n)−2w(n)−1 if n is even and 8 - n. (See also [8], proof
of 3.1, when n is squarefree and even.) Chowla [13] proved that limd→∞ h(d)2−w(d) = ∞.
It follows from these results that limn→∞ |T (n)| = ∞. The proposition follows by applying
the above statement to the graphs G(x, y, z) introduced in 4.7. When (x, y, z) ∈ T (n),
such a graph has a cyclic group of order n. It is clear that two graphs G(x, y, z) and
G(x′, y′, z′) with (x, y, z) and (x′, y′, z′) in T (n) are not isomorphic if (x, y, z) 6= (x′, y′, z′)
(since (x, y, z) ∈ T (n) has 0 < x < y < z by hypothesis). �

4.9 A different statistics on the Smith normal form of Laplacians of graphs, of interest
to algebraic geometers, is the following. Fix an integer β, and consider the set of all
isomorphism classes of connected graphs G such that β(G) = β. What is the proportion
of graphs in this set with Φ(G) cyclic? (See [11] for a relevant result.) To formulate a
precise question, consider the set Bn of all isomorphism classes of connected graphs G on
n vertices such that β(G) = β (we could also further restrict Bn to consist only of the
graphs without vertices of degree 1). Let B′

n denote the subset of Bn consisting of the
graphs G with Φ(G) cyclic. Consider

lim
n→∞

∑n
i=1 |B′

i|∑n
i=1 |Bi|

.

To give an example where a related limit can be computed, consider the family of
dual graphs G∗(x, y, z), 0 < x ≤ y ≤ z, with G(x, y, z) introduced in 4.7. Each graph
G∗(x, y, z) has β(G∗(x, y, z)) = 2. When x > 1 or y > x = 1, the graph is without
multiple edges and has vertex connectivity 2. Any graph G with β(G) = 2 and vertex
connectivity 2 belongs to this family. We owe the proof of the next proposition to Andrew
Granville.

Proposition 4.10. Consider the set D(n) of graphs G∗(x, y, z), 0 < x ≤ y ≤ z, with
x + y + z = n. Let C(n) denote the subset of D(n) consisting of the graphs G∗(x, y, z)
with Φ(G∗(x, y, z)) cyclic. Then

lim
n→∞

∑n
i=3 |C(i)|∑n
i=3 |D(i)| =

1

ζ(3)
= 0.8319....

Proof. Recall that Φ(G∗(x, y, z)) is cyclic if and only if gcd(x, y, z) = 1. Abusing notation,
we let

D(n) := {(x, y, z) ∈ N3, 0 < x ≤ y ≤ z, x + y + z = n},
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and C(n) = {(x, y, z) ∈ D(n), gcd(x, y, z) = 1}. For each x ≤ n/3, we have n − x =
y + z ≥ 2y. We find that

|D(n)| =

bn/3c∑

i=1

b(n − i)/2c − (i − 1) = n2/12 + O(n).

Therefore,
n∑

i=3

|D(i)| = n3/36 + O(n2).

If (x, y, z) ∈ D(n) with g := gcd(x, y, z), then (x/g, y/g, z/g) ∈ C(n/g), so that

|D(n)| =
∑

g|n

|C(n/g)|.

By Möbius inversion, |C(n)| =
∑

d|n µ(d)|D(n/d)|. Therefore

∑n
i=3 |C(i)| =

∑n
i=3

∑
d|i µ(d)[(i2/12d2) + O(i/d)]

= 1
12

∑
d≤n µ(d)

∑
3≤i≤n,d|i(i

2/d2) + O(n2)

= 1
12

∑
d≤n µ(d)

∑
m≤n/d m2 + O(n2)( writing i = dm)

= 1
12

∑
d≤n µ(d)((n/d)3/3 + O((n/d)2)) + O(n2)

= n3

36

∑
d≤n µ(d) 1

d3 + O(n2)

= n3

36
(1/ζ(3)) + O(n2),

where we recall the identity 1/ζ(s) =
∑∞

d=1 µ(d)/ds. Therefore,

(
n∑

i=3

|C(i)|)/(
n∑

i=3

|D(i)|) = 1/ζ(3) + O(1/n).

