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Abstract. Let K be a complete discrete valuation field with ring of integers OK and
algebraically closed residue field k of characteristic p > 0. Let X/K be a smooth proper
geometrically connected curve of genus g > 0, with X(K) 6= ∅ if g = 1. Assume that X/K
does not have good reduction, and that it obtains good reduction over a Galois extension
L/K of degree p. Let Y/OL be the smooth model of XL/L. Let H := Gal(L/K).

In this article, we provide information on the regular model of X/K obtained by
desingularizing the wild quotient singularities of the quotient Y/H . The most precise
information on the resolution of these quotient singularities is obtained when the special
fiber Yk/k is ordinary. As a corollary, we are able to produce for each odd prime p
an infinite class of wild quotient singularities having pairwise distinct resolution graphs.
The information on the regular model of X/K also allows us to gather insight into the
p-part of the component group of the Néron model of the Jacobian of X .

KEYWORDS Model of a curve, ordinary curve, cyclic quotient singularity, wild, arith-
metical tree, resolution graph, component group, Néron model.
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1. Introduction

Let K be a complete discrete valuation field with valuation v, ring of integers OK and
residue field k of characteristic p > 0, assumed to be algebraically closed. Let X/K be a
smooth proper geometrically connected curve of genus g > 0, with X(K) 6= ∅ if g = 1.

Assume that X/K does not have good reduction, and that it obtains good reduction
over a Galois extension L/K. Let Y/OL be the smooth model of XL/L. Let H :=
Gal(L/K) and let Z/OK denote the quotient Y/H . A regular model for X/K can be
obtained by resolving the singularities of the scheme Z. Our goal is to obtain information
on this regular model when p divides [L : K]. Since the presence of wild ramification
renders the subject quite challenging, we will restrict our attention in this article to the
case where [L : K] = p.

Beyond our interest in models of curves per se, our motivation for understanding these
regular models is two-fold. First, since X is obtained by desingularizing certain quotient
singularities, we hope to gain more insight in the general theory of resolutions of wild
quotient singularities by producing interesting classes of examples where the singularities
can be resolved explicitly. Second, since from a regular model of the curve one can
compute much of the Néron model of its Jacobian, we hope to bring new insight into the
structure of the rather mysterious p-part of the component group of the Néron model of a
general abelian variety from an increased understanding of the special case of Jacobians
of curves.

Let us introduce some notation needed to state our theorems. Let σ denote a generator
of H := Gal(L/K). Denote also by σ the automorphism of Yk induced by the action of
H on Y . The scheme Z is singular exactly at the images Q1, . . . , Qd of the ramification
points P1, . . . , Pd, of the map Yk → Yk/ 〈σ〉 (5.2). Consider the regular model X → Z
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obtained from Z by a minimal desingularization. Let X ′ → X denote the regular model
of X/K minimal with the property that X ′

k has smooth components and normal crossings.
Let f denote the composition X ′ → Z. Let C0/k denote the strict transform in X ′ of the
irreducible closed subscheme Zred

k of Z. Let D1, . . . , Dd denote the irreducible components
of X ′

k that meet C0. Let ri denote the multiplicity of Di, i = 1, . . . , d, in X ′
k.

Recall that to any connected curve ∪n
`=1C` on a regular model X we associate a graph

G as follows: the vertices are the irreducible components C`, and in G the vertices Ci and
Cj (i 6= j) are linked by exactly (Ci ·Cj)X edges, where (Ci ·Cj)X denotes the intersection
number of Ci and Cj on the regular scheme X . Recall that the degree of a vertex v of
a graph is the number of edges attached to v. A node on a graph is a vertex of degree
at least 3. A vertex of degree 1 is a terminal vertex. A chain is a subgraph of G with
vertices C0, C1, . . . , Cn, n ≥ 1, such that Ci is linked to Ci+1 by exactly one edge in G
when i = 0, . . . , n−1, and the degree of Ci is 2 when i = 1, . . . , n−1. If the chain contains
a terminal vertex (which can only be C0 or Cn), the chain is called a terminal chain.

Let G denote the graph associated with X ′
k. We assume d ≥ 1. For each i = 1, . . . , d,

let GQi
denote the graph associated with the curve f−1(Qi). In particular, Di corre-

sponds to a vertex of GQi
. We have the following configuration on the graph G (where a

positive integer next to a vertex denotes the multiplicity of the corresponding irreducible
component in X ′).

C0 p

D1 r1 Dd
rd

Theorem 5.3. Let X/K be a curve with potentially good reduction after a wildly ramified
extension L/K of degree p, as above. Keep the above notation. Then, for all i = 1, . . . , d,
the graph GQi

contains a node of G, and p divides ri.

In contrast, when H is of prime order q 6= p, then it is known that q > ri and that the
graph GQi

does not contain a node of G. In particular, when L/K is tame and d ≥ 3, the
graph G has only a single node, the component C0 (see, e.g., [14], 2.1).

We propose in 6.1 a combinatorial measure γQi
gQi

of the complexity of the graph GQi
,

which we conjecturally relate in 6.2 to the higher ramification data of the morphism
Yk → Yk/ 〈σ〉. This conjectural relationship expresses the fact that the graph GQi

is
‘complicated’ only if the higher ramification above Qi is ‘large’. We prove this conjecture
in the ordinary case (6.4).

Recall that a smooth proper curve Y/k of genus g is called ordinary if its Jacobian J/k
is an ordinary abelian variety (that is, J(k) has exactly pg points of order dividing p).
When Yk is ordinary, the morphism Yk → Yk/ 〈σ〉 has the smallest possible ramification
data at each Qi (2.2), and in this case we can use Theorem 5.3 to describe the graph
GQi

explicitly, as in the following theorem, whose statement is slightly strengthened in
the version given in section 6. In the graph below, a bullet • represents an irreducible
component of the desingularization of Qi. A negative number next to a vertex is the
self-intersection of the component. A positive number next to a vertex is the multiplicity
of the corresponding component in X ′

k.

Theorem (see 6.8). Let X/K be a curve with potentially good reduction after a Galois
extension L/K of degree p, as above. Assume that Yk ordinary. Then, for all i = 1, . . . , d,
we have ri = p, and GQi

is a graph with a single node Ci, of degree 3:
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p p p p p

-2 -2 -2 -2
Di Ci

p− r1(i)

r1(i)

1

1C0

The intersection matrix N(p, αi, r1(i)) of the resolution of Qi is uniquely determined as
in 4.7 by the two integers αi and r1(i), with 1 ≤ r1(i) < p. The integer αi denotes the
number of vertices of self-intersection −2 (including the node Ci) on the chain in GQi

connecting the node C0 to the single node Ci of GQi
, and the integer αi is divisible by p.

To further determine the regular model, one would need to determine explicitly the
integers αi and r1(i). We will address this issue in [20]. In all cases where we have been
able to compute αi and r1(i), we found them to be related to the valuation of the different
of L/K. More precisely, let (sL/K +1)(p−1) denote the valuation of the different of L/K.

In [20], 1.1, we present some instances where αi = psL/K , and r1(i) ≡ −s−1
L/K modulo p.

We also show in [20], 4.1, that the singularities Qi are rational.

Remark 1.1 The same type of intersection matrix, N(p, αi, r1(i)), also occurs in the
resolution of the singularities of the model Z when X/K has genus p− 1 and Jac(X)/K
has purely toric reduction after an extension of degree p ([18], 2.2).

Remark 1.2 The special fiber of the model X /OK of X/K in Theorem 6.8 has thus a
graph with a central vertex to which d branches are attached, of the form described below,
where we picture the case d = 4.

1

1

1

1

1

1

1

1

C0p p p

p

ppp p p p

p p p

Fix any d > 1. We establish in 6.8 and 6.13 the existence of some field K of residue
characteristic p > 0 and of some smooth proper curve X/K with a regular model whose
special fiber has a graph of the above type. This is clearly a weak existence result, but
our understanding of models in the presence of wild ramification is so limited that even
this weak existence result does not follow from the general existence results of Viehweg
[30] and Winters [31].

An immediate but surprising corollary to Theorem 6.8 is as follows.

Corollary (see 6.10). Let X/K be a curve of genus g > 1 with potentially good reduction
after a Galois extension L/K of degree p, as above. Assume that Yk is ordinary. Then
X(K) 6= ∅.

