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Abstract. Let k be an algebraically closed field of characteristic p > 0. Let B1/k
and B2/k be two smooth proper connected curves, each endowed with an automorphism
σi : Bi → Bi of order p. Let Y := B1 × B2, and let σ : Y → Y be the automorphism
σ1 × σ2. We show that the graph of the resolution of any singularity of Y/ 〈σ〉 is a
star-shaped graph with three terminal chains when B2 is an ordinary curve of positive
genus. The intersection matrix N of the resolution satisfies | det(N)| = p2, and can be
completely determined when B1 is also ordinary, or when σ1 has a unique fixed point.
The singularity is rational.

Wild Z/pZ-quotient singularities of surfaces are expected to have resolution graphs
which are trees, with associated intersection matrices N satisfying | det(N)| = pr for some
r ≥ 0. We show, for any s > 0 coprime to p, the existence of resolution graphs with one
node, s + 2 terminal chains, and with intersection matrix N satisfying | det(N)| = ps+1.

KEYWORDS Product of curves, cyclic quotient singularity, rational singularity, wild,
intersection matrix, resolution graph, fundamental cycle.
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1. Introduction

Let k be an algebraically closed field of characteristic p > 0. In this article, we study
the wild quotient singularities of the simplest type of surfaces over k, the quotients of
products of curves by a ‘diagonal’ automorphism of order p.

Let B1/k and B2/k be two smooth proper connected curves, each endowed with an
automorphism σi : Bi → Bi of order p. Let Y := B1 × B2, and let σ : Y → Y be the
automorphism σ1×σ2. Let Pi be a fixed point of σi, i = 1, 2. Then Z := Y/ 〈σ〉 is singular
at the image Q of (P1, P2). Our aim is to provide information on the resolution of the
singularity Q. Let us introduce the following notation.

Let Z/k be a normal surface. Let Zsing denote the singular locus of Z. A morphism
f : Zdesing → Z will be called a minimal resolution of the singularities of Z if the following
properties hold: The scheme Zdesing/k is a smooth proper variety and f is a birational
proper morphism whose restriction Zdesing \ f−1(Zsing) → Z \ Zsing is an isomorphism.
Moreover, for each closed point R ∈ Zsing, the divisor f−1(R) is assumed to have smooth
components with normal crossings, and to be minimal with this property.

Recall that to a connected curve ∪n
i=1Ei on a regular surface X/k we associate an

intersection matrix N and a connected graph G(N) as follows. For each 1 ≤ i, j ≤ n, let
(Ei · Ej)X denote the intersection number of Ei and Ej on the regular scheme X. Then
N := ((Ei ·Ej)X)1≤i,j≤n, and G(N) is the graph whose vertices are denoted by E1, . . . , En,
and when i 6= j, Ei is linked to Ej by (Ei · Ej)X edges. For future reference, recall that
the degree of a vertex E in a graph G is the number of edges attached to E. A vertex of
degree at least 3 on a graph is called a node. A vertex of degree 1 is a terminal vertex.
A chain is a subgraph of G with vertices C0, C1, . . . , Cm, m ≥ 1, such that Ci is linked
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to Ci+1 by exactly one edge in G when i = 0, . . . , m− 1, and the degree of Ci is 2 when
i = 1, . . . , m − 1. If the chain contains a terminal vertex (which can only be C0 or Cm),
the chain is called a terminal chain.

Consider the curves B1×{P2} and {P1}×B2 on the surface Y := B1×B2, and let F1,
resp. F2, be their images in Z := Y/ 〈σ〉. Both F1 and F2 contain the image Q of (P1, P2).
In the graphs below, we indicate by open circles the strict transforms of F1 and F2 in the
desingularization Zdesing, and we denote these strict transforms again by F1 and F2. The
negative integer next to a given vertex of a desingularization graph is the self-intersection
(Ei · Ei)Zdesing of the corresponding irreducible curve Ei.

Recall that a curve B/k of genus g > 0 is called ordinary if its Jacobian Jac(B) has
exactly pg points of order dividing p. Our most easily stated result is in the case where
both B1 and B2 are ordinary curves of positive genus.

Theorem 1.1. Let B1/k and B2/k be two smooth projective ordinary curves of positive
genus. Let Y := B1 × B2, and let σ : Y → Y be as above. Then the singularities of
Z := Y/ 〈σ〉 all have the following symmetric resolution graph with 2p (bold) vertices:

-2 -2 -2 -2

-p

-2 -2 -2F2 F1

When only one of the curves Bi/k is ordinary, the graph of the resolution of a singular
point Q is already more complicated to describe. Our next theorem shows that this graph
can be specified by a single integer parameter s coprime to p.

Theorem 1.2. Let B1/k and B2/k be two smooth projective curves of positive genus.
Let Y := B1 × B2, and let σ : Y → Y be as above. Assume that B2 is ordinary. Then
the singular point Q of Z := Y/ 〈σ〉 has an explicit resolution with intersection matrix
N depending on a single positive integer parameter s, coprime to p. The graph G(N) is
represented below with bold vertices.

F2
-2 -2 -2 -2

-b′1

-b1 -bw

-b′w′

F1

The graph G(N) has one node and three terminal chains. The number of (−2)-components
on the terminal chain on the left of the node, including the node itself, is equal to ps. Let
r1 be the unique integer in [1, p− 1] such that r1 ≡ −s−1 (mod p). Then the pair (p, r1)
uniquely determines the self-intersections −b1, . . . ,−bw, of the terminal chain linked to
F1, and the pair (p, p− r1) uniquely determines the self-intersections −b′1, . . . ,−b′w′ of the
last terminal chain. The Smith Normal Form of N is diag(1, . . . , 1, p, p).

The self-intersections −b1, . . . ,−bw, are easily determined using a variation on the Eu-
clidean algorithm (2.3) applied to the pair (p, r1), as described in 2.5. (The same applied
to (p, p− r1) holds for the self-intersection of the third terminal chain.) When s = 1, the
graph G(N) in Theorem 1.2 gives the symmetric graph appearing in Theorem 1.1.

It would be of interest to be able to further specify the parameter s in terms of data
attached to the point Q. In this regard, we propose the following conjecture. As above, let
(P1, P2) denote the preimage of Q in Y := B1 ×B2. Consider the morphism B1 → D1 :=
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B1/ 〈σ1〉 and let Q1 be the image of P1. The valuation of the different of the extension
OB1,P1

/OD1,Q1
is then of the form (s(P1) + 1)(p − 1) for some integer s(P1) coprime to

p. We conjecture that the integer s in Theorem 1.2 is equal to s(P1). We can prove this
conjecture in one instance, as follows.

Theorem 1.3. Let B1/k and B2/k be two smooth projective curves of positive genus. Let
Y := B1 ×B2, and let σ : Y → Y be as above. Assume that B2 is ordinary. Assume also
that the morphism B1 → D1 := B1/ 〈σ1〉 is only ramified at one single point, P1, with
image Q1. The valuation of the different of the extension OB1,P1

/OD1,Q1
is then of the

form (s(P1) + 1)(p− 1) for some integer s(P1) coprime to p, and the singular point Q of
Y/ 〈σ〉 has a resolution graph as in Theorem 1.2 with s = s(P1).

Theorem 1.3 thus completely describes the intersection matrix of a resolution of the
Z/pZ-singularity Q in terms of p and of the wild ramification of the map B1 → D1 at P1. It
is quite possible that the hypothesis in Theorem 1.3 that B2/k is ordinary can be weakened
as follows. Let P2 denote a ramification point of the morphism B2 → D2 := B2/ 〈σ2〉,
with image Q2. Write the valuation of the different of the extension OB2,P2

/OD2,Q2
as

(s(P2) + 1)(p − 1) for some integer s(P2) ≥ 1 coprime to p. When B2 is ordinary, it is
known that s(P2) = 1. In general, when s(P2) = 1, the point P2 is called weakly ramified.
It is natural to wonder whether the singular point Q of Y/ 〈σ〉 image of (P1, P2) has an
intersection matrix N as in Theorem 1.2 as soon as s(P2) = 1, without also requiring as
we do in Theorem 1.2 that all ramification points of B2 → D2 are weakly ramified.

The results on explicit desingularizations in this article are completely uniform in p,
and provide evidence that the intersection matrix associated with the resolution of Q
depends only on the integer s(P1) when s(P2) = 1. It would be interesting to determine
if this remains the case when both s(P1) and s(P2) are bigger than 1. In view of the four
graphs presented in [16], 4.9, which could possibly occur with s(P2) = 2 and p is odd, one
may wonder whether several different types of intersection matrices may arise in general
for a given pair (s(P1), s(P2)) with s(P1) ≥ 2 and s(P2) ≥ 2.