Thus, the limit as n → ∞ is 1/ζ(3). �

5. Removing disjoint paths from a complete graph

We study in this section a family of subgraphs G(n, a, b) of the complete graph Kn and
completely determine the structure of the groups Φ(G(n, a, b)). We also obtain informa-
tion on the proportion of graphs G(n, a, b) whose group Φ(G(n, a, b)) is cyclic.

5.1 It is proved in [27], 5.3, that if G′ is obtained from G by removing all edges of G
between a given pair of vertices, then the minimal number of generators of Φ(G) and
Φ(G′) can differ by at most 1.

The complete graph Kn on n vertices has Φ(Kn) = (Z/nZ)n−2. Starting with Kn and
removing s edges {e1, . . . , es} to obtain a graph G, we find that the group Φ(G) can
be cyclic only when s ≥ n − 3. Moreover, if s = n − 3 and Φ(G) is cyclic, then any
graph obtained from Kn by removing r < s edges in {e1, . . . , es} has a group Φ minimally
generated by n − 2 − r elements and is thus not cyclic. This is the case for the class of
graphs studied in this section.

Let a, b, and n be positive integers such that a + b = n − 1. Let G(n, a, b) denote the
graph obtained by removing from Kn the n − 3 edges of two vertex-disjoint paths on
a and b vertices, respectively. The complexity of such graph is well-known, and can be
computed using a formula of Temperley ([5], 6.4). To be able to specify the structure of
the group Φ(G(a, b, n)), we introduce the following notation.
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Let k > 2 be any positive integer and consider the (k × k)-tridiagonal matrix

Dk :=




1 1 0 · · · 0

1 0 1
...

0 1
. . .

. . . 0
...

. . . 0 1
0 . . . 0 1 1




.

When k = 2 we set Dk =

(
1 1
1 1

)
. Write ξm := cos(2π/m) + i sin(2π/m). The

characteristic polynomial char(Dk)(x) := det(xIk −Dk) of Dk can be computed explicitly
as follows.

Proposition 5.2. If k ≥ 2, then char(Dk)(x) =
∏k−1

s=0(x − (ξs
2k + ξ−s

2k )).

Proof. We exhibit below the k distinct eigenvectors of Dk and their corresponding eigen-
value. First, (1, . . . , 1) has eigenvalue 2. Then, for s = 1, . . . , k − 1,

Es := (1, ξs
2k, (ξ

s
2k)

2, . . . , (ξs
2k)

k−1) + ((ξs
2k)

2k−1, . . . , (ξs
2k)

k+1, (ξs
2k)

k)

has eigenvalue λs = ξs
2k + ξ−s

2k . These statements can be checked directly. Note that
the matrix Dk is, up to four coefficients, the adjacency matrix of a cycle on k vertices.
The eigenvectors of this latter matrix are known (see [5], 3.5), and almost all eigenvalues
have two linearly independent eigenvectors. Adding the two eigenvectors for the same
eigenvalue gives an eigenvector for Dk for that eigenvalue. Then the matrix D2k is, up to
four coefficients, the direct sum of two matrices Dk. It turns out that the vectors Es are
obtained by truncating in half k − 1 eigenvectors of D2k constructed above. �

Remark 5.3 Much can be said a priori on the eigenvalues of Dk. The Perron-Frobenuis
theorem shows that the absolute value of an eigenvalue λ of a non-negative matrix is
bounded by the maximum of its row-sums. Thus, the eigenvalues of Dk are in [−2, 2].
Kronecker [25] showed that if a monic polynomial of degree k in Z[n] has λ1, . . . , λk real
roots and all the roots are in [−2, 2], then λi = 2 cos(aiπ/bi) for some integers ai, bi.

Since char(Dk)(x) is divisible by (x − 2), we let hk(x) := char(Dk)(x)/(x − 2).