The information on the regular model of X/K obtained in Theorem 6.8, while incom-
plete to fully describe the special fiber of the model, suffices to compute several invariants
of arithmetical interest. For instance, the set of components of multiplicity 1 on the spe-
cial fiber of the model is determined, and this information is one of the ingredients needed
to apply the method of Chabauty-Coleman to bound the number of Q-rational points on
a curve X/Q using the reduction at a small prime p, as in [21], 1.1. Let A/K denote the
Jacobian of A/K, with Néron model A/OK and component group ΦA/K . The information
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obtained in Theorem 6.8 suffices to compute ΦA/K and a new canonical subgroup Φ0
A/K

of ΦA/K that we now define.

1.3 Let A/K be an abelian variety, with Néron model A/OK . Let L/K be any finite
extension, and let A′/OL denote the Néron model of AL/L. Denote by

η : A×OK
OL → A

′

the canonical map induced by the functoriality property of Néron models. The special
fiber Ak is an extension of a finite group ΦA/K , called the group of components, by the
connected component of zero A0

k of Ak:

0 −→ A0
k −→ Ak −→ ΦA/K −→ 0.

Assume that AL/L has semi-stable reduction, and consider the natural map ΦA/K →
A′

k/η(A0
k). We let

Φ0
A/K := Ker(ΦA/K −→ A

′
k/η(A0

k)).

The subgroup Φ0
A/K does not depend on the choice of such an extension L/K, and is

functorial in A. Our interest in this subgroup stems from the following conjectures.
When A/K has potentially good reduction and, more generally, when the toric rank of

A0
k is trivial, we conjecture that the order of the group ΦA/K is bounded by a constant

depending only on the dimension g of A/K ([15], p. 146). This statement is true when
A/K is a Jacobian ([15], 2.4), and for the prime-to-p part of ΦA/K ([16], 2.15). Since
[L : K]2 kills the group ΦA/K when the toric rank of A is trivial ([11], 1.8), we find that to
prove the conjecture that ΦA/K is bounded by a constant depending only on g, it suffices
to prove that the minimal number of generators of ΦA/K can be bounded by a constant
depending on g only. We guess, under the above hypotheses, that ΦA/K can be generated
by 2g elements.

Assume now that A/K has potentially good reduction. The p-torsion in A′
k can always

be generated by at most g elements. Thus the above conjecture is proved if the p-part
of the kernel Φ0

A/K can be generated by a number of elements bounded by a constant

depending on g only (possibly 2g). In the ordinary case, where the p-torsion in A′
k is

minimally generated by g elements, one may wonder if Φ0
A/K can also be generated by g

elements. Our next corollary gives some evidence that this latter question may have a
positive answer for all abelian varieties with potentially good ordinary reduction.

Let A/K be the Jacobian of a curve X/K with X(K) 6= ∅. Let 〈 , 〉 : ΦA/K ×ΦA/K →
Q/Z denote Grothendieck’s pairing. This pairing is non-degenerate ([3], 4.6). Denote by
(Φ0

A/K)⊥ the orthogonal of Φ0
A/K under Grothendieck’s pairing.

Corollary (see 6.12). Let A/K be the Jacobian of a curve X/K of genus g > 1
having potentially good ordinary reduction after a Galois extension L/K of degree p, as
above. Then ΦA/K is a Z/pZ-vector space of dimension 2d − 2, and Φ0

A/K is a subspace

of dimension d− 1. Moreover, Φ0
A/K = (Φ0

A/K)⊥.

It is natural in view of Corollary 6.12 to wonder whether the same result holds for all
principally polarized abelian varieties A/K having potentially good ordinary reduction
after a Galois extension L/K of degree p. We may also wonder, for any principally
polarized abelian variety A/K with potentially good reduction, whether the order of
Φ0

A/K ∩ (Φ0
A/K)⊥ can be bounded by a constant depending only on the p-rank of A′

k. We
hope to return to these questions in the future.
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1.4 Our explicit computation of a regular model of a curve having potentially good or-
dinary reduction also has an application to quotient singularities. Our current under-
standing of wild Z/pZ-quotient singularities of surfaces is quite limited, and few explicit
examples are known (see, e.g., [2], [9], for p = 2, and [23] for p = 3). In contrast to
the case of a tame cyclic quotient singularity, where the number of possible resolution
graphs is finite once the order of the group is fixed, we show below that for any fixed
odd prime p, there are infinitely many graphs that can occur as the resolution graphs of a
wild Z/pZ-quotient singularity, in both mixed characteristic, and in the equicharacteristic
case. The analogous result when p = 2 is discussed in [19], 4.1.

Corollary 6.14. Fix any odd prime p. For each integer m > 0, there exist a 2-
dimensional regular local ring B of equicharacteristic p endowed with an action of H :=
Z/pZ, and a 2-dimensional regular local ring B′ of mixed characteristic (0, p) endowed with
an action of Z/pZ, such that Spec BH and Spec(B′)H are singular exactly at their closed
point, and the graphs associated with a minimal resolution of Spec BH and Spec(B′)H

have one node and more than m vertices.

This article is organized as follows. The proof of Theorem 5.3, in section 5, is of a
global nature and includes in particular a study of the natural map ΦA/K → A

′
k/η(A0

k).
The proof uses two auxiliary results of independent interest. The first result, Proposition
2.5, is discussed in section 2 and is a relation between torsion points in a quotient of two
Jacobians. This proposition is one place in our arguments where the tame and wild cases
can be seen to differ in an explicit way. The second result, Theorem 3.6, is the main result
of section 3, and is a general relation between elements in the component group ΦM of
an arithmetical tree.

Section 4 presents further results of a combinatorial nature on arithmetical trees which
are needed in the proof of Theorem 6.8. Section 6 contains the proof of Theorem 6.8
and of its applications. It is my pleasure to thank Qing Liu, Werner Lüktebohmert, and
Michel Raynaud, for helpful comments. I also thank the referee for a careful reading of
the article.

2. Cyclic morphisms and torsion

Let k be an algebraically closed field of characteristic p. Let f : D → C be a ramified
Galois morphism of smooth connected projective curves over k. Our main result in this
section is Proposition 2.5, which will be applied to the case of the quotient morphism
Yk → Yk/ 〈σ〉 in the course of the proof of Theorem 5.3.

2.1 Assume that the Galois group H of f is cyclic of degree qs, with q prime. Let
P1, . . . , Pd in D(k) be the ramification points. Assume that at each Pi, the morphism is
totally ramified, and let Qi := f(Pi), i = 1, . . . , d, be the branch points.

When q 6= p, the Riemann-Hurwitz formula is

(2.1.1) 2g(D)− 2 = qs(2g(C)− 2) + d(qs − 1).

Moreover, d ≥ 2. When g(C) = 0, this follows immediately from the formula; the general
case requires a separate proof.

Assume now that q = p. For P ∈ D(k), let H0(P ) ⊇ H1(P ) ⊇ . . . denote the sequence
of higher ramification groups. If P is a ramification point, then |H0(P )| = |H1(P )| = ps.
Set

δ(P ) :=
∑

i

(|Hi(P )| − 1).
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Then the Riemann-Hurwitz formula is:

(2.1.2) 2g(D)− 2 = ps(2g(C)− 2) +
∑

P∈D(k)

δ(P ),

and it may happen that d = 1.

2.2 Let γ(D) denote the p-rank of D (i.e., the p-rank of Jac(D)). The Deuring-Shafarevich
formula relates the p-ranks of C and D:

(2.2.1) γ(D)− 1 = ps(γ(C)− 1) + d(ps − 1).

The curve D is ordinary when γ(D) = g(D). When D is ordinary, we find, comparing
the formulas (2.1.2) and (2.2.1), that |H2(P )| = 1 for all P , and that C is also ordinary.
Moreover, when g(D) > 0, the equation (2.2.1) shows that p ≤ g(D) + 1.

When a ramification point P of a Galois morphism f : D → C is such that H2(P ) = (0),
we will say that the morphism is weakly ramified at P .

2.3 We record here the following well-known fact (see [8], p. 42, or [28], 1.3, when K =
k(x)). Let K be a field with char(K) = p. Let (A,M) be a discrete valuation ring with
field of fractions K, valuation vK , and uniformizer πK . Assume that the residue field k of
A is algebraically closed. Let L/K be a cyclic ramified Galois extension of degree p with
Galois group H . Let (B,N ) denote the integral closure of A in L. Let H = H0 ⊇ H1 ⊇ . . .
denote the sequence of ramification groups. Then

∑∞
i=0(|Hi| − 1) = (m + 1)(p − 1) for

some integer m prime to p.