Remark 1.4 Let σ be an automorphism of order p on a smooth proper surface Y/k, and
consider the singularities of Y/ 〈σ〉. The literature on resolutions of the wild quotient
singularities of Y/ 〈σ〉 is sparse, and very few examples of such resolutions are known
explicitly. An example where | det(N)| = 1 is given in [19], Example 10, where it is
asserted that a certain (Z/2Z)-quotient singularity has resolution graph E8. Further
(Z/2Z)-quotient singularities are resolved with omitted computations in [1], p. 64. In [19],
Example 7, a certain (Z/3Z)-quotient singularity is asserted to have resolution graph E6,
which has determinant | det(N)| = p = 3. Theorems 1.1 and 1.3 above when p = 2 and
the curves B1 and B2 are both elliptic curves with their canonical involution are treated
in [8], Theorem C (see also [20]). To further put the above theorems in perspective, we
list below some of the few general results in the literature pertaining to the resolution
of wild quotient singularities. The singularities of Y/ 〈σ〉 have been shown to be rational
when H1(Y,OY ) = H2(Y,OY ) = (0) in [9], Main Theorem, using the results of [19]. The
case of K3-surfaces is discussed in [5], 2.4. The singularities when p = 2 and Y is an
abelian surface with its canonical involution are discussed in [8]. The recent preprint
[18] generalizes some of the results of this paper using a completely different method.
Examples of resolutions of wild cyclic quotient singularities that are not obtained from
the product of two curves are given in [17].

For the singularities resolved in Theorem 1.2, we further show:
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Theorem 4.1. For each prime p, the singularities resolved in Theorem 1.2 have multi-
plicity p and are rational.

It follows from [15], 2.6, that we should expect that the intersection matrix N of the
resolution graph of a wild Z/pZ-quotient singularity of surface is such that | det(N)| = pr

for some r ≥ 0. (In fact, we expect the stronger result that the Smith group ΦN :=
Zn/Im(N) is killed by p.) One of our initial motivations for our study of the resolution
graphs of quotient singularities associated with products of curves was to provide families
of examples of wild quotient singularities where the determinant of the matrix N is ‘large’.
In this respect, we show:

Theorem (see 3.15). Fix a prime p. For each positive integer s coprime to p, there
exists a 2-dimensional regular local ring A of equicharacteristic p endowed with an action
of H := Z/pZ such that Spec AH is singular exactly at its closed point, and such that the
intersection matrix N associated with a minimal resolution of Spec AH has determinant
| det(N)| = ps+1.

We do not know if the statement of Theorem 3.15 also holds when p divides s. In
each example presented in this article of a minimal resolution of a wild Z/pZ-quotient
singularity, the associated graph has exactly one node. It is possible, however, that for a
fixed p, the set consisting of the number of nodes of the minimal resolution graph of all
Z/pZ-quotient singularities is unbounded. In an earlier version of this article, we asked
whether it is possible to exhibit a Z/pZ-quotient singularity of surface whose resolution
graph does not have a node. This question is now addressed in [7].

This paper is organized as follows. In section 2, we review the definition of an intersec-
tion matrix, and prove some combinatorial results on intersection matrices needed in the
proof of 1.2. We prove Theorems 1.1, 1.2, and 1.3, in section 3. In section 4, we prove
that the singularities occurring in 1.2 are rational.

It is my pleasure to thank Qing Liu, Werner Lüktebohmert, and Michel Raynaud, for
helpful discussions. Thanks to Jonathan Wahl for bringing to my attention the reference
[23], and to Sungkon Chang for sharing with me some code to compute fundamental
cycles. Thanks also to the referees for a careful reading of the article.

2. Intersection matrices

In this preliminary section, we first review some terminology pertaining to intersection
matrices N . Our main result is Proposition 2.7 below, which will be needed in the proof
of Theorem 1.2.

2.1 An n×n intersection matrix N = (cij) is a symmetric negative definite integer matrix
with negative coefficients on the diagonal, and non-negative coefficients off the diagonal.
The Smith group ΦN of the matrix N is the group ΦN := Zn/N(Zn). It is completely
determined by the Smith Normal Form of the matrix N .

We associate a graph G = G(N) to N as follows. Pick n vertices v1, . . . , vn, and for i 6= j
link vi to vj in G by exactly cij edges. We will always assume, unless stated otherwise,
that G is connected. When this is the case, N is called irreducible.

Recall that if X, Y ∈ Z
n, we write X > 0 (resp., X ≥ 0) if all coefficients of X are

positive (resp., if all coefficients are non-negative). We write X > Y if X − Y > 0, and
we write X ≥ Y if X − Y ≥ 0.

2.2 Attached to an intersection matrix N is a unique integer vector Z > 0 such that
NZ ≤ 0 and such that Z is minimal for this property (i.e., if Z ′ > 0 is an integer vector
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with NZ ′ ≤ 0, then Z ≤ Z ′). This vector is called the fundamental cycle of N ([2], p.
132).

The fundamental cycle Z is in general quite a difficult invariant to understand. There-
fore, for each i = 1, . . . , n, we recall below the definition of a vector Ri associated to N
which is an upper bound for Z (i.e., Z ≤ Ri), and which is quite easy to compute in terms
of N .

Let N∗ denote the comatrix of N , with N∗N = NN∗ = det(N)Idn. Let e1, . . . , en

denote the standard basis of Z
n. A symmetric irreducible non-singular positive definite

matrix with non-positive off-diagonal coefficients has a comatrix with only positive coeffi-
cients ([4], Chapter 6, 2.5-2.7). As the intersection matrix N is non-singular, −N has the
above properties, and we find that (−1)n+1N∗ has only non-negative coefficients. It fol-
lows that if we let (−1)n+1Ri denote the i-th column vector of N∗ divided by the greatest
common divisor of its coefficients, then Ri has positive coefficients, and NRi = −piei for
some positive integer pi.

Note that the matrix N can be completely recovered from the following data: the
graph G(N), and for some i, the vector Ri and the equality NRi = −piei. We found it
convenient to represent this data by adding a ‘virtual’ vertex to the graph G(N), as in
the graph in 2.3 and at the end of 2.4 below.

2.3 For use below, we recall here the following standard construction. Given an ordered
pair of positive integers r > s with gcd(r, s) = 1, we construct an associated intersection
matrix N = N(r, s) with vector R1 = R1(r, s) and NR1 = −re1 as follows.

We can find integers b1, . . . , bm > 1 and s1 = s > s2 > · · · > sm = 1 such that
r = b1s − s2, s1 = b2s2 − s3, and so on, until we get sm−1 = bmsm. These equations are
best written in matrix form:





−b1 1 . . . 0

1 −b2
. . .

. . .
. . . 1

0 . . . 1 −bm









s1
...
...

sm



 =





−r
0
...
0



 .

We let N denote the above square matrix, and R1 the first column matrix. It is well-
known that det(N) = ±r (see, e.g, [13], 2.6). The matrix N is completely recovered
from the data consisting of G(N), R1, and NR1 = −re1. We represent this data using
the graph G(N), adorning each (bold) vertex of G(N) with the corresponding entry of
the vector R1. To represent the equality NR1 = −re1, we use an additional open circle,
adorned with the integer r, and linked to the vertex of the graph corresponding to the
first coefficient of R1, as follows:

s1 s2 smr

For use in the computation of the arithmetical genus in 4.5, we record here the following
easy fact:

m∑

i=1

(bi − 2)si = r − s1 − sm.

2.4 For each prime p, and for any integers m ≥ 1 and a ≥ 2, we introduce below a class
of intersection matrices N whose associated graphs G(N) are trees with exactly one node
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C0 and a+1 terminal chains attached to it. A connected graph with a single node is called
star-shaped. This class of matrices N is considered in [15], 3.17, with a slight modification
of the labeling of the vertices of the graph G(N).

Our goal is to establish a relation in Proposition 2.7 between two of the positive vectors
Ri associated to N (notation as in 2.2). For convenience, we will label the n vertices of
G(N) so that the vectors of interest will be R1 and Rn. We start by describing the matrix
N with the help of the vector R1.

Fix m ≥ 1. Fix a ≥ 2, and consider positive integers r1, . . . , ra < p, such that p divides
r1 + · · ·+ra. Let Cm, C ′

1, and D2, . . . , Da, denote the neighbors of C0, that is, the vertices
of G linked to C0 by an edge. We will need the precise labeling of the vertices of only two
terminal chains, and we will use the notation C1, . . . , Cm, and C ′

1, . . . , C
′
m′. We picture

below the shape of the graph G(N) with this labeling when a = 3.

C1 C2 Cm

C0

Da D2

C ′
1 C ′

m′−1C ′
m′

In our labeling of the n vertices of the graph G(N), C1 corresponds to the first vertex,
and C ′

m′ corresponds to the n-th vertex. We now determine N completely by specifying
the vector R1, which will be such that NR1 = −pe1.

We set the coefficient of R1 corresponding to C0 to be p. For i = 2, . . . , a, we set the
coefficient corresponding to Di to be ri, the coefficient of C ′

1 to be r1, and the coefficient
of Cm to be p. The self-intersection of C0 is (C0 · C0) := −(r1 + · · ·+ ra + p)/p.

The matrix N ‘restricted’ to the chain started by C ′
1 is taken to be the matrix con-

structed in 2.3 using the ordered pair p and r1. Similarly, the matrix N ‘restricted’ to the
chain started by Di, i = 2, . . . , a, is taken to be the matrix constructed in 2.3 using the
ordered pair p and ri. The vector R1 ‘restricted’ to the chain started by Di is taken to be
the corresponding vector described in 2.3. In particular, the coefficient of R1 correspond-
ing to the terminal vertex of the chain is 1. The terminal chain started by Cm consists of
m vertices, all of self-intersection −2. The vector R1 restricted to this terminal chain has
all its coefficients equal to p.

It is easy to check that the vector NR1 has all its coefficients equal to 0, except for the
coefficient corresponding to the vertex C1, where the coefficient of NR1 is −p. With our
labeling, NR1 = −pe1.