Proposition 5.4. Let a, b ≥ 2 be such that a + b = n − 1. Then

Φ(G(n, a, b)) = Z/γZ × Z/δZ,

with γ | δ and γδ = n|ha(2−n)hb(2−n)|. Moreover, γ divides gcd(|ha(2−n)|, |hb(2−n)|).
When gcd(a, b) = 1, Φ(G(n, a, b)) is cyclic.

Proof. To show that the group Φ(G) is cyclic, it suffices to prove that ∆n−2 = 1. In fact,
it suffices to exhibit t (n× n)-matrices Ni row and column equivalent to M , and for each
i an (n − 2 × n − 2)-minor Pi of Ni such that gcd(det(Pi), i = 1, . . . , t) = 1.

We begin by showing that Φ(G(n, a, b)) can be generated by at most two elements. Let
0 < a ≤ n, and let G(n, a) denote the graph obtained from Kn by removing the edges of a
path on a vertices. The ‘cyclicity’ in our next lemma was first observed computationally
by G. Michael Guy.

Lemma 5.5. The group Φ(G(n, n − 1)) is cyclic of order |hn−1(2 − n)|. The group
Φ(G(n, n)) is cyclic of order |hn(2 − n)|/n.
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Proof. Let us write {1, . . . , n} for the vertices of G(n, n−1), and (i, j) for an edge linking
the vertex i to the vertex j. Without loss of generality, we may enumerate the edges
removed from Kn to get G(n, n − 1) as (1, 2), (2, 3), . . . , (n − 2, n − 1). Consider the
matrix M ′ obtained from the Laplacian M of G(n, n − 1) by subtracting the last row of
M to each of the other rows. Consider now the (n− 2× n− 2)-minor M ′′ of M ′ obtained
by removing the first and last columns of M ′, and the last two rows of M ′. It is easy to
verify that det(M ′′) = 1. Thus, the greatest common divisor of the determinants of the
(n − 2 × n − 2)-minors of M is 1, and Φ(G(n, n − 1)) is cyclic.

Let Jn denote the (n × n)-matrix all of whose entries are 1. Recall that κ(G) =
det(Jn + M)/n2 ([5], 6.4). The complexity of G(n, n − 1) is easily computed using this
formula.

In the case of G(n, n), we proceed similarly. The edges removed from Kn are now
(1, 2), (2, 3), . . . , (n − 1, n). Consider the matrix M ′ obtained from the Laplacian M of
G(n, n) by subtracting the last row of M to each of the other rows. Consider now the
(n − 2 × n − 2)-minor M ′′ of M ′ obtained by removing the last two columns of M ′, and
the first and last rows of M ′. It is easy to verify that det(M ′′) = 1. �

Remark 5.6 An explicit formula for the coefficients of (−1)a−1ha(2−n) can be deduced
from Corollary VIII in [32].

Let us write {1, . . . , n} for the vertices of G(n, a, b). Without loss of generality, we may
enumerate the n − 3 edges removed from the complete graph to get G(n, a, b) as (1, 2),
(2, 3), . . . , (a − 1, a) (for the path on a vertices) and (a + 1, a + 2), (a + 2, a + 3), . . . ,
(n − 2, n − 1) (for the path on b = n − 1 − a vertices). To prove that Φ(G(n, a, b)) can
be generated by two elements, we note that removing the edge (a, a + 1) from G(n, a, b)
results in the graph G(n, n − 1) which is cyclic by the previous lemma. Our claim that
Φ(G(n, a, b)) can be generated by two elements follows then from 5.1. The order of
Φ(G(n, a, b)) is computed using the formula κ(G) = det(Jn + M)/n2 ([5], 6.4).

Consider the matrix M ′ obtained from the Laplacian M of G(n, a, b)) by subtracting
the last row of M to each of the other rows. For each integer ` = 1, . . . , b + 1, consider
now the (n−2×n−2)-minor M ′[`] of M ′ obtained by removing the first and last columns
of M ′, and by removing the a-th row and the (a + `)-th row. The minor M ′[`] is made of
four blocks (

A 0
B N [`]

)
,

where det(A) = 1, and N [`] is by definition the matrix obtained from the (b+1)×b-matrix
N below by removing its `-th row:

N :=




n − 1 1 0 . . . 0

1 n − 2 1
...