2.4 Examples of curves with an automorphism of degree p in characteristic p can be given
in Artin-Schreier form. Consider the curve yp− y =

∏d
i=1(x−ai)

−ni, where a1, . . . , as ∈ k
are distinct, and the ni are positive integers coprime to p. The automorphism y 7→ y + 1
has order p. The genus g of the smooth complete curve defined by the above equation is
given by the Riemann-Hurwitz formula 2g − 2 = −2p + (p − 1)(

∑d
i=1(ni + 1)) (see [29],

page 8).

The following simple proposition exhibits a key difference between the tame and wild
cases.

Proposition 2.5. Let q be a prime. Let f : D → C be a ramified cyclic morphism
of degree qs between smooth connected projective curves over k. Let P1, . . . , Pd, d ≥ 2,
denote the ramification points, assumed to be totally ramified. For i 6= j, the image ωij

of Pi − Pj in Jac(D)/f ∗(Jac(C)) is of finite order qs. Let T denote the finite subgroup
Jac(D)/f ∗(Jac(C)) generated by {ωid, i = 1, . . . , d− 1}. Then

(a) If q = p, then T is isomorphic to (Z/psZ)d−1, and is generated by {ωid, i = 1, . . . , d−
1}.

(b) If q 6= p, then T is isomorphic to (Z/qsZ)d−2, and is generated by {ωid, i = 1, . . . , d−
2}.

Proof. Let S denote the subgroup of Div0(D) with support on the set {P1, . . . , Pd}. It is
clear that {Pi − Pd, i = 1, . . . , d − 1} is a Z-basis for S. Let S → T denote the natural
surjective map. This map factors through S/qsS, since qs(

∑

i biPi) = f ∗(
∑

i biQi) with
∑

i biQi ∈ Div0(C).
Let σ be a generator of Aut(D/C). Suppose that σ(divD(g)) = divD(g) for some

g ∈ k(D)∗. Then gσ = cg for some c ∈ k∗. Since σ has finite order qs, we find that
cqs

= 1.
Consider first the case where q = p. Then c = 1. Thus, gσ = g and g ∈ k(C)∗.

Suppose that the divisor (
∑

i biPi) has trivial image in T . Then it is possible to write
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(
∑

i biPi) = f ∗(
∑

j Rj) + divD(h), for some Rj ∈ C(k) and h ∈ k(D)∗. Then we have

σ(divD(h)) = divD(h) and we conclude that h ∈ k(C)∗. Therefore, we have an equality of
divisors of the form (

∑

i biPi) = f ∗(E) for some E ∈ Div0(C). It follows that E =
∑

i ciQi

for some ci. Hence, the map S/psS → T is an isomorphism, proving Part (a).
Suppose now that q 6= p. Fix a primitive qs-th root ξ of 1. Then k(D)/k(C) is a

Kummer extension, generated by the root α of yqs

− a ∈ k(C)[y] such that ασ = ξα. It is
easy to check that for each i = 0, . . . , qs − 1,

{β ∈ k(D), βσ = ξiβ} = k(C)αi.

The equality ασ = ξα implies that divD(α) can be written as

(

qs

∑

i=1

aiPi) +
∑

j

cj(

qs−1
∑

i=0

σi(Sj))

for some integers ai and some Sj ∈ D(k) \ {P1, . . . , Pd}. It follows that qs divides
∑qs

i=1 ai

since deg(divD(α)) = 0. It follows that the divisor
∑

j cj(
∑qs−1

i=0 σi(Sj))+(
∑

i ai)Pd defines

an element in f ∗(Jac(C)). Hence, the image ν of (
∑

i aiPi) − (
∑

i ai)Pd in T is trivial.
We thus have a map

s : S/< qsS, (
∑

i

aiPi)− (
∑

i

ai)Pd >−→ T.

Let us note that (
∑

i aiPi)− (
∑

i ai)Pd /∈ qsS because, otherwise, the morphism f given
by the Kummer equation yqs

− a would not be totally ramified at P1, . . . , Pd.
Suppose that the divisor (

∑

i biPi) has trivial image in T . Then it is possible to write
(
∑

i biPi) = f ∗(
∑

j Rj) + divD(h), for some Rj ∈ C(k) and h ∈ k(D)∗. Then we have

σ(divD(h)) = divD(h) and we conclude that hσ = ξih for some i ∈ {0, . . . , qs − 1}.
Therefore, there exists b ∈ k(C)∗ such that h = bαi. Hence, we have an equality of
divisors of the form (

∑

i biPi) = f ∗(E) + i[(
∑

i aiPi)− (
∑

i ai)Pd] for some E ∈ Div0(C).
It follows that E =

∑

i ciQi for some ci. Hence, the map s is an isomorphism, proving
Part (b). �

Corollary 2.6. Assume that p 6= 2. Let D/k be a smooth projective connected hyperellip-
tic curve of genus g. Denote by τ the hyperelliptic involution. Let σ be an automorphism
of order p. Then either σ has a single fixed point, fixed by τ , or it has exactly two fixed
points, permuted by τ .

Proof. The hyperelliptic involution commutes with σ and, hence, it permutes the fixed
points {P1, . . . , Pd}. If d ≥ 2 and two fixed points P1 and P2 of σ are fixed by τ , then the
divisor class P1 − P2 is fixed by τ . Proposition 2.5 shows that the class of P1 − P2 is not
trivial and, since p > 2, this divisor class is not equal to the class of −(P1 − P2). This is
a contradiction since τ acts as the [−1]-map on Jac(D). Thus, τ fixes at most one point
Pi.

If d ≥ 3, then we may assume that either τ(P1) = P2 and P3 is fixed, or that τ(P1) = P2

and τ(P3) = P4. In the first case, we find that τ(P1 − P3) = (P2 − P3) = −(P1 − P2) +
(P1 − P3). Using the fact that τ acts as the [−1]-map on Jac(D), we find the relation
−(P1−P3) = −(P1−P2)+ (P1−P3) in Jac(D). Looking at this relation in T contradicts
Proposition 2.5. The other case is similar and is left to the reader. �

Example 2.7 Assume that p 6= 2. Consider a smooth hyperelliptic curve C/k given
by an affine equation y2 = f(x), and let D be its Galois cover given by the equation
zp − z = x. The automorphism σ : D → D with σ(z) = z + 1 has one fixed point P
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with δ(P ) = 3(p − 1) when deg(f) is odd, and it has two fixed points P1 and P2 with
δ(P1) = δ(P2) = 2(p− 1) when deg(f) is even.

3. Arithmetical trees

Our main result in this section is Proposition 3.6, which will be needed in the proof of
Theorem 5.3. This proposition pertains to arithmetical graphs, and we now recall how
one associates such an object to any regular model of a curve.

Let X/K be any smooth, proper, geometrically connected, curve of genus g. Let X /OK

be a regular model of X/K. Let Xk :=
∑v

i=1 riCi denote the special fiber of X , where Ci

is an irreducible component and ri is its multiplicity. Let M := ((Ci · Cj))1≤i,j≤v be the
associated intersection matrix. Denote by G the associated graph. Let tR := (r1, . . . , rv),
so that MR = 0. We call the triple (G, M, R) an arithmetical graph (in [13], the additional
condition that gcd(r1, . . . , rv) = 1 is assumed, and it is (G,−M, R) which is called an
arithmetical graph). For the purpose of simplifying the statements of some definitions,
we sometimes think of G as a metric space with the natural topology where each edge of
G with its two endpoints is homeomorphic to the closed unit interval [0, 1].

Let (G, M, R) be any arithmetical graph on v vertices. Let M : Zv → Zv and tR : Zv →
Z be the linear maps associated to the matrices M and R. The group of components of
(G, M, R) is defined as

ΦM := Ker(tR)/Im(M) = (Zv/Im(M))tors.

Motivated by the case of degenerations of curves, we shall denote by (C, r(C)) a vertex
of G, where r(C) is the coefficient of R corresponding to C. The integer r(C), also
denoted simply by r, is called the multiplicity of C. The matrix M is written as M :=
((Ci · Cj))1≤i,j≤v, and we write |Ci · Ci| := |(Ci · Ci)|.