We represent below the data (N, R1) as follows. The graph G(N) has vertices rep-
resented by bullets •. A positive number next to a vertex represents the coefficient
of this vertex in R1. Write tR1 for the transpose of R1. We represent the relation
tR1N = (−p, 0, . . . , 0) by attaching a ‘virtual’ vertex to the terminal vertex of the first
terminal chain, represented by an open circle, and we give this virtual vertex the ‘multi-
plicity’ p.

p

C1 C2 Cm

C0p p p

pDa D2

C ′
1 C ′

m′

ra r21 1

r1 1
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The matrix N is completely determined by the shape of its graph and the data (p, m, r1, . . . , ra).

2.5 The special case where a = 2 gives the intersection matrices N occurring in Theorem
1.2. Indeed, when a = 2, the conditions r1, r2 < p and p | (r1 + r2) imply that r1 + r2 = p.
We picture below for completeness the graph of N along with the data pertaining to R1.

p p p p p

C1 C2 Cm C0

-2 -2 -2 -2

p− r1

r1

1

1

-b′1

-b1 -bw

-b′w′

The negative integer under a vertex is the self-intersection of the vertex, that is, the
coefficient on the diagonal of N which corresponds to the vertex. The pair (p, r1) uniquely
determines the self-intersections −b1, . . . ,−bw as in 2.3, and the pair (p, p− r1) uniquely
determines the self-intersections −b′1, . . . ,−b′w′. Let α := m + 1. The integer α is the
number of (−2)-components on the terminal chain on the left of the node, including the
node itself. We may denote the intersection matrix N by N(p, α, r1) and we note that it
depends only on the data (p, α, r1).

2.6 Let us return to the general case of the matrices N with star-shaped graphs having
a + 1 terminal chains, as defined in 2.4. It follows from [15], 3.14, that |ΦN | = pa. We
will assume from now on that

m = α− 1 = ps− 1

for some integer s > 0, so that α = ps. Then it follows from [15], 3.20, that ΦN is
isomorphic to (Z/pZ)a.

We now turn to describing the positive vector Rn when the condition (2) in 2.7 below
holds for R1. Recall that we number the vertices so that C ′

m′ is the n-th vertex. We
will for convenience denote Rn by RC′

m′
, with NRC′

m′
= −pC′

m′
eC′

m′
. Recall that pC′

m′
is

the order of the class of eC′
m′

in the Smith group ΦN ([15], 3.5). Since ΦN is killed by p
because of our hypothesis that α = ps, we find that pC′

m′
= 1 or p.

Proposition 2.7. Fix a prime p, and a ≥ 2. Let N and G(N) be as in 2.4, with m = ps−1
for some integer s > 0. Let y1 denote the coefficient of C ′

1 in RC′
m′

. Then the following

are equivalent:

(1) p divides y1 and the coefficient of C1 in RC′
m′

is equal to 1.

(2) r1s ≡ −1 (mod p).

In particular, when either of these equivalent conditions holds, s is coprime to p.

Proof. Let us assume first that the coefficient of C1 in RC′
m′

is equal to 1. Then the

coefficients in RC′
m′

of the vertices on the chain C1, C2, . . . , Cm, C0 must be 1, 2, . . . , ps−1,

and ps. Let k2, . . . , ka denote the coefficient in RC′
m′

of the terminal vertices of the chains

starting at D2, . . . , Da. We know that ki divides ps, and ki < ps because no vertex on
the terminal chain started by Di has self-intersection −1. Assume now that p | y1, and
write y1 = px1. Since the coefficient of C0 is also divisible by p, then every vertex on the
chain started by C ′

1 has coefficient in RC′
m′

divisible by p. Thus, we find that pC′
m′

= p.

We claim then that ki = s for all i = 2, . . . , a. Indeed, we can compute |ΦN | = pa using
RC′

m′
and the formula [15], 3.14. We find that

(ps)a−1

k2 · . . . · ka
pC′

m′
= pa.
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In other words, sa−1 = k2 · . . . · ka. Since ps
k2
· . . . · ps

ka
= pa−1 and ps

ki

> 1, we find that
ps
ki

= p, so ki = s, as claimed. It follows that the coefficient in RC′
m′

of any vertex on the

chain started by Di, i ≥ 2, is simply s times its coefficient in RC1
. We therefore find that

|C0 · C0|p = p + r1 + (r2 + · · ·+ ra),
|C0 · C0|ps = ps− 1 + px1 + (r2 + · · ·+ ra)s.

It follows that 0 = r1s + 1− px1, and (2) holds.
Let us now assume that r1s ≡ −1 (mod p), and let z1 := r1s+1

p
. We claim that the

following vector V , given in the diagram below, is equal to RC′
m′

(so that the diagram

below is a representation of the pair (N, RC′
m′

)). The integers z2, . . . , zm′ are specified

below.

C1 C2 Cm

C0
1 2 ps-1

psDa D2

C ′
1 C ′

m′

sra sr2s s

pz1 pzm′ p

Let us now describe the coefficients of V . On the chains started by D2, . . . , Da, the
coefficients of V are those of RC1

multiplied by s. It is clear that

|C0 · C0|ps = (ps− 1) + pz1 + (r2 + · · ·+ ra)s.

It remains to describe the integers z2, . . . , zm′ . Write −ai := (C ′
i · C

′
i). We have





−a1 1 . . . 0

1 −a2
. . .

. . .
. . . 1

0 . . . 1 −am′









r1
...
...
1




=





−p
0
...
0



 .

Let A denote the above square (m′×m′)-matrix. Recall that the determinant of A equals
±p, and that the determinant of the bottom right (m′ − 1)-minor of A equals ±r1 (see,
e.g., [13], 2.6). It follows that after reduction modulo p, the rank of A is m′ − 1. There
exist positive integers 1 = h1 < h2 · · · < hm′ such that

(1 = h1, h2, . . . , hm′)A = (0, 0, . . . ,−p).

In particular, the vector (1 = h1, h2, . . . , hm′) generates the kernel of A. Set

(x1, . . . , xm′) := s(r1, . . . , 1) + (1, h2, . . . , hm′)

so that

(x1, . . . , xm′)A = (−ps, 0, . . . , 0,−p).

It follows that modulo p, either (x1, . . . , xm′) is the trivial vector, or it is a non-zero
multiple of (1, h2, . . . , hm′). Since x1 = r1s + 1 and p divides x1 by hypothesis, we find
that (x1, . . . , xm′) is the trivial vector, so that p divides xi for all i = 1, . . . , m′. Thus,
xi/p ∈ Z for all i = 1, . . . , m′, and we define

(2.7.1) zi := xi/p.

Since the greatest common divisor of the coefficients of V is 1 and NV = −pen, we have
V = RC′

m′
. �
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2.8 We conclude this section by recalling some facts about arithmetical graphs which will
be applied to the arithmetical graph defined below. This result is needed in the proof of
1.2. Let N be as in Proposition 2.7, with the vertices numbered so that C ′

m′ is the last
vertex listed. Assume that Condition (1) in 2.7 holds, that is, assume that p divides y1

and that the coefficient of C1 in RC′
m′

is equal to 1. Recall the definition of zm′ in (2.7.1)

and consider the matrix M given by

M :=




N

0
...
0
1

0 . . . 0 1 −zm′





This symmetric matrix is only semi-definite negative, since it has a kernel R whose
transpose is given by (tRC′

m′
, p). It follows that (M, R) defines an arithmetical graph

(G(M), M, R) (in [11], page 481, it is (G(M),−M, R) which is called an arithmetical
graph). The graph G(M) is represented below, along with the coefficients of the vector
R on top of the corresponding vertices.

C1 C2 Cm

C0
1 2 ps-1

psDa D2

C ′
1 C ′

m′

sra sr2s s

pz1 pzm′ p

2.9 For use in the next section, let us recall how one associates an arithmetical graph
to any regular model of a curve. Let OK denote a discrete valuation ring, with field of
fractions K and residue field k. Let X/K be any smooth, proper, geometrically connected,
curve of genus g. Let X /OK be a regular model of X/K. Let Xk :=

∑v
i=1 riCi denote

the special fiber of X , where Ci is an irreducible component and ri is its multiplicity.
Let M := ((Ci · Cj)X )1≤i,j≤v be the associated symmetric matrix. Denote by G(M) the
associated graph, with vertices C`, ` = 1, . . . , v, and where Ci is linked to Cj with j 6= i
by exactly (Ci · Cj) edges. Let tR := (r1, . . . , rv), so that MR = 0, and assume that
gcd(r1, . . . , rv) = 1. Then the triple (G(M), M, R) is an arithmetical graph.

Let di denote the degree of the vertex Ci in G := G(M). Recall that the first Betti
number β(G) of the graph G is given by the formula 2β(G)−2 =

∑v
i=1(di−2). The main

combinatorial invariant associated with an arithmetical graph (G(M), M, R), which plays
a role analogous to the genus of a curve, is denoted by g0(M). It is given by the formula

2g0(M) = 2β(G) +
v∑

i=1

(ri − 1)(di − 2).

It is shown in [11], 4.7, that g0(M) ≥ β(G).