0 1
. . .

. . . 0
...

. . . 1
0 . . . 0 1 n − 1
−1 . . . −1 −1 −1




.

Consider the matrix N as having coefficients in Z[n], so that det(N [`]) is a polynomial in
the variable n. When ` = b + 1, we have det(N [b + 1]) = (−1)bchar(Db)(2 − n).

We have thus found a matrix row and column equivalent to the Laplacian of G(n, a, b)
with an (n− 2× n− 2) minor whose determinant divides char(Db)(2− n). Reversing the
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roles played by a and b, we find that a matrix row and column equivalent to the Laplacian
of G(n, a, b) has an (n− 2× n− 2) minor whose determinant divides char(Da)(2− n). It
follows that γ divides the greatest common divisor of char(Da)(2−n) and char(Db)(2−n).
Recall that char(Da)(2−n) = (−n)ha(2−n). Then γ divides n gcd(ha(2−n), hb(2−n)).

Computations indicate, rather surprisingly, that for each ` = 1, . . . , b, we have | det(N [`])| =
|hb(2 − n)|. It would follows from this fact that γ | gcd(ha(2 − n), hb(2 − n)). We prove
this latter fact below without explicitly computing | det(N [`])|.
Lemma 5.7. Let p be a prime divisor of n. Then det(N [b]) ≡ (−1)bb (mod p).

Proof. Let N [b]∗ denote the comatrix of N [b]. We have

N [b] t(1, . . . , 1) = t(n, . . . , n,−b).

Multiply both side of this equation by N [b]∗ to obtain

t(det(N [b]), . . . , det(N [b])) = N [b]∗ t(n, . . . , n,−b).

To evaluate the last entry of the right hand side modulo a prime p dividing n, it suffices to
compute the determinant of the principal minor N [b]b,b obtained from N [b] by removing
its last row and column. We claim that det(N [b]b,b) ≡ (−1)b−1 (mod p), from which the
lemma follows. Consider the matrix modulo p:

N [b]b,b ≡




−1 1 0 . . . 0

1 −2 1
...

0
. . .

. . .
. . . 0

... 1 −2 1
0 . . . 0 1 −2




.

Add the first column to the second, and then add the first row to the second. Continue this
easy row and column reduction of this matrix to obtain that its determinant is (−1)b−1.

It follows from the above discussion that we have obtained an (n − 2 × n − 2) minor
of a matrix row and column equivalent to M whose determinant is congruent to (−1)bb
modulo any prime p dividing n. Reversing the roles played by a and b, we also obtain an
(n− 2× n− 2) minor of a matrix row and column equivalent to M whose determinant is
congruent to (−1)aa modulo any prime p dividing n. Thus there exists integers c and d
such that γ | c and γ | d, and c ≡ (−1)aa (mod p) and d ≡ (−1)bb (mod p). If p - a, then
p - γ, as desired. If p | a (and p | n), then p | n − a, with n − a = b + 1. It follows that
p - b, so that p - γ, as desired. We have thus shown that γ | gcd(ha(2 − n), hb(2 − n)).

Lemma 5.8. Assume that gcd(a, b) = 1. Then for any integer c, gcd(ha(c), hb(c)) = 1.

Proof. Let Resx(ha(x), hb(x)) denote the resultant of ha(x) and hb(x). Then there exist
integer polynomials α(x) and β(x) such that α(x)ha(x)+β(x)hb(x) = Resx(ha(x), hb(x)).
Thus, to prove our lemma, it suffices to show that Resx(ha(x), hb(x)) = ±1. The factor-
ization of ha(x) and hb(x) is given explicitly in 5.2. Since gcd(a, b) = 1, these polynomials
have no common factors. Since the resultant is multiplicative, we are reduced to proving
that Resx(fa(x), fb(x)) = ±1 when fa(x) and fb(x) are any two irreducible factors in Z[x]
of ha(x) and hb(x), respectively.