3.1 Denote by 〈 , 〉 : ΦM × ΦM → Q/Z the perfect pairing 〈 , 〉M attached in [3], 1.1,
to the symmetric matrix M . Explicit values of this pairing are computed as follows. Let
(C, r) and (C ′, r′) be two distinct vertices of G. Define

E(C, C ′) :=
t(

0, . . . , 0,
r′

gcd(r, r′)
, 0, . . . , 0,

−r

gcd(r, r′)
, 0, . . . , 0

)

∈ Zv,

where the first non-zero coefficient of E(C, C ′) is in the column corresponding to the
vertex C and, similarly, the second non-zero coefficient is in the column corresponding
to the vertex C ′. We say that the pair (C, C ′) is uniquely connected if there exists a
path P in G between C and C ′ such that, for each edge e on P, the graph G \ {e} is
disconnected. Note that when a pair (C, C ′) is uniquely connected, then the path P is
the unique shortest path between C and C ′. A graph is a tree if and only if every pair of
vertices of G is uniquely connected.

Let (C, r) and (C ′, r′) be a uniquely connected pair with associated path P. While
walking on P \ {C, C ′} from C to C ′, label each encountered vertex consecutively by
(C1, r1), (C2, r2), . . . , (Cn, rn). Let Gi denote the connected component of Ci in G \
{edges of P}. The graph Gi is reduced to a single vertex if and only if Ci is not a
node of G. For convenience, we write (C, r) = (C0, r0) and (C ′, r′) = (Cn+1, rn+1) and
define G0 and Gn+1 accordingly.

3.2 The following facts are proved in [3], 5.1. Let (G, M, R) be any arithmetical graph.
Let C and C ′ be two vertices such that (C, C ′) is a uniquely connected pair of G. Let γ
denote the image of E(C, C ′) in ΦM . For (D, s) and (D′, s′) any two distinct vertices on
G, let δ denote the image of E(D, D′) in ΦM . Writing P for the oriented shortest path
from C to C ′ as above, let Cα denote the vertex of P closest to D in G, and let Cβ denote
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the vertex of P closest to D′. In other words, D ∈ Gα and D′ ∈ Gβ. Assume that α ≤ β.
(Note that we may have α = β, and we may have D = Cα or D′ = Cβ.) Then if α < β,

(3.2.1) 〈γ, δ〉 = −lcm(r, r′)lcm(s, s′)
( 1

rαrα+1
+

1

rα+1rα+2
+ · · ·+

1

rβ−1rβ

)

mod Z,

and if Cα = Cβ, then 〈γ, δ〉 = 0. Moreover,

(3.2.2) 〈γ, γ〉 = −lcm(r, r′)2
( 1

rr1

+
1

r1r2

+ · · ·+
1

rnr′

)

mod Z.

Note that the negative signs in the expressions (3.2.1) and (3.2.2) are missing in [3], 5.1.
Thus, all expressions for 〈γ, δ〉 computed in section 5 of [3] using 5.1 are correct only after
having been multiplied by −1. Similar sign mistakes occurred in [17]. The proof of [3],
5.1, is correct, except that its last line produces the opposite of the stated values for 〈γ, δ〉
since we assume α ≤ β.

3.3 Let (C, r) be a vertex of G of degree d ≥ 2. Let (Di, ri), i = 1, . . . , d, denote the
neighbors of C, that is, the vertices of G linked to C. Let τi denote the image of E(Di, Dd)
in ΦM , for i ∈ {1, . . . , d− 1}. We will use repeatedly the following expressions computed
using (3.2.1) and (3.2.2):

〈τi, τi〉 = − lcm(ri, rd)
2 ri + rd

rirdr
mod Z,

and when i 6= j,

〈τi, τj〉 = − lcm(ri, rd) lcm(rj , rd)
1

rdr
mod Z.

These formulas allow us to easily show that τi may not always be trivial. For example,
let p be a prime dividing r. When p - rird(ri + rd), we find that 〈τi, τi〉 6= 0 and, thus,
τi 6= 0. Similarly, when for three distinct indices i, j, and d, we have p - rirjrd, we find
that 〈τi, τj〉 6= 0, showing that both τi and τj are not trivial.

We claim that r kills τi. Indeed, we find, using [17], 2.2, that the images in ΦM of
E(Di, C) and E(C, Dd) have order dividing gcd(ri, r) and gcd(r, rd), respectively. Con-
sider the following easy relation between vectors in Zv ([17], 3.5): Given any three vertices
(A, a), (B, b), and (C, c),

(3.3.1) bE(A, C) =
c

gcd(a, c)
gcd(a, b)E(A, B) +

a

gcd(a, c)
gcd(b, c)E(B, C)

Using this relation, we find that rτi = 0.

Lemma 3.4. Let (G, M, R) be an arithmetical graph. Consider any two distinct vertices
(A, a) and (A′, a′), and let αA,A′ denote the image of E(A, A′) in ΦM . Then the set
{αAA′, A 6= A′} is a set of generators for ΦM .

Proof. Let us note first that the statement is proved for (G, M, R) as soon as it is proved for
(G, M, R/ gcd(r1, . . . , rv)). We will thus assume now that gcd(r1, . . . , rv) = 1. Fix a vertex
A and consider the subgroup (ΦM)A of ΦM generated by {αAA′, all A′ 6= A}. We claim
that aΦM ⊆ (ΦM)A. Indeed, an element φ ∈ ΦM is represented by the class of a vector
(fD, D ∈ G) such that

∑

fDr(D) = 0. It follows that aφ = −
∑

gcd(a, r(D))fDαAD.
Since gcd(r1, . . . , rv) = 1, φ can be expressed in terms of elements of the form αAA′. �

The following is a key relation between the τis.

Proposition 3.5. Let (G, M, R) be an arithmetical tree. Let (C, r) be a vertex of degree

d ≥ 2. Keep the notation introduced in 3.4. Then
∑d−1

i=1 gcd(ri, rd)τi = 0.
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Proof. Consider any two distinct vertices (A, a) and (A′, a′), and let α denote the image
of E(A, A′) in ΦM . The previous lemma shows that the group ΦM is generated by such
elements α.

Let τ :=
∑d−1

i=1 gcd(ri, rd)τi. We claim that 〈τ, α〉 = 0 for all such elements α. This
claim, proved below, implies immediately that τ = 0. Indeed, recall that 〈 , 〉 being
perfect, the element τ is trivial if and only if 〈τ, φ〉 = 0 for all φ ∈ ΦM .

Let us now prove our claim. Assume first that the path Q between A and A′ contains
the vertices Di and Dd with i 6= d. We use (3.2.1) to compute modulo Z that

〈τ, α〉 = ± lcm(a, a′)

×
(

gcd(ri, rd) lcm(ri, rd)(
1

rir
+

1

rrd
) +

∑

j 6=i,d

gcd(rj, rd) lcm(rj, rd)(
1

rrd
)
)

,

which simplifies to

〈τ, α〉 = ± lcm(a, a′)(
d

∑

j=1

rj)
1

r
.

Since
∑d

j=1 rj = |C · C|r, we find that 〈τ, α〉 = 0. When Q contains Di and Dj with
i, j 6= d and i 6= j, we find that modulo Z

〈τ, α〉 = ± lcm(a, a′)
(

gcd(ri, rd) lcm(ri, rd)
1

rir
− gcd(rj, rd) lcm(rj, rd)

1
rjr

)

= ± lcm(a, a′)
(

rd

r
− rd

r

)

= 0.

It is clear that if the path Q contains no vertices Di, or if it contains exactly one vertex Di

and does not contain the vertex C, then 〈τ, α〉 = 0. It remains to consider the case where
the path Q contains exactly one vertex Di and the vertex C. Then C is an endpoint of
Q and, thus, r divides lcm(a, a′). When i 6= d, we find that

〈τ, α〉 = ± lcm(a, a′) lcm(ri, rd) gcd(ri, rd)
1

rir

is 0 modulo Z, and when i = d, we find that

〈τ, α〉 = ± lcm(a, a′)
(

d−1
∑

i=1

lcm(ri, rd) gcd(ri, rd)
1

rir

)

is also 0 modulo Z. �

4. Some combinatorics

Let (G, M, R) be an arithmetical graph. We introduce below a measure γDgD of how
‘complicated’ certain subgraphs GD of G are, and we describe GD in Proposition 4.3
when γDgD is as small as possible. This result is needed in the proof of Theorem 6.8.
A geometric motivation for the introduction of the quantity γDgD is found in the genus
formula (6.1.1).