2.10 Let us return to the arithmetical graph (G(M), M, R) described in 2.8. It is com-
pletely straightforward to verify that

2g0(M) = (as− s− 1)(p− 1).
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3. Explicit desingularizations

We are now ready to prove Theorems 1.1, 1.2, and 1.3. Most of the work will be done
in the proof of Theorem 1.2, and we now recall our notation in this theorem. Let k be
an algebraically closed field of characteristic p > 0. Let B1/k and B2/k be two smooth
proper connected curves, each endowed with an automorphism σi : Bi → Bi of order p.
Let Y := B1×B2, and let σ : Y → Y be the automorphism σ1×σ2. Let (P1, P2) ∈ Y be a
fixed point of σ. Let Z := Y/ 〈σ〉. Assume that B2 is an ordinary curve of positive genus.
Our goal is to show that a singular point Q in Z, image of (P1, P2) ∈ Y , has a resolution
with an intersection matrix N = N(p, α, r1), with α = ps and r1 ≡ −s−1 mod p for some
integer s ≥ 1 coprime to p (notation as in 2.5).

We now begin the proof of Theorem 1.2. For i = 1, 2, let Li/k denote the function field
of Bi/k. Let Di := Bi/ 〈σi〉 denote the quotient curve, and let Ki/k denote the function
field of Di. We have the natural maps:

Y := B1 × B2 −−−→ Z
y

y

Bi −−−→ Di.

Let Pi be a ramification point of fi : Bi → Di, with image Qi ∈ Di. We note without
proof the following well-known fact.

Lemma 3.1. Any singular point of the quotient Z := Y/ 〈σ〉 is the image Q of a point of
the form (P1, P2), where Pi is a ramification point of fi : Bi → Di.

It is clear that to resolve a singular point Q of Z, it is sufficient to resolve the singularity
of the local scheme Spec(OZ,Q) → Z. We do not know how to study the singularity of
the scheme Spec(OZ,Q) directly. Instead, we explain below how to perform only two
‘localizations in one direction’ to obtain two schemes Z1 and Z2 with

Spec(OZ,Q) −−−→ Z1y
y

Z2 −−−→ Z.

The results of [16] can then be applied to obtain information on the resolutions of the
singularities of Z1 and Z2.

3.2 The curve X2/K1. Denote by X2/K1 the base change by Spec(K1) → D1 of the
natural map Z → D1, so that the following diagram is Cartesian:

X2 −−−→ Z
y

y

Spec(K1) −−−→ D1.

Consider the commutative diagram

Spec(L1)×B2 −−−→ B1 ×B2 −−−→ Z
y

y

Spec(L1) −−−→ Spec(K1) −−−→ D1.
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which induces the commutative diagram:

Spec(L1)×B2 −−−→ X2 −−−→ Z
y

y
y

Spec(L1) −−−→ Spec(K1) −−−→ D1.

Lemma 3.3. The square on the left of the latter diagram is Cartesian. In particular, the
curve X2/K1 and the curve (B2)K1

/K1 become isomorphic over the extension L1/K1, and
the curve X2/K1 is smooth.

Proof. Let Spec A1 and Spec A2 be two affine open subsets of B1 and B2, respectively,
and invariant under the action of σ1 and σ2, respectively. Then we have the commutative
diagram

L1 ⊗ A2 ←−−− L
〈σ1〉
1 ⊗

A
〈σ1〉
1

(A1 ⊗ A2)
〈σ〉 ←−−− (A1 ⊗ A2)

〈σ〉

x
x

x

L1 ←−−− L
〈σ1〉
1 ←−−− A

〈σ1〉
1 .

Since B1/k and B2/k are irreducible and smooth, all rings above can be identified with
subrings of the function field L1 ⊗k L2 of B1 ×B2. We first note that

L
〈σ1〉
1 ⊗

A
〈σ1〉
1

(A1 ⊗ A2)
〈σ〉 −→ (L1 ⊗ A2)

〈σ〉

is an isomorphism. Surjectivity follows here from the fact that every element of L1 can

be written with a numerator in A1 and a denominator in L
〈σ1〉
1 . Then we are reduced to

considering the natural inclusions

L1 ⊗ A2 ←−−− (L1 ⊗ A2)
〈σ〉

x
x

L1 ←−−− L
〈σ1〉
1 .

By hypothesis, L1 has prime degree p over L
〈σ1〉
1 , and we find that L1 ⊗ A2 is also free of

degree p over (L1 ⊗ A2)
〈σ〉, and (L1 ⊗A2)

〈σ〉 and L1 together generate L1 ⊗A2. �

3.4 The model Z2/OK1
of X2/K1. Choose a ramification point P1 of f1 : B1 → D1,

with image Q1 ∈ D1. Let OK1
:= OD1,Q1

, and OL1
:= OB1,P1

. Consider the base change
Y2 of B1 × B2 → B1 by the morphism Spec(OL1

) → B1. The scheme Y2 is a smooth
model of (B2)L1

over OL1
:

(B2)L1
−−−→ Y2 −−−→ B1 ×B2y

y
y

Spec(L1) −−−→ Spec(OL1
) −−−→ B1.

The quotient Z2 of this model by the action of the Galois group of L1/K1 is nothing but
the base change of Z → D1 by the map Spec(OK1

)→ D1:

X2 −−−→ Z2 := Y2/(Z/pZ) −−−→ Z
y

y
y

Spec(K1) −−−→ Spec(OK1
) −−−→ D1.
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Let P2 be a ramification point of f2 : B2 → D2, with image Q2 ∈ D2. Let Q denote the
singular point of the quotient Z := Y/ 〈σ〉 image of the point (P1, P2). Resolving this
singularity Q on Z is equivalent to resolving the corresponding one on Z2.

We have now reduced the study of the singularities of Z to those of Z2/OK1
. We are

going to obtain the needed information on the singularities of Z2/OK1
by using Theorem

6.8 of [16]. Our set-up is as follows. The curve X2/K1 obtains good reduction after the
extension L1/K1 of degree p. The reduction of (X2)L1

/L1 is ordinary since the special
fiber of the smooth model of (X2)L1

/L1 is nothing but the curve B2/k, and in Theorem
1.2 we assume that B2/k is an ordinary curve. We also assume that B2/k has positive
genus. When g(B2) ≥ 1, Lemma 3.7 (a) shows that X2/K1 has a K1-rational point. When
g(B2) = 1, the existence of a K1-rational point is needed to apply Theorem 6.8 of [16]
to our situation (this hypothesis is not stated explicitly in Theorem 6.8 but appears as a
standing hypothesis in section 6 of [16]). To apply Theorem 6.8 of [16] to our situation,
it remains only to address the fact that in this theorem, the base field is complete with
respect to its discrete valuation. For this, we use the following general argument. Suppose
that R is a discrete valuation ring with field of fractions K, and that we have a regular
model X /R of a curve X/K. Let R̂ denote the completion of R with respect to its

maximal ideal. Then the model X ×R R̂ is again regular, and is thus a regular model

of the curve X bK/K̂. Moreover, the special fibers of X ×R R̂ and of X are isomorphic
over the residue field k (see, e.g., [10], 8.3.49). Thus, any information on the special fiber

of the regular model X ×R R̂ can be readily transfered back to the special fiber of X .
When applying results from [16] in the remainder of this proof, we may use this argument
without further mention of it.

Consider the curves B1×{P2} and {P1}×B2 on the surface B1×B2, and let F1 and F2

be their images in Z, respectively. Both F1 and F2 contain Q. Let f : Zdesing → Z denote
the desingularization of Q minimal with the property that all irreducible components of
f−1(Q) are smooth and intersect normally. Let X2 → Z2 denote the resolution of the
singularity Q of Z2 obtained as X2 := Zdesing ×D1

Spec(OK1
). It is also minimal with

the property that the components of the exceptional divisor are smooth with normal
crossings. It follows from [16], Theorem 6.8, that the intersection matrix associated with
the resolution X2 of any singularity of Z2 is of type N(p, α, r1) with α = ps for some
s > 0, and some 1 ≤ r1 < p (notation as in 2.5). The special fiber of the model X2/OK1

contains the strict transform of the unique irreducible component of (Z2)k, which is of
multiplicity p in (X2)k. We denote this component on (X2)k again by F2. We picture
below the component F2 along with the desingularization of Q. The positive integer on a
vertex denotes the multiplicity of the corresponding component in (X2)k.

p

F2

p

C ′

p p p

-2 -2 -2 -2

p− r1

r1

1

1

-b′1

-b1 -bw

-b′w′

We denote by C ′ the irreducible component of the resolution which intersects the com-
ponent F2. We use the same notation for the component C ′ when viewed as a curve on
Z or on Z2. Note that [16], Theorem 6.8, shows that C ′ intersects F2 with intersection
number 1 (the model on which the graph GQi

lies in 6.8 is introduced in [16], 5.2, and
has a special fiber with smooth components and normal crossings).
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To complete the proof of Theorem 1.2, it remains to show that r1s ≡ −1 mod p. This
is done in 3.9. We also need to determine the value of s in Theorems 1.1 and 1.3, and this
is done in 3.11. The remainder of our proofs exploits the fact that the roles played by B1

and B2 on the surface B1 × B2 are symmetric. Switching the roles leads us to define the
following objects.

3.5 The model Z1/OK2
of X1/K2. Let K2 denote the function field over k of the curve

D2 := B2/ 〈σ2〉, and let L2 := k(B2), the function field of B2/k. Making the base change
by Spec(K2)→ D2 of the natural map Z → D2 produces a smooth complete curve X1/K2

which becomes isomorphic over L2 to (B1)L2
. Let OK2

:= OD2,Q2
, and OL2

:= OB2,P2
.