Given any integer polynomial fa(x), define

φa(z) := zdeg(fa(x))fa(z + 1/z).

Let now fa(x) and fb(x) be two monic integer polynomials.
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5.9 We claim that the prime divisors of r := Resx(fa(x), fb(x)) are also prime divisors
of R := Resz(φa(z), φb(z)). Indeed, let α(z) and β(z) be integer polynomials such that
α(z)φa(z) + β(z)φb(z) = R.

Consider now Z[z + 1/z] as a polynomial ring in the variable z + 1/z. This ring is
in a natural way a subring of the ring Z[z, 1/z]. The extension Z[z, 1/z] is integral over
Z[z + 1/z], with basis {1, z}. The minimal polynomial of z over Z[z + 1/z] is y2 − (z +
1/z)y+1. Thus, given any polynomial γ(z) in Z[z], we can find polynomials c1(z+1/z) and
c2(z +1/z) such that γ(z) = c1(z +1/z)+ zc2(z +1/z). In particular, we find a1(z +1/z)
and a2(z + 1/z) in Z[z + 1/z] such that α(z)zdeg(fa(x)) = a1(z + 1/z) + za2(z + 1/z).
Similarly, we can write β(z)zdeg(fb(x)) = b1(z + 1/z) + zb2(z + 1/z) for some b1(z + 1/z)
and b2(z + 1/z) in Z[z + 1/z]. Hence, our relation

α(z)zdeg(fa(x))fa(z + 1/z) + β(z)zdeg(fb(x))fb(z + 1/z) = R

implies the existence of an identity

a1(z + 1/z)fa(z + 1/z) + b1(z + 1/z)fb(z + 1/z) = R.

In other words, there exist integer polynomials a1(x) and b1(x) such that

(4) a1(x)fa(x) + b1(x)fb(x) = R.

Let p be a prime divisor of r, and denote by a ‘bar’ the reduction modulo p. Since fa(x)
and fb(x) are monic, r̄ is the resultant of f̄a(x) and f̄b(x). Since r̄ = 0 in Z/pZ, f̄a(x) and
f̄b(x) have a common root. Evaluating (4) at this common roots implies that R̄ = 0, as
desired.

To conclude the proof of Lemma 5.8, we need to compute the resultant of the minimal
polynomial f2a,s(x) of ξs

2a + ξ−s
2a , s = 1, . . . , a − 1, and the minimal polynomial f2b,t(x)

of ξt
2b + ξ−t

2b , t = 1, . . . , b − 1. Note that since we assume gcd(a, b) = 1, we may as-
sume that a is odd. Then ξ2a = −ξa, and f2a,s(x) = ±fa,s(−x). If both a and b are
odd, we find that Res(f2a,s(x), f2b,t(x)) = ±Res(fa,s(x), fb,t(x)), since Res(f(x), g(x)) =
±Res(f(−x), g(−x)). If b is even, then −ξ2b is also a primitive 2b-th root of 1, and
thus a conjugate of ξ2b. So when t = 2r is even, f2b,t(x) = fb,r(x), and when t is odd,
f2b,t(x) = f2b,t(−x). We find that we only need to show that Res(fa,1(x), fb,1(x)) = ±1
for any a, b > 1 with gcd(a, b) = 1. This is done in the next lemma.

Lemma 5.10. Let fa(x) denote the minimal polynomial over the integers of ξa + ξ−1
a .

Assume that a, b > 1 and gcd(a, b) = 1. Then Resx(fa(x), fb(x)) = ±1.

Proof. Assume a > 2. We claim that φa(z) := zdeg(fa(x))fa(z + 1/z) is the minimal
polynomial over Z of ξa. Indeed, since ξa + ξ−1

a is a real number and ξa is not, and since
Q(ξa + ξ−1

a ) ⊂ Q(ξa), we find that the degree of φa(z) is equal to [Q(ξa) : Q]. Since ξa is
a root of φa(z), φa(z) is the minimal polynomial. The assertion Resx(fa(x), fb(x)) = ±1
when both a, b > 1 follows now from 5.9 and from the assertion Resz(φa(z), φb(z)) = 1,
proved in [1] or [20] when gcd(a, b) = 1 and a, b > 1. When a = 2, fa(x) = x − 2,
and φa(z) = (z + 1)2. Thus, Resz(φa(z), φb(z)) = Resz(z + 1, φb(z))2, and we obtain the
desired result again from [1]. �

This concludes the proof of Proposition 5.4.