4.1 Let (G, M, R) be an arithmetical graph. Fix a vertex (C0, r(C0)) of G. Assume that
C0 is linked to a vertex (D, r(D)) by a single edge e, and that when the edge e is removed
from G, then D and C0 are not in the same connected component of the resulting graph.
Let GD denote the connected component of G \ {e} that contains D. Consider the minor
ND of M corresponding to the vertices in GD. Let

γD := gcd(r(A), A vertex of GD).
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Then γD divides r(C0). Indeed, γD divides the multiplicity of D and of all vertices linked
to D, except possibly that of C0. But the relation MR = 0 implies then that γD divides
the multiplicity of C0. Let RD denote the vector R restricted to the vertices of GD. By
definition, we find that RD/γD is an integer vector.

Let β(G) denote the first Betti number of the graph G. Letting dG(A) denote the
degree of a vertex A in the graph G, we have

2β(G)− 2 =
∑

vertices A of G

(dG(A)− 2).

Associated with any arithmetical graph (G, M, R) is the following integer invariant g0(G) ≥
β(G) ([13], 4.10), defined by the formula

(4.1.1) 2g0(G) = 2β(G) +
∑

vertices A of G

(r(A)− 1)(dG(A)− 2).

Let C0 and D be as above. We now associate to the pair (ND, RD) an integer gD, defined
so that the formula below holds:

γDgD = r(C0) + r(D) +
∑

vertices A of GD

r(A)(dGD
(A)− 2).

Since γD divides r(C0), the invariant gD is indeed an integer. We can rewrite this formula
as

(4.1.2) γDgD =

2β(GD) + (r(C0) − 1) + (r(D) − 1) +
∑

vertices A of GD

(r(A) − 1)(dGD
(A) − 2).

and we find that

(4.1.3) gD =

2β(GD) + (
r(C0)

γD

− 1) + (
r(D)

γD

− 1) +
∑

vertices A of GD

(
r(A)

γD

− 1)(dGD
(A)− 2).

4.2 We will make use below of the following facts. Suppose that on G, the vertices D0,
D1, . . . , Dn are consecutive vertices on a terminal chain, and Dn is the terminal vertex
on this chain (in other words, Di is linked by one edge to Di+1 for i = 0, . . . , n − 1,
dG(Di) = 2 for i = 1, . . . , n− 1, and dG(Dn) = 1). Then gcd(r(D0), r(D1)) = r(Dn), and
if |Di ·Di| > 1 for all i = 1, . . . , n, then

r(D0) > r(D1) > · · · > r(Dn).

Indeed, the equality |Dn ·Dn|r(Dn) = r(Dn−1) obtained from the relation MR = 0 shows
that r(Dn) divides r(Dn−1), and r(Dn) < r(Dn−1) if |Dn · Dn| > 1. Suppose that for
some i, we have r(Di) > r(Di+1). Then it follows from |Di ·Di|r(Di) = r(Di−1)+ r(Di+1)
and |Di ·Di| ≥ 2 that r(Di−1) > r(Di). The equality |Di ·Di|r(Di) = r(Di−1) + r(Di+1)
implies that gcd(r(Di−1), r(Di)) = gcd(r(Di), r(Di+1).

Proposition 4.3. Let (G, M, R) be an arithmetical tree containing a vertex C0 of prime
multiplicity p. Assume that a vertex D linked to C0 by an edge e has multiplicity divisible
by p. Let GD denote the connected component of G \ {e} that contains D. Assume in
addition that GD does not contain any vertex A of degree 1 or 2 in G with |A · A| = 1.
Then

γDgD ≥ 2(p− 1).
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If γDgD = 2(p − 1), then γD = 1 and GD is a graph of the shape depicted below,
containing one node C of G only, of multiplicity p and degree 3 in G. The two terminal
vertices of G that belong to GD have multiplicity 1.

p p p p p

-2 -2 -2 -2
C

p− r(C1)

r(C1)

C1

1

1C0

Let α denote the number of vertices of GD on the chain linking C0 to the node C of GD

(including the node C). Let C1 and C ′
1 denote the vertices linked to C on the two terminal

chains. Then 1 ≤ r(C1) < p, and the minor of M corresponding to the vertices of GD is
completely determined by p, α, and r(C1).

The proof of 4.3 is given in 4.6. We start with a preliminary lemma.

4.4 Let (G, M, R) be an arithmetical tree. For each node (C, r(C)) of degree d(C) ≥ 3 in
G, we define an invariant µ(C) as follows. Let ρ(C) denote the number of terminal chains
attached to C, and let D1(C), . . . , Dρ(C)(C) be the vertices of G linked to C that belong
each to one terminal chain attached to C. Let ri(C) denote the multiplicity of Di(C).
The multiplicity of the terminal vertex on the chain containing Di(C) is gcd(r(C), ri(C)).
If no vertex A on the terminal chain has |A · A| = 1, then ri(C) < r(C) (see 4.2). When
a chain attached to C is not terminal, we will call it a connecting chain. As in [13], 4.7,
we let, when ρ(C) > 0,

µ(C) := (d(C)− 2)(r(C)− 1)−

ρ(C)
∑

j=1

(gcd(r(C), rj(C))− 1).

When ρ(C) = 0, we let µ(C) := (d(C)− 2)(r(C)− 1). It is clear that if r(C) = 1, then
µ(C) = 0.

Lemma 4.5. Assume that the terminal chains attached to C do not contain a vertex A
with |A ·A| = 1. Then µ(C) ≥ 0, and µ(C) = 0 if and only if r(C) = 1 and ρ(C) = 0.

Proof. It is clear that if a node C has ρ(C) = 0, then µ(C) ≥ 0, and µ(C) = 0 only
when r(C) = 1. Assume now that ρ(C) > 0. Our hypothesis implies that r(C) >
gcd(r(C), ri(C)) for each vertex Di(C), i = 1, . . . , ρ(C). In particular, r(C) > 1, and we
need to prove that µ(C) > 0. Let

s := gcd(r(C), r1(C), . . . , rd(C)).

Assume first that ρ(C) = d(C), so that G has a single node. It is proven in [13], 4.1,
that if ρ(C) = d(C) and s = 1, then µ(C) ≥ 0. When s > 1, define

µs(C) := (d(C)− 2)(
r(C)

s
− 1)−

ρ(C)
∑

j=1

(
gcd(r(C), rj(C))

s
− 1).

The integer µs(C) is nothing but the µ-invariant of the node on the arithmetical graph
obtained from G by dividing all its multiplicities by s. Thus µs(C) is even ([13], 3.6), and
µs(C) ≥ 0. Since

µ(C) = −2(s− 1) + sµs(C),
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we find that µ(C) > 0 if µs(C) > 0. We claim that under our hypotheses, µ(C) > 0
when s = 1. Indeed, our hypotheses implies that r(C) > gcd(r(C), ri(C)) for each vertex
Di(C), i = 1, . . . , ρ(C). Dropping the reference to C, we can write

µ(C) := (d− 2)(r − 1)−
∑d

j=1(gcd(r, ri)− 1)
≥ (d− 2)(r − 1)− d(r/2− 1)
= (d− 4)r/2 + 2.

Thus µ(C) > 0 if d ≥ 4. Assume now that d = 3. Then cr = r1 + r2 + r3 for some c.
Let hi = gcd(r, ri), and assume that h1 ≥ h2 ≥ h3. Then (h1, h2, h3) = (r/2, r/2, r/2),
(r/2, r/2, r/3), (r/2, r/3, r/3), and (r/2, r/3, r/4) cannot occur because of the divisibil-
ity r | (r1 + r2 + r3). Since the cases (h1, h2, h3) = (r/3, r/3, r/3), (r/2, r/4, r/4), and
(r/2, r/3, r/6) have µ(C) > 0, we need only to consider (h1, h2, h3) = (r/2, r/3, r/5). In
this case, r1 = r/2, r2 = r/3 or 2r/3, and r3 = ar/5 with a = 1, . . . , 4. The reader will
check that cr = r1 + r2 + r3 is impossible to achieve with these values, and our claim is
proved.

Let us assume now that 0 < ρ(C) < d(C). Then

µ(C) := (d− 2)(r − 1)−
∑ρ

j=1(gcd(r, ri)− 1)
≥ (d− 2)(r − 1)− (d− 1)(r/2− 1)
= (d− 3)r/2 + 1 > 0.