Consider the base change Y1 of B1 × B2 → B2 by the morphism Spec(OL2
) → B2. This

is a smooth model of (B1)L2
over OL2

. The quotient Z1 of this model by the action
of the Galois group of L2/K2 is nothing but the base change of Z → D2 by the map
Spec(OK2

)→ D2.

X1 −−−→ Z1 := Y1/(Z/pZ) −−−→ Z
y

y
y

Spec(K2) −−−→ Spec(OK2
) −−−→ D2.

Let X1 → Z1 denote the resolution of the singularity Q of Z1 obtained as X1 := Zdesing×D2

Spec(OK2
). It is also minimal with the property that the components of the exceptional

divisor are smooth with normal crossings.

3.6 Let Q ∈ Z be the image of the point (P1, P2) under the quotient map Y → Z. Let
f : Zdesing → Z denote the desingularization minimal with the property that all irreducible
components of f−1(Q) are smooth and intersect normally. Let N denote the intersection
matrix associated with the resolution f : Zdesing → Z of the singularity Q. At this point,
we know that the desingularization on Zdesing has a graph G(N) of the following form:

p

-2 -2 -2 -2

p− r1

r1

-b′1

-b1 -bw

-b′w′

where the number of −2 components on the left is equal to α = ps for some s, and the
self-intersections −b1, . . . ,−bw, are completely determined by the pair (p, r1). Similarly,
the self-intersections −b′1, . . . ,−b′w′ , are completely determined by the pair (p, p− r1).

Since we have specified two curves F1 and F2 in Z containing Q, we find that the graph
G(N) has two marked vertices, corresponding to the components of f−1(Q) which meet
the strict transforms of the specified curves in Z (which are denoted again by F1 and
F2). We use now one of the two marked vertices to distinguish between the two terminal
chains determined by (p, r1) and (p, p− r1). First, recall that we call C ′ the component
of the resolution which meets the curve F2, and we have (C ′ · F2)Zdesing = 1. Let us
call C the component of the resolution which meets the curve F1. Then Lemma 3.7 (a)
shows that the component C must have multiplicity 1 in the special fiber (X2)k. There
are exactly two components on (X2)k with multiplicity 1, both terminal vertices on the
associated graph (see the graph in 3.4). We choose to call r1 the multiplicity of the first
vertex after the node on the terminal chain ending in C. Lemma 3.7 (a) also shows that
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(C ·F1)Zdesing = 1. The above discussion shows that we have the following configuration of
curves on Zdesing:

F2 C ′

-2 -2 -2 -2

-b′1

-b1 -bw

-b′w′

F1C

Before we proceed with the proof of Theorem 1.2, we establish the following lemma used
above.

Lemma 3.7. Keep the above notation.

(a) The curve F1 defines a K1-rational point of X2/K1. In particular, the closure of this
K1-rational point in the regular model X2/OK1

meets (X2)k at a smooth point and,
thus, on a component C of multiplicity 1 in (X2)k. Moreover, the closure of this
K1-rational point meets C with normal crossings.

(b) A similar statement is true for F2 when the roles of B1 and B2 are reversed. The
curve F2 defines a K2-rational point of X1/K2. In particular, the closure of this K2-
rational point in X1 meets (X1)k at a smooth point and, thus, on a component C ′ of
multiplicity 1 in (X1)k. Moreover, the closure of this K2-rational point meets C ′ with
normal crossings.

Proof. We prove Part (a) only, since Part (b) is similar. Consider 〈σ1〉×〈σ2〉 as a subgroup
of automorphisms of B1 × B2. The natural quotient of this action is D1 ×D2. Consider
also the natural commutative diagram of intermediate natural quotient maps of degree p:

B1 × B2 −−−→ D1 × B2y β

y

Z
γ

−−−→ D1 ×D2

Note that γ and β are both morphisms over D1. The curve D1 × {Q2} is the image by
γ of the curve F1. Consider the pull-back of the above diagram by Spec(K1) → D1, to
obtain

(B2)K1

β′

y

X2
γ′

−−−→ (D2)K1
.

The curve D1 × {Q2} is in the branch locus of the map β, and Q2 ∈ (D2)K1
is a branch

point of β ′. We claim that Q2 ∈ (D2)K1
is also a branch point of γ′. This claim follows

from 3.8 below, where X takes the role of B2, and X ′ is then the twist X2. Assuming
this claim, we find that F1 pulls back by Spec(K1) → D1 to a ramification point of the
map γ′ : X2 → (D2)K1

. Since this latter morphism has degree p, and the branch point
Q2 ∈ (D2)K1

is K1-rational by construction, so is its preimage in X2, as desired.

3.8 Let K be a field of characteristic p with a cyclic Galois extension L/K of degree
p. Let X/K denote a smooth projective curve with an automorphism σ of order p.
Let X → X0 = X/ 〈σ〉 denote the quotient map. We denote again by σ the induced
automorphism of K(X) over K(X0). Let X ′/K denote the smooth projective curve
obtained as follows: Choose a nontrivial automorphism τ : L → L fixing K, and let
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K(X ′) be the field of elements of L ⊗K K(X) fixed by the automorphism τ ⊗ σ. Then
there is a natural morphism X ′ → X0 over K, and the branch loci of X → X0 and
X ′ → X0 are equal in X0.

Indeed, we can write explicitly the Galois extension K(X)/K(X0) as an Artin-Schreier
extension, with K(X) isomorphic to

K(X) = K(X0)[y]/(yp − y + f)

for some f ∈ K(X0)
∗. The automorphism σ is then of the form y 7→ y + i for some i ∈ F∗

p.
Similarly, the Galois extension L/K is given by an Artin-Schreier extension with

L = K[z]/(zp − z + g)

for some g ∈ K∗. The automorphism τ is of the form z → z + j for some j ∈ F∗
p. It

follows that in the field L ⊗K K(X), the element Y := (1 ⊗ y) − j−1i(z ⊗ 1) is fixed by
the action of τ ⊗ σ. It is clear that

Y p = Y − ((1⊗ f − j−1i(g ⊗ 1)).

The fixed field of L ⊗K K(X) by τ ⊗ σ also contains 1 ⊗K(X0), and we find that with
the appropriate identifications, we can write that

K(X ′) = K(X0)[Y ]/(Y p − Y + f − j−1ig),

with the natural inclusion K(X0) → K(X ′) giving the morphism X ′ → X0. The Artin-
Schreier morphism X → X0 is ramified at a place above P ∈ X0 if and only if f has a
pole at P . Similarly, the Artin-Schreier morphism X ′ → X0 is ramified at a place above
P if and only if f − j−1ig has a pole at P . Since by construction g ∈ K, we find that f
and f − j−1ig have exactly the same set of poles. �

3.9 We are now ready to prove that r1s ≡ −1 mod p in Theorem 1.2. For this, we will
use Proposition 2.7. Let us assume that the vertices of G(N) are numbered from 1 to n,
with the vertex C1 being C ′ and the vertex Cn being C. The use of the special fiber of
the model X2/OK1

allows us to describe the vector R1 on the matrix N :

p

F2

p

C ′

p p p

-2 -2 -2 -2

p− r1

r1

1

1

-b′1

-b1 -bw

-b′w′

The use of the special fiber of the model X1/OK2
will provide us with the information

needed on the vector Rn to apply 2.7. Indeed, we know that on (X1)k, we have the following
configuration (the positive integer above a vertex is the corresponding coefficient of Rn):

1

C ′

2 ps-1 ps

-2 -2 -2 -2 y1

-b′1

-b1 -bw

-b′w′

F1

yw

C

The fact that the component C ′ has multiplicity 1 in (X1)k comes from Lemma 3.7 (b).
The self-intersections on the terminal chain ending with C ′ are all equal to −2, and there
are ps− 1 vertices on the chain before the node; this forces the multiplicities to increase
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regularly as 1, 2, . . . , ps−1, and the node to have multiplicity ps. The component F1 has
multiplicity p since it is the strict transform of the reduced special fiber of Z1, and on this
fiber the unique component has multiplicity p, Z1 being a quotient by Z/pZ ([16], 5.1).
Theorem 5.3 in [16] then shows that p divides yw. If follows from the fact that p divides
the multiplicity of two consecutive components on a chain that all multiplicities on the
chain containing C must be divisible by p (this follows easily using the intersection matrix,
as in 4.2 in [16]). In particular, y1 is divisible by p. This is the last condition needed to
be able to apply Proposition 2.7. It follows then from 2.7 that r1s ≡ −1 mod p.

To complete the proof of Theorem 1.2, we only need to show that the Smith Normal
Form of N is diag(1, . . . , 1, p, p). This follows immediately from the fact that ΦN is
isomorphic to (Z/pZ)2, a fact that we noted already in 2.6. This concludes the proof of
Theorem 1.2.

3.10 For use in Theorem 3.15, we explicitly write down below the arithmetical graph
associated with the special fiber (X1)k, where as above F1 denotes the strict transform of
the reduced special fiber of Z1:

1 2 ps-1 ps

-2 -2 -2 -2 pz1

-b′1

sr2

-b1 -bw

-b′w′

s

p

F1

pzw

This arithmetical graph is a special case in the class of arithmetical graphs introduced in
2.8.