Remark 5.11 Let ϕ(x) denote Euler’s totient function. For a fixed n, the proportion of

graphs G(n, a, b) with a, b > 1 and Φ(G(n, a, b)) cyclic is at least ϕ(n−1)−2
n−4

if n ≥ 6 is even,

or ϕ(n−1)−2
n−3

if n ≥ 5 is odd. Indeed, gcd(a, b) = 1 and a + b = n − 1 occur simultaneously
if and only if a is coprime to n − 1.
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Consider now the proportion of graphs G(i, a, b) with i ≤ n whose group Φ(G(i, a, b))
is cyclic. This proportion is at least

∑n−1
i=4 ϕ(i) − 2

g(n)
,

where g(n) is a polynomial of degree 2 in n, with leading coefficient 1/2. It is well known
that

1

n2

n∑

i=1

ϕ(i) =
3

π2
+ O(

log(n)

n
).

Hence, we find that among all graphs G(n, a, b), the proportion of graphs having a cyclic
group Φ(G(n, a, b)) is at least

lim
n→∞

∑n
i=1 ϕ(i)

n2/2
=

6

π2
.

Let a, b, and n be positive integers such that a+ b = n. Let H(n, a, b) denote the graph
obtained by removing from Kn the n − 2 edges of two vertex-disjoint paths on a and b
vertices, respectively. The following statement was first observed computationally by G.
Michael Guy when n is prime.

Proposition 5.12. Let a, b ≥ 2 be such that a + b = n. Then

Φ(H(n, a, b)) = Z/γZ × Z/δZ,

with γ | δ and γδ = |ha(2−n)hb(2−n)|. Moreover, γ divides gcd(|ha(2−n)|, |hb(2−n)|).
When gcd(a, b) = 1, Φ(H(n, a, b)) is cyclic.

Proof. This proposition is proved using the same techniques as in the proof of 5.4. The
details are left to the reader. An alternate proof of the fact that when gcd(a, b) = 1,
Φ(H(n, a, b)) is cyclic, is as follows. Note that by removing the edge (a, a + 1) from
H(n, a, b), we obtain the graph G(n, n), with Φ(G(n, n)) of order |hn(2 − n)|/n. When
gcd(a, b) = 1 and a + b = n, gcd(a, n) = gcd(b, n) = 1. If follows from 5.8 that
|Φ(H(n, a, b))| and |Φ(G(n, n))| are coprime, so Φ(H(n, a, b)) is cyclic by 6.1. �

Remark 5.13 Let {1, . . . , n} denote the vertices of Kn, and let (1, 2), . . . , (a−1, a) denote
the edges removed from Kn to obtain G(n, a). Let Gc(n, a) denote the graph obtained
from G(n, a) by removing the edge (1, a). The graph Gc(n, a) is thus obtained from the
complete graph Kn by removing a cycle on a vertices. Lemma 5.5 and 5.1 imply that the
groups of Gc(n, n − 1) and Gc(n, n) are either cyclic or are generated by two elements.
Computations seem to indicate that these groups are never cyclic. In fact, the order of
Φ(Gc(n, n−1)) is a perfect square s2 when n is even (use [5], 6.4, and the spectrum of the
cycle in [5], page 17), and computations provide evidence that Φ(Gc(n, n−1)) = (Z/sZ)2.

6. Adding chains

We present in this section a construction of graphs with cyclic groups Φ(G).