�

4.6 Proof of 4.3. We claim that GD contains a node of G. (This node is also a node of GD,
unless it is D itself and dG(D) = 3.) Indeed, the hypotheses that r(C0) ≤ r(D) and |D ·
D| > 1 implies that dG(D) > 1, because the relation MR = 0 provides otherwise for the
equality |D ·D|r(D) = r(C0), which is a contradiction. Suppose then that D is connected
in GD to D1. If dG(D) = 2, then we find from the relation |D ·D|r(D) = r(C0) + r(D1)
that r(D) ≤ r(D1). Repeating this discussion with D and D1 instead of C0 and D, we
find that the graph GD has a chain of increasing multiplicities r(D) ≤ r(D1) ≤ . . . , which
eventually leads to a node of GD (and of G).

In G, C0 and D are adjacent vertices. Consider the connected component G of G \ {D}
that contains C0. Two cases can occur: either (a) G contains a node of G, or (b) G does
not contain a node of G, in which case we will call G a terminal chain of G. In the latter
case, the terminal vertex on this chain has multiplicity gcd(r(C0), r(D)) (see 4.2), which
equals r(C0) by hypothesis. The definition of γDgD in (4.1.2), along with the fact that we
assume that G is a tree, allow us to write:

γDgD = (r(C0)− 1) +
∑

vertices A of GD

(r(A)− 1)(dG(A)− 2).

In case (a), C0 is not on a terminal chain of G, so that by definition of µ(C) in 4.4, we
can write:

(4.6.1) γDgD = (r(C0)− 1) +
∑

nodes C of G in GD

µ(C)

(where µ(C) is computed viewing C as a node of G, and not of GD). In case (b) where
C0 is on a terminal chain of G whose terminal vertex has multiplicity r(C0), we have

γDgD = 2(r(C0)− 1) +
∑

nodes C of G in GD

µ(C).

We prove below case (a). The arguments to prove (b) are similar, and are left to the
reader. Case (b) will not be used in the remainder of this article.
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Assume that we are in case (a). We can apply 4.5 and we obtain that each term µ(C)
in the above sum is non-negative. In view of (4.6.1), since r(C0) = p by hypothesis, we
need to show that

∑

nodes C µ(C) ≥ p − 1, and we need to describe the graphs for which
∑

nodes C µ(C) = (p− 1).
Denote by C the node of G closest to C0 in GD. (This node could be D.) The

multiplicity of C is divisible by p since p divides the consecutive multiplicities r(C0) and
r(D) (similar argument as in 4.2). Let np denote the multiplicity of C.

Suppose that C (of degree d in G) has only one connecting chain. If n = 1, then all
terminal multiplicities at C equal 1 and µ(C) = (d − 2)(p− 1). The case d = 3 leads to
the case described in the statement of 4.3, with µ(C) = (p − 1), γDgD = 2(p − 1), and
γD = 1. When d > 3, we have µ(C) > p− 1, as desired.

When n > 1, the inequality

µ(C) ≥ (d− 2)(np− 1)− (d− 1)(np/2− 1)
= (d− 2)np/2− np/2 + 1.

shows that we have µ(C) > p− 1 unless d = 3. When n > 1 and d = 3, every vertex on
the chain linking C to C0 has multiplicity divisible by p. Thus, either (i) both terminal
multiplicities of C are coprime to p (call them n1 and n2), or (ii) both are divisible by p
(call them m1p and m2p).

In case (i), µ(C) = np − n1 − n2 + 1, with n1, n2 dividing n. It follows that µ(C) ≥
n(p− 2) + 1. Clearly, µ(C) > p− 1 unless p = 2. Assume that p = 2. If (n1, n2) 6= (n, n),
we find that µ(C) = n(p − 1) + 1 > (p − 1). The case (n1, n2) = (n, n) cannot happen
because in that case, n divides the multiplicity of all the components linked to C, which
implies then that n = 2. But a node of multiplicity 4 cannot have exactly three vertices
of multiplicity 2 attached to it.

In case (ii), µ(C) = (n −m1 −m2)p + 1, with m1, m2 dividing n. The equality (n −
m1 −m2) = 0 is not possible. Indeed, it is only possible if m1 = m2 = n/2. But since
gcd(m1, m2) = 1, this case can happen only if n = 2. But then |C · C| would equal 3/2,
a contradiction. It follows that µ(C) = (n−m1 −m2)p + 1 > p− 1.

Suppose now that C, of multiplicity np, has at least two connecting chains. If n > 1,
then

µ(C) ≥ (d− 2)(np− 1)− (d− 2)(np/2− 1) = (d− 2)np/2 > p− 1,

as desired. If n = 1, then µ(C) = (d − 2)(p− 1). Thus, µ(C) > p − 1 if d > 3. Suppose
now that d = 3. Since GD is a tree with a node C of degree 3, GD must have at least
three terminal vertices. Thus, there must exist at least one additional node C ′ on the
graph GD which has a terminal chain. It follows that µ(C ′) ≥ 1 (4.5) and, therefore,
µ(C) + µ(C ′) > p− 1, as desired.

4.7 To conclude the proof of 4.3, we now specify the intersection matrix in the case where
γDgD = 2(p− 1). Let (G, M, R) be as in 4.3, and assume that the vertex D is such that
γDgD = 2(p − 1). Let ND denote the matrix M restricted to the vertices of GD. Let
α denote the number of vertices of GD on the chain linking C0 to the node C of GD

(including the node C). Each of these vertices except C is of degree 2. The multiplicity of
C is p. Since we assume that no vertex of degree 2 has self-intersection −1, we find that
the multiplicity of each of these vertices must be p. It follows that each of these vertices
except possibly C must have self-intersection −2.

Let C1 and C ′
1 denote the vertices linked to C on the two terminal chains. Since they

have degree 1 or 2 and cannot have self-intersection −1, we find that 1 ≤ r(C1) < r(C) =
p, and r(C ′

1) < r(C). Moreover, from MR = 0, we find that p + r(C1) + r(C ′
1) = p|C ·C|.

It follows that |C ·C| = 2, and r(C ′
1) = p−r(C1). We claim that ND depends only on p, α,
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and r(C1) and we write it as ND = N(p, α, r(C1)). Indeed, the pair (p, r(C1)) completely
determines all multiplicities and all self-intersections on the terminal chain containing C1:
use (r, s) = (p, r(C1)) in 4.8 below to determine the self-intersections and multiplicities of
the terminal chain. Similarly, the pair (p, r(C ′

1)) completely determines all multiplicities
and all self-intersections on the terminal chain containing C ′

1. This conclude the proof of
4.3. The matrix ND is an intersection matrix also introduced in [19], 3.18. �

4.8 Recall the following standard construction. Given an ordered pair of positive integers
r > s with gcd(r, s) = 1, we construct an associated intersection matrix N = N(r, s) with
vector R = R(r, s) and NR = −re1 as follows (where e1 denote the first standard basis
vector of Zn). Using the division algorithm, we can find positive integers b1, . . . , bm and
s1 = s > s2 > · · · > sm = 1 such that r = b1s− s2, s1 = b2s2− s3, and so on, until we get
sm−1 = bmsm. These equations are best written in matrix form:











−b1 1 . . . 0

1 −b2
. . .

. . .
. . . 1

0 . . . 1 −bm





















s1
...
...

sm











=









−r
0
...
0









.

We let N(r, s) denote the above square matrix, and R(r, s) be the column matrix on the
left of the ‘equal’ sign. It is well-known that det(N(r, s)) = ±r (see [17], 2.6). We recall
also for use in 6.12 that

(4.8.1)
1

rs
+

1

ss2
+ · · ·+

1

sm−1sm
=

c

r
,

where 0 < c < r is such that r | cs− 1 (see [17], 2.8 and 2.6).

Remark 4.9 In Proposition 4.3, the hypothesis that γDgD = 2(p − 1) allowed us to
completely describe the graph GD. For a fixed γDgD > 2(p − 1), the situation is much
more complicated and several possible types of graphs GD may occur. It would follow
from our guess in 6.2 that for applications to models of curves, it suffices to classify the
cases where γDgD is a multiple of p − 1. We give below several possible types of graphs
GD with γDgD = 3(p− 1) when p is odd.

(a) GD is a graph with one node of G only, of multiplicity p and degree 4 in G. The three
terminal vertices of G that belong to GD have multiplicity 1.