3.11 We may now prove Theorems 1.1 and 1.3. Assume first as in Theorem 1.1 that
both B1 and B2 are ordinary of positive genus. Then using the resolution X1 → Z1, we
find that the self-intersections −b1, . . . ,−bw can be completely determined: they must all
equal −2. Moreover, we have that p divides w + 1. Returning to the model X2 → Z2,
we find that the bottom terminal chain on the right (with initial vertex of multiplicity
equal to r1 < p) can have at most p − 1 vertices (since the multiplicities are decreasing
on the chain). Since all self-intersections are −2 on the chain, we find that we must have
w = p− 1 and r1 = p− 1. Repeating the same argument with the model X1, we find that
α = p, and so s = 1. This concludes the proof of Theorem 1.1.

Assume now the hypotheses of Theorem 1.3. Consider the resolution X1 → Z1. The
generic fiber of X1 has genus equal to g(B1), which can be computed using the Riemann-
Hurwitz formula for B1 → D1 as follows. Let δ(P1) = (s(P1) + 1)(p − 1) denote the
valuation of the different. Then, since σ1 has a unique fixed point by hypothesis, 2g(B1)−
2 = p(2g(D1)− 2) + (s(P1) + 1)(p− 1), so that

(3.11.1) 2g(B1) = 2g(D1)p + (s(P1)− 1)(p− 1).

We can also compute g(B1) using the adjunction formula applied to the curve (X1)k. Let
(G, M, R) denote the arithmetical graph associated with (X1)k (as in 3.10). Then using
2.10 with a = 2, we find that

(3.11.2) 2g(B1) = 2g(D1)p + 2g0(M) = 2g(D1)p + (s− 1)(p− 1).

It immediately follows from (3.11.1) and (3.11.2) that s = s(P1). This concludes the proof
of Theorems 1.1 and 1.3. �
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Remark 3.12 Examples of curves with an automorphism of degree p in characteristic p
can be given in Artin-Schreier form. Consider the smooth complete curve B/k given by
the equation

yp − y =

d∏

i=1

(x− ai)
−ni,

where a1, . . . , ad ∈ k are distinct, and the ni are positive integers coprime to p. The
automorphism σ, which sends x 7→ x and y 7→ y + 1, has order p. The genus g of B is
given by the Riemann-Hurwitz formula

2g − 2 = −2p + (p− 1)(

d∑

i=1

(ni + 1))

(see [21], page 8). Each point (ai, 0) is a branch point Qi of B → B/ 〈σ〉, whose cor-
responding ramification point Pi in B is such that the valuation of the different of
OB,Pi

/OB/〈σ〉,Qi
is equal to (ni + 1)(p − 1). The curve B/k is ordinary if and only if

ni = 1 for all i = 1, . . . , d.

Corollary 3.13. Let p be prime. Let m ≥ 1 be any integer. Then there exists a wild
Z/pZ-quotient singularity of surface whose minimal desingularization has a graph with
more than m vertices.

Proof. Let s be any positive integer coprime to p. Let B1/k denote the Artin-Schreier
curve given by the equation yp − y = x−s, with automorphism σ1 sending y to y + 1.
Then the quotient map B1 → P1 is ramified only at the unique point P1 above ∞, with
s(P1) = s. Choose B2/k to be any ordinary curve of positive genus, and apply 1.3. In
view of 1.3, the graph of the minimal resolution of a singular point on Y/ 〈σ〉 has at least
ps vertices. �

Remark 3.14 Theorem 1.2 exhibits examples of intersection matrices occurring as desin-
gularizations of Z/pZ-quotient singularities in the equicharacteristic case. For instance,
when p = 2, the singularity in 1.2 is nothing but a classical Dn-singularity, with n := ps+2
being the total number of vertices of the associated resolution graph. In particular, The-
orem 1.2 exhibits Dn as a resolution of a Z/2Z-quotient singularity only in the equichar-
acteristic case, and only when n ≡ 0 mod 4, since s is coprime to p (see also [1], p. 64).
Examples of Dn-resolution with n ≡ 2 mod 4 are obtained in [15], 4.1, in the mixed
characteristic case.

Recall that the determinant of the intersection matrix N of a Z/pZ-quotient singularity
is expected to be always a power of p ([15], 2.6). We show below that for any fixed prime
p, all powers ps+1 with s coprime to p can arise as determinants in the context of wild
Z/pZ-quotient singularities.

Theorem 3.15. Fix a prime p. For each positive integer s coprime to p, there exists a
2-dimensional regular local ring A of equicharacteristic p endowed with an action of H :=
Z/pZ such that Spec AH is singular exactly at its closed point, and such that the graph
associated with a minimal resolution of Spec AH has exactly one node and s + 2 terminal
chains, and its associated intersection matrix N has determinant | det(N)| = ps+1.

Proof. Let B1/k be a curve with an automorphism σ1 of order p having only one fixed
point P1 (as, e.g., in the proof of 3.13). Let s(P1) denote the integer coprime to p such
that (s(P1) + 1)(p − 1) is equal to the valuation of the different at P1. Let B2/k be
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an ordinary curve of positive genus with an automorphism σ2 of order p. We keep our
standard notation where Y := B1 × B2, and σ := σ1 × σ2.

Choose a ramification point P2 on B2, with image Q2 in the quotient D2 := B2/ < σ2 >.
Let K2 denote the function field of D2 and let K denote the completion of K2 at the
valuation corresponding to Q. Then OK is the completion of OD2,Q. Consider the curve
X1/K2 introduced in 3.5, and base change the whole data appearing in 3.5 by Spec K or
Spec OK , as needed. To simplify our notation, we do not change notation when passing
from K2 to K: we now have a normal model Z1/OK for X1/K.

Theorem 1.3 allows us to determine the intersection matrix of the exceptional divisor
of the desingularization X1 → Z1 at the unique singular point of Z1, corresponding to
the point of Y/ 〈σ〉 image of (P1, P2). We let F1 denote the strict transform in X1 of the
reduced special fiber (Z1)

red
k (which is isomorphic to the quotient D1). We describe below

the arithmetical graph associated with the special fiber (X1)k of the regular model X1/OK

of the curve X1/K, following 3.10. (As we will refer to this graph later, we have labeled
the most important vertices in (X1)k for convenience.)

A0

A1 2 ps-1

ps A2

A1 F1

sr2 s

pz1 pzm′ p

Implicit in our notation is that

ps|A · A|X1
= (ps− 1) + pz1 + sr2.

Hence, we have sr2 ≡ 1 mod p. Moreover, since s is coprime to (ps− 1), we find that s
is coprime to pz1. Note that due to our construction with an ordinary curve B2, we also
know that |A · A|X1

= 2.
As in 3.5, let L2 := k(B2) and let L := L2 ⊗K. The curve X1/K has good reduction

over L. We now fix an extension F/K of degree s which is totally ramified (and tamely
ramified since s is coprime to p). Consider the curve (X1)F/F . It achieves good reduction
over the extension FL of degree p over F . Denote by Y the smooth model over OFL of
the curve (X1)FL/FL. The group H := Gal(FL/L) acts on Y , and we let Z denote the
quotient by this action. Then Z/OF has a unique singular point (with local ring which
we denote by AH), and the proof of Theorem 3.15 consists in showing that the resolution
of this singular point is as in the statement of Theorem 3.15.

Let X → Z denote the minimal resolution of the singularity of Z. Denote by F ′
1 the

reduced irreducible component (Z)red
k , and also its strict transform in X . Clearly, the

graph of the resolution of the singularity of Z is obtained by removing the vertex F ′
1 from

the graph of the special fiber Xk. We will denote by N the matrix associated with the
resolution of the singularity.

Recall that we have fixed an integer s coprime to p, and that the choices made so far
also fix a second positive integer r2. We will show below that to prove Theorem 3.15,
it suffices to have the following information of the special fiber Xk: We claim that the
arithmetical graph of the special fiber Xk has a single node, of multiplicity p, with s + 2
terminal chains attached to it. The node is attached to s vertices of multiplicity r2, and
to two more vertices, of multiplicity p− 1 and p, respectively. The terminal chain started
by the vertex of multiplicity p − 1 consists of vertices of self-intersection −2, while the
terminal chain started by the vertex of multiplicity p consists of vertices of self-intersection
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−2 except for the terminal vertex on the chain, which has self-intersection −1. The graph
of the special fiber Xk can be represented1 as follows2 (in the case s = 2):

-2 -2 -2

1 p− 1

pCs+1 C2

-2 -2 -2

r2 r21 1

p p p p

-1 F ′
1

We prove the above claim in 3.16, and use it now to deduce the statement of Theorem
3.15. Let us denote by n the size of the matrix N (i.e., N is a n × n-matrix) and label
the distinguished vertex C below as the last vertex Cn in the enumeration of the vertices
of G(N). Then we have determined exactly the pair (N, Rn) with NRn = −pen, and this
data is represented below when s = 2.

-2 -2 -2

1 p− 1

pCs+1 C2

-2 -2 C

r2 r21 1

p p p

This data is exactly what is needed to apply [15], Theorem 3.14, to obtain that | det(N)| =
ps+1. Note that since we do not specify α, it could happen that C is in fact the node of
the graph, but [15], Theorem 3.14, applies just as well to this case.

3.16 Let us now turn to proving our claim. For this, we will compute the model X as
follows:

(a) Compute the scheme X1 ×Spec OK
Spec OF .