6.1 Recall the following facts. Let v and v′ be two vertices of G linked by c > 0 edges.
Let G1 denote the graph obtained from G by removing these c edges, and let G2 denote
the graph obtained from G1 by identifying v with v′. We will always assume in the rest of
this section that the resulting graph G1 is connected. Then |Φ(G)| = |Φ(G1)|+ c|Φ(G2)|.
Let φ1 := |Φ(G1)| and φ2 := |Φ(G2)|. We showed in [27], 5.1, that if gcd(φ1, φ2) = 1 or,
equivalently, if gcd(φ1, |Φ(G)|) = 1, then Φ(G) is cyclic. The proof is easy, and we review
it in the context of the next lemma.
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Lemma 6.2. Suppose that gcd(|Φ(G)|, φ1) = 1. Then Φ(G) and Φ(G1) are cyclic.

Proof. Let M denote the Laplacian of G. Assume that the edges to be removed are
between v1 and v2. Then the (n− 2× n− 2)-minor M2,2 of M obtained by removing the
first two rows and the first two columns is also an (n− 2× n− 2)-minor of the Laplacian
of G1. Suppose that Φ(G1) is not cyclic. Then there exists a prime p that divides both
φ1 and det(M2,2). But it can easily be checked that | det(M2,2)| = φ2. It follows that p
also divides |Φ(G)| = φ1 + cφ2, a contradiction. The proof for Φ(G) is similar. �

Example 6.3 Obviously, any graph without vertices of degree 1 and with |Φ(G)| prime
has the property that gcd(φ1, |Φ(G)|) = 1 for any pair of adjacent vertices with G1

connected. Thus, if |Φ(G)| is prime, all the subgraphs of G of the form G1 have Φ(G1)
cyclic.

Remark 6.4 It is not true that if Φ(G) is cyclic, then there exists a pair of adjacent
vertices v and v′ in G such that gcd(φ1, |Φ(G)|) = 1. Indeed, consider the graph G
obtained by gluing together a vertex of a cycle of length a > 1 with a vertex of a cycle
of length b > 1, with gcd(a, b) = 1. Then Φ(G) = Z/abZ is cyclic, but for any edge of G,
Φ(G1) is cyclic of order either a or b.

It is not true that if Φ(G) is cyclic, then there exists a pair of adjacent vertices v and
v′ in G such that Φ(G1) is cyclic. The following matrix A is the adjacency matrix of a
connected graph G on 8 vertices with Φ(G) is cyclic (of squarefree order 42 ·11), and such
that the group Φ(G1) of every subgraph of G of the form G1 is not cyclic. This graph
was found by Grant Fiddyment after an exhaustive search:

A =




0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 0 1 0 0 0
1 1 0 1 1 1 0 0




.

Let G be a graph, and fix a pair of vertices {v, v′} of G. Take ν ≥ 3 vertices w1, . . . , wν,
and link wi to wi+1 by one edge for all i ∈ {1, . . . , ν − 1}, except that for one index i0,
the vertex wi0 is linked to wi0+1 by d > 0 edges. Let G′ = G′(ν, d, i0) denote the graph
obtained from G by gluing the vertex w1 to v and the vertex wν to v′. We say that the
graph G′ is obtained from G by attaching, or adding, a chain at v and v′.

Suppose that v and v′ are linked by a single edge. We say that the graph G′′ is obtained
from G by dividing the edge in ` if G′′ is simply the graph G with ` − 1 new vertices on
the original edge between v and v′. Our next proposition shows that starting with certain
graphs G with Φ(G) cyclic, we can inductively construct infinitely many sequences of new
cyclic graphs by attaching chains or dividing edges.

Proposition 6.5. Let G be a graph with two fixed vertices v and v′ linked by c > 0 edges
as above, such that φ1 := |Φ(G1)| and φ2 := |Φ(G2)| are coprime, so that Φ(G) is cyclic.

(a) Let G′ = G′(ν, d, i0) be a graph obtained from G by attaching a chain at v and v′. Then
Φ(G′) is cyclic. More precisely, let G′

1 denote the graph obtained from G′ by removing
the d edges between wi0 and wi0+1. Let G′

2 denote the graph obtained from G′
1 by

identifying wi0 and wi0+1. Then |Φ(G′
1)| = φ1+cφ2 and |Φ(G′

2)| = (ν−1)(φ1+cφ2)+φ2

are coprime,
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(b) Assume that c = 1. Let G′′ denote any graph obtained by dividing the edge between v
and v′. Then Φ(G′′) is cyclic.