1
p p p p p

-2 -2 -2

1

1
C0

To completely determine the intersection matrix ND and the vector RD, one needs to
also provide the multiplicities r1, r2, and r3, of the first vertices on each of the three
terminal chains, with the conditions 1 ≤ r1, r2, r3 < p and r1 + r2 + r3 divisible by p.
Such a data can only be provided when p is odd. The self-intersection of the node is
then −(p + r1 + r2 + r3)/p = −2 or −3.

(b) GD is a graph with one node of G only, of multiplicity 2p and degree 3 in G. The two
terminal vertices of G that belong to GD have multiplicity 1 and 2, respectively.
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p p p p 2p

-2 -2 -3

2

1
C0

(c) GD is a graph with 2 nodes C and C ′ of G. Let C be the node closest to C0 in GD. It
has multiplicity p and degree 3 in G, and it has a single terminal chain with terminal
multiplicity 1. The node C ′ is connected to C by a connecting chain that contains a
vertex of multiplicity coprime to p.

(i)

p p p

1

p

C ′

1

1
C0

(ii)

p p p

1

2p

C ′

2

p
C0

We conclude this section with some general remarks concerning the invariant gD intro-
duced in (4.1.2).

Remark 4.10 Let (G, M, R) be an arithmetical graph. As at the beginning of this sec-
tion, fix a vertex (C0, r(C0)) of G. Assume that C0 is linked to a vertex (D, r(D)) by
a single edge e, and that when the edge e is removed from G, then D and C0 are not
in the same connected component of the resulting graph. Let GD denote the connected
component of G \ {e} that contains D. Consider the minor N = ND of M corresponding
to the vertices in GD. Let n denote the number of vertices of GD.

(a) The integer gD depends only on the matrix ND and the vertex D on the graph
GD. To prove this statement, we show that the vector RD/γD is completely determined
by ND and the vertex D. Indeed, let us number the vertices of GD such that D is
the first vertex numbered. Then RD/γD is a vector with positive coefficients such that
ND(RD/γD) = t(−r(C0)/γD, 0, . . . , 0) (where the superscript t indicates the transpose
vector). The existence of such a relation insures that ND is negative-definite (see [19],
3.3), and the vector RD/γD is a rational multiple of the first column of the unique matrix
N∗ such that NN∗ = N∗N = det(N)Idn ([19], 3.4). The integer r(C0)/γD is the order in
Zn/Im(N) of the class of the first basis vector e1 ([19], 3.5).

(b) The integer gD is non-negative. More precisely:

(4.10.1) gD − 2β(GD) ≥ (
r(C0)

γD
) + gcd(

r(D)

γD
,
r(C0)

γD
)− 2 ≥ 0.

To prove the first inequality, complete the pair (N, RD/γD) into an arithmetical graph
(G′, M ′, R′) by adding a chain attached to D, as in [19], 3.15. Clearly, β(G′) = β(GD).
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The graphs G′ and GD differ in only two vertices of degree not equal to 2: the terminal

vertex on the new terminal chain on G′ has terminal multiplicity gcd( r(D)
γD

, r(C0)
γD

), and

dG′(D) = dGD
(D) + 1. Using (4.1.1) and (4.1.3), it is easy to show that

(4.10.2) 2g0(G
′, M ′, R′)− 2β(G′)

= gD − 2β(GD)− (
r(C0)

γD

− 1)− (gcd(
r(D)

γD

,
r(C0)

γD

)− 1).

The integer g0(G
′)− β(G′) is always non-negative ([13], 4.10), and the statement follows.

(c) In analogy with the arithmetic genus of curves on surfaces, we define, given Z ∈ Zn,
a (possibly negative) integer pa(Z) as follows. If Z = Ci is a vertex of GD, we let
pa(Z) = 0. We let pa(rCi) be defined by the formula 2pa(rCi) − 2 = r2C2

i + r(|C2
i | − 2)

(where we have abbreviated Ci · Ci by C2
i ). Since r2 − r is always even, pa(rCi) is an

integer. In general, when Z =
∑n

i=1 riCi, we let

Z2 :=
∑

1≤i,j≤n

rirj(Ci · Cj),

and set

2pa(Z)− 2 := Z2 +
n

∑

i=1

ri(|C
2
i | − 2).

We leave it to the reader to check that

gD = 2pa(RD/γD)− 2 +
r(D)

γD

(
r(C0)

γD

+ 1).

(d) The integer gD is even when either r(C0) is odd, or r(D) is even. This can be seen
from the formula for gD in (c), or from (4.10.2).

(e) Assume that GD is a tree. Then the order | det(N)| of the group ΦN := Zn/N(Zn)
can be computed completely in terms of the vector RD/γD and of the graph GD (see [19],
3.14), and we find that

| det(N)| =
r(D)

γD

r(C0)

γD

∏

vertices A of GD

(

r(A)

γD

)dGD
(A)−2

,

where dGD
(A) is the degree of the vertex A in the graph GD. Recall now the formula

(4.1.3):

gD = (
r(D)

γD
− 1) + (

r(C0)

γD
− 1) +

∑

vertices A of GD

(
r(A)

γD
− 1)(dGD

(A)− 2).

This last expression is surprisingly similar to the expression for | det(N)|. This motivates
the following result. Let x > 0 be any integer, and define the function:

`(x) :=
∑

q prime

ordq(x)(q − 1).

Then

(4.10.3) `(| det(N)|) ≤ gD.

This result is not used in the remainder of this paper, and we will provide here only a
sketch of proof.

Sketch of proof: We complete the pair (N, RD/γD) into an arithmetical graph (G′, M ′, R′)
by adding a chain attached to D, as in [19], 3.15. The order of the component group
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Φ(M ′) is given in [13], 2.5, and the relation between det(N) and |Φ(M ′)| is discussed in
the proof of 3.14 in [19]. We can then bound |Φ(M ′)| in terms of g0(G

′, M ′, R′) using [13],
4.8, which states that `(|Φ(M ′)|) ≤ 2g0(G

′, M ′, R′). The inequality `(| det(N)|) ≤ gD

follows then from (4.10.2).

5. The quotient construction

Let K be a complete discrete valuation field with valuation v, ring of integers OK ,
uniformizer πK , and residue field k of characteristic p > 0, assumed to be algebraically
closed. Let X/K be a smooth proper geometrically connected curve of genus g > 0. When
g = 1, assume in addition that X(K) 6= ∅. Assume that X/K does not have semi-stable
reduction over OK , and that it achieves good reduction after a cyclic extension L/K of
prime degree q.

Let H denote the Galois group of L/K. Let Y/OL be the smooth model of XL/L. Let
σ denote a generator of H . By minimality of the model Y , σ defines an automorphism
of Y also denoted by σ (but note that σ : Y → Y is not morphism of OL-schemes). We
also denote by σ the automorphism of Yk induced by the action of σ on Y . Let Z/OK

denote the quotient Y/H , and let α : Y → Z denote the quotient map. The scheme Z is
normal. The map α induces a natural map Yk → Zred

k which factors as follows:

Yk
ρ

−−−→ Yk/ 〈σ〉 −−−→ Zred
k .

5.1 We claim that the first map is Galois of order |H|, and that the second map is the
normalization map of Zred

k . Indeed, let Spec(B) denote a dense open set of Y invariant
under the action of H . Then Spec(BH) is a dense open set of Z. Let A := BH . Let
PB = (πL) denote the prime ideal of B corresponding to Yk, and let PA := PB ∩ A. We
have the natural maps

BH/PA ↪→ (B/PB)H ↪→ B/PB.

The extension of discrete valuation rings (BH)PA
→ BPB

induces an extension of residue
fields (BH)PA

/PA(BH)PA
→ BPB

/PBBPB
. We claim that this extension has degree |H|.