(b) Compute the normalization N of X1 ×Spec OK
Spec OF .

(c) Compute the desingularization Z ′ → N of N /OF .
(d) Construct a scheme Z ′′/OF and a morphism Z ′ → Z ′′ obtained as a series of con-

tractions of smooth rational curves of self-intersection (−1), in such a way that no
component of (Z ′′)k is smooth rational of self-intersection −1, except possibly a com-
ponent D′′, image of a component D′ on Z ′, with D′ mapping to a component over
(Z1)

red
k . We will show that Z ′′ = X is a minimal desingularization of the quotient

Z/OF .

Because the extension F/K is tame, every step in the above process can be done in an
explicit enough fashion allowing for the complete determination of the combinatorics of
special fiber of (Z ′′)k. In particular, every singularity of N is a tame cyclic quotient
singularity and is resolved by a chain of rational curves (see, e.g., [6]).

1Up to permuting the bottom two terminal chains, the matrix N obtained by removing the vertex F ′

1

is a star-shaped matrix introduced in 2.4 and is determined by (p, α, r1, . . . , rs+1) with r1 = p− 1, and
r2 = · · · = rs+1 with r2s ≡ 1 mod p.

2Since a terminal chain of an arithmetical graph is completely specified when the vertex linked to the
node is of multiplicity coprime to the multiplicity of the node and the terminal chain does not contain
any vertex of self-intersection −1, we find that in our case, the arithmetical graph would be completely
specified once the number α of components of self-intersection (−2) on the bottom right terminal chain
is given. There is no need for our purpose to specify α further, but let us note that one can show that α
is divisible by p.
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To prove our claim, it suffices to prove it first when s is prime, and then apply repeatedly
the prime case to all prime divisors of the given s. Let us thus assume from now on
that s is prime. Since the base change is tame, and its degree divides the multiplicity of
A, we know that the normalization N is regular above any point of the component A.
The preimage B of A in N is a smooth rational curve of multiplicity p, branched exactly
over the points where A meets A0 and A1 (these are the only components meeting A
whose multiplicities are coprime to s). The preimages B0 and B1 of A0 and A1 in Nk are
irreducible of multiplicities ps− 1 and pz1, respectively. The preimage of A2 consists of s
rational curves C2, . . . , Cs+1, each of multiplicity r2 in Nk. We deduce from this that on
N ,

p|B · B|N = (ps− 1) + pz1 + sr2,

so that |B · B|N = s + z1 + (sr2 − 1)/p.
It also follows from the fact that every curve on the terminal chain started by A2 has

multiplicity divisible by s, that the preimage of the whole chain in the normalization N
is in the regular locus of N , and simply consists of s copies of the original chain found on
(X1)k (same intersection numbers and self-intersections).

We now turn to understanding the chains in Z ′′ started in N by B0 and B1. Since
the multiplicity of B0 is larger than the multiplicity of B, and since every singularity of
N is resolved by a chain of rational curves, we find that the curve B0 will be contracted
in the morphism Z ′ → Z ′′. The same argument applies to the chain started by B1 if
pz1 > p. Since ps − 1 is coprime to p, we find that the terminal vertex on the chain in
Z ′ started by B0 has multiplicity 1. Similarly, since pz1 has greatest common divisor p
with the multiplicity of B, we find that the terminal vertex on the chain in Z ′ started
by B1 has multiplicity p. It follows that in Z ′′, the image of the component B (again
denoted by B) meets a component of multiplicity p (the component corresponding to B
cannot be contracted in Z ′′ since at any stage of the contracting morphism, the image of
B meets at least three other components, one of them of multiplicity a multiple of p. The
self-intersection of the image of B can then never equal −1 since its multiplicity is p).

Say that the terminal chain started by B0 in Z ′ corresponds in Z ′′ to a terminal chain
started by a component of multiplicity x, with x < p since x is coprime to p. From

p|B · B|Z′′ = x + p + sr2,

we conclude that x = p − 1. Then the terminal chain of Z ′′ started by the component
of multiplicity p − 1 is completely understood, and consists of p− 1 components of self-
intersection (−2). It remains to discuss the chain of Z ′′ started by the component of
multiplicity p. Clearly, every component of this chain is then also of multiplicity p and
self intersection (−2), except for the last one, which has multiplicity p and self-intersection
(−1). This concludes the proof of Theorem 3.15. �

Let p be prime, and let (G, M, R) be an arithmetical graph. It is natural to wonder
whether there exists a discrete valuation field K of residue characteristic p and ring of
integers OK , and a curve Y/K with a regular model Y/OK whose special fiber has M as
its associated intersection matrix. We note here such a statement which does not follow
from the general existence results of Viehweg [24] or Winters [25].

Corollary 3.17. Fix a prime p and an integer s > 1 coprime to p. Denote by r2 the
unique integer in [1, p − 1] such that sr2 ≡ 1 mod p. Define z1 > 0 by the equality
ps = sr2 − 1 + pz1. Consider the arithmetical tree (G, M, R) specified as follows: the tree
G has a single node, of multiplicity ps, and three vertices linked to it, with multiplicities
ps−1, sr2, and pz1, respectively. The self-intersection of the node is −2, with the relation
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2ps = (ps− 1) + sr2 + pz1. This data completely specifies (G, M, R), which we represent
as follows:

-2

1 2 ps-1 ps

sr2 s

pz1 p

Then there exists a discrete valuation field K of equicharacteristic p, and a curve Y/K
with a regular model Y/OK whose special fiber has M as its associated intersection matrix.
The genus of Y is (s − 1)(p − 1)/2. Moreover, there exists a totally ramified extension
L/K of degree p such that YL/L has good reduction.

Proof. Such a curve is exhibited at beginning of the proof of Theorem 3.15, where it is
called X1/K.

Remark 3.18 Let A/K denote the Jacobian of the curve Y/K whose existence is asserted
in 3.17. By construction, A/K has purely additive reduction over OK , and achieves good
reduction after a wildly ramified extension of degree p. Using the arithmetical graph
(G, M, R) associated with the regular model Y/OK , we compute the group of components
ΦA,K of the Néron model A/OK of A/K to be ΦA,K = (0) (see, e.g., [12], 1.5). Proposition
3.8 in [14] states that when an abelian variety A/K with purely additive reduction achieves
good reduction over a tame extension of prime power degree, then ΦA,K is not trivial. The
Jacobian A/K is an example which shows that the hypothesis that the extension is tame
cannot be removed from the statement of [14], 3.8.

Note also that in this example, the extension L/K minimal with the property that
YL/L has semi-stable reduction has a degree which strictly divides the multiplicity of the
unique node of the graph of the minimal regular model of Y/K over OK ; see Footnote 5
of [14], page 46, for a related discussion.

Remark 3.19 In Theorem 3.15, we proved the existence of Z/pZ-quotient singularities in
equicharacteristic p such that the graph associated with a minimal resolution of Spec AH

has an intersection matrix N with | det(N)| = ps+1, where s is a positive integer coprime
to p. It is natural to wonder whether a similar result could be obtained when p divides s.

4. Rational singularities

Denote by Z the spectrum of a normal two-dimensional local ring A with algebraically
closed residue field k. Assume that the closed point Q of Z is singular, and let f : X → Z
be a resolution of the singularity at Q. Let N be the associated intersection matrix, and
let Z > 0 be its fundamental cycle (2.2). Artin showed in [2], Thm. 3, that for the surface
singularity Q to be rational, it suffices that its fundamental cycle Z have arithmetic genus
pa(Z) = 0 (where pa(Z) = 1− χ(Z)). Moreover, when the singularity is rational, then its
multiplicity is equal to |Z2| ([2], Cor. 6). We will use this criterion to prove the following
theorem. (We denote the fundamental cycle by the boldface letter Z to distinguish it
from the model Z on which the singularities in our next theorem lie.)

Theorem 4.1. For each prime p, the singularities resolved in Theorem 1.2 have multi-
plicity p and are rational.

Proof. The resolution of the singularities in Theorem 1.2 have an intersection matrix of the
form N = N(p, α, r1) as in 2.5. We denote by Z the fundamental cycle of this matrix. As
we shall see in 4.3, it is not hard in the case of N to write down a positive vector Z0 which
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could be the fundamental cycle Z of N . Proposition 4.6 proves that Z = Z0 and provides
the necessary facts on Z allowing us to immediately conclude that the singularities are
rational of multiplicity p using Artin’s results on rational singularities quoted above. �

Denote as in the above proof by Z the fundamental cycle of the matrix N = N(p, α, r1)
associated with the singularities in Theorem 1.2. Denote as in 4.3 by Z0 the positive vector
with Z0 ≥ Z. We did not find a satisfactory way of proving directly, using combinatorial
tools only, that this ‘candidate’ is indeed the fundamental cycle of N . We will instead
rely on general results of [23], which themselves rely on results in [22]. Both of these
papers use geometric tools. The paper [23] studies normal surfaces singularities, and in
view of the use of the terminology ‘holomorphic’ in the introduction to [23], we infer that
the author is working in the category of surfaces over C. To be able to apply the results
of [23] in our context, we need the following proposition, whose statement is probably
classical, but we did not find it stated as such in the literature.

Proposition 4.2. Let N be any intersection matrix as in 2.1. Then there exists a complex
surface Z/C, singular at a single point z ∈ Z, whose resolution of singularities f : X → Z
over C has a fiber f−1(z) whose intersection matrix is equal to N (up to equivalence).