Proof. (a) We leave it to the reader to check that |Φ(G′
2)| = (ν − 1)(φ1 + cφ2) + φ2, using

several times the deletion/contraction formula recalled in 6.1. If |Φ(G′
1)| and |Φ(G′

2)| are
divisible by a prime p, then p | φ2 and, hence, p | φ1, since p | φ1 + cφ2. This contradicts
the fact that φ1 and φ2 are coprime. We conclude that Φ(G′) is cyclic using 6.1.

(b) Let G′′
1 denote the graph obtained from G′′ by removing one of the ‘new’ ` edges

between v and v′. It is clear that |Φ(G′′
1)| = φ1. The associated graph G′′

2 has |Φ(G′′
2)| =

`φ1 + φ2. Clearly, if gcd(φ1, φ2) = 1, then gcd(φ1, `φ1 + φ2) = 1. We conclude using 6.1.
�

Example 6.6 We can use the above proposition starting with any cycle G on n > 2
vertices and any pair {v, v′} of adjacent vertices on the cycle. Indeed, removing an edge
from G gives a tree G1 with |Φ(G1)| = 1, and G2 is a cycle on n − 1 vertices, so that
gcd(φ1, φ2) = 1.

Similarly, we can start with a ‘modified’ cycle having c > 1 edges between v and v′.
Adding chains repeatedly to this graph and its successors produces a graph G which
can also be described as in the corollary below. The proof of the corollary is an easy
consequence of the proposition. A very similar statement is proved in [10], 2.6.

Corollary 6.7. Start with a cycle, whose vertices and edges lie on a circle in the plane.
Number the vertices as v1, . . . , vn, with vi linked to vi+1 for i = 1, . . . , n− 1, and vn linked
to v1. Choose d > 1 and draw any number of edges between pairs of vertices of the cycle
having one vertex in {v2, . . . , vd} and the other in {vd+2, . . . , vn}, so long as all these edges
are contained inside the circle and the resulting graph G is planar as drawn. Then Φ(G)
is cyclic.

Remark 6.8 We can use the above proposition and Example 6.6 to give upper bounds
for the number of generators of certain groups Φ(G). For instance, take any cycle on n
vertices, add one vertex w, and link (with one edge) this vertex to some vertices of the
cycle. Call G the resulting graph. In the case where w is linked to all vertices of the cycle,
the resulting graph G is a wheel, and the group of a wheel is known to be the product of
two cyclic groups when n is odd ([6], 9.2). Removing from G any edge belonging to the
initial ‘rim’ cycle produces a graph G1 which can be built inductively from a smaller cycle
by adding chains, as in Example 6.6, and then adding possibly up to two branches (trees
with maximal degree 2). Thus, Φ(G1) is cyclic, and 5.1 shows that Φ(G) is generated by
(at most) two elements.

Take now two distinct cycles on n and n′ vertices, with vertices v1, . . . , vn and w1, . . . , wn′.
Orient both cycles clockwise, and number the vertices of each cycle consecutively. Pick
s ≥ 2 indices 1 ≤ i1 < · · · < is ≤ n and s indices 1 ≤ j1 < · · · < js ≤ n′. Let G denote
the graph obtained from the disjoint union of the two cycles by linking vi` to wj`

by one
edge, for ` = 1, . . . , s. The group Φ(G) is generated by (at most) three elements. Indeed,
removing one edge of the path between vi1 and vi2 on the first cycle and removing one
edge of the path between wj1 and wj2 on the other cycle results in a graph G′ which can
be built inductively from a smaller cycle by adding chains as in 6.6, and then adding
possibly some branches. Thus Φ(G′) is cyclic, and we conclude using 5.1. In the case
n = n′ = s, the resulting graph is considered in [17], where the group Φ(G) is shown
never to be cyclic, and to require three generators for certain n.
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