Proof. Choose any ordering of the vertices of G(N). Pick a vertex Ci, and consider the as-
sociated positive vector Ri. Then it is always possible to complete the data (G(N), N, Ri)
into an arithmetical graph (G(M), M, R) (see [15], proof of 3.14). The main theorem
of [25] proves the existence of a smooth surface X /C and a smooth curve W/C with a
morphism g : X → W such that for some w ∈ W , the arithmetical graph associated
with g−1(w) is the given graph (G(M), M, R). By construction, G(N) is a subgraph of
G(M). We let Z/C denote the surface obtained from X by contracting the components
of G(N). Such a contraction always exists by a theorem of Grauert in the category of
complex analytic spaces. (Such a contraction exists in the category of algebraic spaces by
a theorem of Artin ([3], 6.12, p. 125).) �

4.3 Consider the star-shaped graph as in 2.5, with intersection matrix N = N(p, α, r1),
and associated vector R1. Assume from now on that α ≥ p. Consider the vector Z0

described as follows. On the second and third terminal chains of the graph of N(p, α, r1)
(both on the right of the node), the coefficient of Z0 on a vertex D is equal to the
corresponding coefficient of R1 at that vertex. On the first terminal chain to the left
of the node, where the coefficients of R1 are all equal to p, the coefficients of Z0 are
(1, 2, . . . , p− 1, p, p, . . . , p). For convenience, we call A0 the node of G(N), and we denote
by A the p-th vertex of G(N), counting from the left of the graph. Since we assume that
p ≤ α, A is on the terminal chain on the left, and when α = p, we have A = A0. The
diagram below describes the vector Z0 in the case where α > p. The vector NZ0 has only
one non-zero coefficient, namely −1, corresponding to the vertex A. Thus, Z2

0 = −p.

1 2 p− 1 p pp

p− r1

r1

1

1A0A

It follows that Z0 is an upper bound for the fundamental cycle Z of N . Note that the
fact NZ0 has only one non-zero coefficient shows that Z0 is in fact a vector of type Ri

associated to N in 2.2. The fact that this non-zero coefficient is −1 shows that the class
in Zn/Im(N) of the basis vector corresponding to the vertex A is trivial. Our goal is to
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show that Z = Z0 when α ≥ p. We first do so in a completely elementary way for the
matrix appearing in Theorem 1.1, which we recall below.

Lemma 4.4. Consider the matrix N appearing in Theorem 1.1, which is a special case
of the above matrix N(p, α, r1); its graph is represented below, and the positive coefficient
next to a vertex is the coefficient of the vector Z0 corresponding to the vertex. Then
Z = Z0.

-2 -2 -2 -2

-p

-2 -2 -2

1 2 p− 1 p

1

p− 1 2 1

Proof. Since the vector Z0 is an upper bound for Z and has terminal vertices of multiplicity
1, the coefficients in Z of the terminal vertices of G(N) must be equal to the corresponding
coefficients of Z0. Since the vector Z is unique, it is easy to check that the fundamental
cycle must be ‘symmetric’ along the central vertical edge of the graph, as depicted in
the picture below (the integer zi in the graph next to a vertex is the coefficient of Z
corresponding to this vertex.)

-2 -2 -2 -2

-p

-2 -2 -2

1 z2 zp−1 zp

1

zp−1 z2 1

It follows from NZ ≤ 0 evaluated at the line corresponding to the node that

−2zp + zp−1 + 1 + zp−1 ≤ 0.

Thus, we find that zp − zp−1 ≥ 1. We also must have

−2zi + zi−1 + zi+1 ≤ 0

for all i = 2, . . . , p−1. This latter inequality implies that zi+1− zi ≤ zi− zi−1. Therefore,
for all i = 2, . . . , p− 1,

1 ≤ zp − zp−1 ≤ zi − zi−1.

Since Z ≤ Z0, it follows that Z = Z0. In particular, (Z · Z) = −p. �

4.5 Let us return now to the set-up of Theorem 1.1, where the resolution of the singular-
ities of the normal surface Z have intersection matrices as in 4.4. We now show that for
the fundamental cycle Z of these resolutions, we have pa(Z) = 0. Recall that

2pa(Z)− 2 = Z · (Z + Ω),

where Ω is the relative canonical sheaf. For each irreducible component Ci, which we
know to be rational, we also have

2pa(Ci)− 2 = −2 = Ci · (Ci + Ω),

so that Ci · Ω = |Ci · Ci| − 2. Since all but one component Ci have |Ci · Ci| = 2, we find
that 2pa(Z)−2 = (Z ·Z)+(Z ·Ω) = −p+(p−2), which shows that pa(Z) = 0, as desired.

The computation of the arithmetic genus pa(Z0) in the case of the intersection matrix
N = (cij) appearing in Theorem 1.2 is also straightforward. Let us define the invariant
pa(Z0) associated with the matrix N and the vector Z0 by the formula 2pa(Z0) − 2 :=
Z0 · Z0 +

∑n
i=1(|cii| − 2)zi. In the case of the intersection matrix N = N(p, α, r1) with

vector Z0 as in 4.3, we find using 2.3 that the sum in the definition of 2pa(Z0)− 2 has a
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contribution from each of the three terminal chains, namely, 0, p−r1−1, and p−(p−r1)−1,
giving 2pa(Z0)− 2 = −2, so that pa(Z0) = 0.

We now prove a much more general form of Lemma 4.4 using results from [23].

Proposition 4.6. Assume that α ≥ p. Then Z0 is the fundamental cycle Z of N(p, α, r1),
with Z2

0 = −p and pa(Z0) = 0. In particular, a singularity with intersection matrix
N(p, α, r1) and α ≥ p, is rational of multiplicity p.

Proof. We use 4.2 to exhibit N(p, α, r1) as the intersection matrix associated with the
resolution of a complex surface singularity. We are now free to use the relevant results
in [23]. Recall that for any positive real number r, the symbols {r} denote the smallest
integer m such that m ≥ r.

We find, in [23], (3.4) on page 282, that the coefficient z(A0) (in the fundamental cycle
Z) associated to the node A0 is equal to the least positive integer k such that

(4.6.1) k|A0 ·A0| ≥ {kr1/p}+ {k(p− r1)/p}+ {k(α− 1)/α}.

Indeed, a divisor [kD] on A0 is defined in [23], (3.2) on page 281 (the± sign occurring there
should be the = sign). For each terminal chain of the graph, a ratio di/ei is defined on
page 281. For the matrix N , these ratios are α/(α−1), p/r1, and p/(p− r1), respectively.
By definition, the divisor D is in the class of the conormal bundle of A0, and so its degree
is |A0 · A0|. Then (4.6.1) follows immediately from [23], (3.4).

We are going to show that z(A0) = p, using (4.6.1). Recall that |A0 · A0| = 2 in our
case. The intersection matrix N at the node A0 gives the relation 2p = r1 + (p− r1) + p.
Thus,

2k =
kr1

p
+

k(p− r1)

p
+

kp

p
.

By definition, kr1

p
≤ {kr1

p
} and k(p−r1)

p
≤ {k(p−r1)

p
}. Clearly, {k(α−1)/α} = k when k < α.

It follows that when k < α,

2k ≤ {kr1/p}+ {k(p− r1)/p}+ {k(α− 1)/α}

and we have equality when k = p. Since kr1/p and k(p− r1)/p cannot be integers when
k < p, we find that for k < p:

kr1

p
+

k(p− r1)

p
= k < {kr1/p}+ {k(p− r1)/p}.

Hence, z(A0) = p.
We now compute the full fundamental cycle Z of N using [23], (3.5), page 283. Let

us list consecutively the vertices of the i-th terminal chain of G(N) attached to A0 by
A0, Di, . . . , Ti, so that Di is attached to A0, and Ti is the terminal vertex of the chain. Let
Ni denote the intersection matrix associated with the vertices Di, . . . , Ti, with (Di ·Di) in
the top left corner, and (Ti ·Ti) in the bottom right corner. Let ni denote the length of this
chain, so that Ni is a square (ni×ni)-matrix. Starting with τni

:= 1, we define inductively
the integer vector (τ1, . . . , τni

) such that (τ1, . . . , τni
)Ni = (−τ0, 0, . . . , 0). The coefficients

(z1, . . . , zni
) of the vector Z on the vertices of the chain Di, . . . , Ti are computed as follows

in [23], (3.5), page 283. Let z0 := z(A0). Then

zj = {
τjzj−1

τj−1

},

for j = 1, . . . , ni. As proved in [23], Lemma 3.2, if z(A0) = aτ0 for some positive integer
a, then zj = aτj .
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This latter lemma applies to both the second and third terminal chains of G(N) (those
on the right of the node A0). Indeed, we computed above that z(A0) = p, and we
find that z(A0) = τ0 for both terminal chains. Thus on these chains, the coefficients
of Z are as predicted in Proposition 4.6. On the first chain, we find that τ0 = α, and
(τ1, . . . , τni

) = (α−1, α−2, . . . , 2, 1). Thus, z1 = {(α−1)p/α} = p, since α ≥ p. Moreover,
for j < α− p,

zj+1 = {(α− (j + 1))p/(α− j)} = {p− p/(α− j)} = p.

We leave it to the reader to verify that (z1, . . . , zα−1) = (p, . . . , p, p−1, . . . , 2, 1), as desired.
�
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