Indeed, our assumption is that the curve X/K does not have good reduction over OK .
If the residue extension is trivial, the normalization of the curve Zred

k is isomorphic to
Yk and, thus, is of genus g. In addition we find that PABPB

= (PBBPB
)|H|, so that

πKAPA
= (PAAPA

). The special fiber of Z is then reduced, and the curve X/K has
good reduction over OK , a contradiction. It follows then that PABPB = PBBPB, so that
πKAPA

= (PAAPA
)|H|. Hence, the multiplicity in Z of the irreducible component Zred

k

equals |H|.
It is easy to check that for any x ∈ (B/PB)H , |H|x and x|H| belong to A/PA. Thus,

when |H| 6= p, A/PA and (B/PB)H have the same fields of fractions. When |H| = p,
it could happen that A/PA and (B/PB)H do not have the same fields of fractions, in
which case the extension of fields of fractions is purely inseparable of degree p, with
(B/PB)H = B/PB. It follows that the special fiber of Z also has genus g. When g > 1,
this is not possible since the multiplicity of Zk is p. When g = 1, it could happen that
Z is the minimal model of X/K, with a multiple special fiber. This case cannot happen
in our situation because of our assumption that X(K) 6= ∅: A K-rational point always
reduces to a smooth point in the special fiber. Thus, the automorphism σ : Yk → Yk is
not trivial. We find that A/PA and (B/PB)H have the same fields of fractions, so that
the Dedekind domain (B/PB)H is the integral closure of A/PA.

5.2 Let P1, . . . , Pd, be the ramification points of the map Yk → Yk/ 〈σ〉. Let Q1, . . . ,Qd

be their images in Z. The normal scheme Z is singular exactly at Q1, . . . , Qd. Indeed,
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the morphism Y → Z is unramified outside these points. If the point Qi were regular,
the morphism would be flat above Qi ([1], V, 3.6), and the branch locus would then be
pure of codimension 1 ([1], VI, 6.8), a contradiction.

Consider the regular model X → Z obtained from Z by a minimal desingularization.
After finitely many blow-ups X ′ → X , we can assume that the model X ′ is such that X ′

k

has smooth components and normal crossings, and is minimal with this property. Let
f denote the composition X ′ → Z. Let C0/k denote the strict transform in X ′ of the
irreducible closed subscheme Zred

k of Z. The curve C0 has multiplicity |H| in X ′. Let
D1, . . . , Dd denote the irreducible components of X ′

k that meet C0. Let ri denote the
multiplicity of Di, i = 1, . . . , d. We assume d ≥ 1. Our main theorem in this section is:

Theorem 5.3. Let X/K be a smooth proper geometrically connected curve of genus g > 0,
with X(K) 6= ∅ if g = 1. Assume that X/K does not have semi-stable reduction over OK ,
and that it achieves good reduction after a cyclic extension L/K with Galois group H of
prime degree p. Keep the above notation, and let Qi be a singular point of the quotient
Z := Y/H. Let GQi

denote the graph associated with the curve f−1(Qi). Let G denote
the graph associated with the special fiber X ′

k. Then, for all i = 1, . . . , d, the graph GQi

contains a node of G and p divides ri.

Proof. When d = 1, the theorem is immediate: the component C0 of multiplicity p is
a terminal vertex of the graph of X ′, and thus p|C0 · C0| = r1. Assume that GQ1

does
not contain a node of G. Then since d = 1, G does not contain a node. Since the
resolution is minimal with normal crossings, none of the components of X ′

k can have self-
intersection (−1) except possibly for C0. It is clear that the graph G is not reduced to
a single vertex since the model Z is singular. Thus the graph G has a second terminal
vertex C ′ in addition to C0. But then, walking on G from C ′ towards C0, we find that the
multiplicities can only be strictly increasing. This is a contradiction since all multiplicities
on G are divisible by p (because two consecutive ones are), and G must contain a node.
We assume from now on that d > 1.

Let A := Jac(X/K). Let AK/OK denote the Néron model of A/K. Let AL/OL denote
the Néron model of AL/L, and denote by η : AK×OK

OL → AL the canonical map induced
by the functoriality property of Néron models. The special fiber (AK)k is an extension
of a finite group ΦA/K , called the group of components, by the connected component of
zero (AK)0

k of (AK)k:

0 −→ (AK)0
k −→ (AK)k −→ ΦA/K −→ 0.

Assume by contradiction that p is coprime to one of the ris. Without loss of generality,
we may assume that p - rd. For each i = 1, . . . , d, choose a point xi ∈ Di such that xi is
a regular point of (X ′

k)
red. Since K is complete, we can find a closed point Ri of X, of

degree ri over K, and such that the closure of Ri in X ′ meets the special fiber Xk exactly
in xi (see, e.g., [6], 8.4(3)). For each i = 1, . . . , d − 1, consider the following divisor of
degree 0 on X:

Si :=
rd

gcd(ri, rd)
Ri −

ri

gcd(ri, rd)
Rd.

We also denote by Si its image in Jac(X)/K. We recall below Raynaud’s description of
the Néron model of a Jacobian in order to be able to describe explicitly the image of Si

under both the reduction map Jac(X)(K)→ ΦA/K and the reduction map Jac(X)(L)→
(AL)k(k). We will be able to contradict the hypothesis that p - rd by considering the

reductions of
∑d−1

i=1 gcd(ri, rd)Si.
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Raynaud exhibited in [24] an explicit separated quotient QK/OK of the open subfunctor
of PicX ′/OK

consisting of line bundles of total degree 0, and he showed that when the
residue field k is algebraically closed, QK/OK is isomorphic to the Néron model of A/K
([4], 9.5/4 (a)). The canonical map QK(K) → ΦQK

is described as follows ([4], 9.5/9
and 9.6/1). Represent an element of QK(K) by a line bundle L on X of degree 0.
Let L denote an extension of L to X ′. Number the irreducible components of X ′

k as
C1, . . . , Cv. Consider the map ⊕iZCi → Hom(⊕iZCi, Z) which sends Ci to the map δCi

,
with δCi

(Cj) := (Ci · Cj). The group ΦM is isomorphic to the torsion subgroup of the
cokernel of this map. The group of components ΦQK

is isomorphic to ΦM , and under this
isomorphism, the image of L under QK(K)→ ΦQK

is the map δL, with δL(Ci) := (Ci ·L).
It follows immediately from these facts that the image in ΦQK

of Si ∈ Jac(X)(K) can be
identified with the image τi of the vector E(Di, Dd) in ΦM (notation as in 3.1 and 3.4).

Consider now the reduction map QL(L) → (QL)k(k). The closure of any point in the
preimage under XL → X of the closed point Ri meets the special fiber of the smooth
model Y of XL only at the point Pi. The line bundle L corresponding to the divisor Si

pulls back to a line bundle LL on XL. We find that the reduction of LL ∈ Jac(XL)(L) is
the point of Jac(Yk)(k) corresponding to the divisor lcm(ri, rd)(Pi − Pd).

We may now find a contradiction to the assertion that p - rd when the quotient of Yk

by the action of H has genus zero. As we indicated above, the element
∑d−1

i=1 gcd(ri, rd)Si

in Jac(X)(K) reduces to the element
∑d−1

i=1 gcd(ri, rd)τi in ΦM . Proposition 3.6 shows

that the latter element is zero in ΦM . Thus,
∑d−1

i=1 gcd(ri, rd)Si reduces in the connected
component (QK)0

k. Our additional hypothesis implies that this connected component is
unipotent. This follows from [4], 9.5/4 if the greatest common divisor of the multiplicities
of the components of X ′

k is 1, and from [12], 7.1, in general. It follows that the image of
(QK)0

k under the canonical map η : AK ×OK
OL → AL is trivial.

Consider now the element
∑d−1

i=1 gcd(ri, rd)Si in Jac(XL)(L). Our discussion above

shows that it reduces to the element rd(
∑d−1

i=1 ri(Pi − Pd)) in Jac(Yk)(k). We have thus

proved that rd(
∑d−1

i=1 ri(Pi − Pd)) = 0 in Jac(Yk)(k). Our hypothesis on the quotient of

Yk by H implies that each Pi − Pd has order p (2.5). Since rd(
∑d−1

i=1 ri(Pi − Pd)) = 0 and

we assume that p - rd, we can conclude that
∑d−1

i=1 ri(Pi − Pd) = 0. Then Proposition 2.5
implies that p divides ri for all i = 1, . . . , d− 1. Since |C0 ·C0|p = r1 + · · ·+ rd, it follows
that p divides rd, which contradicts our assumption.

When the quotient of Yk by the action of H has positive genus, the image of (QK)0
k

under the canonical map η : AK×OK
OL → AL is not trivial, and the following additional

considerations must be discussed. Let Norm(X ′) denote the normalization of X ′ in the
field of fractions of Y . Since Y is integral over Z, we have a natural map Norm(X ′)→ Y .
All components of X ′ are rational, except possibly the component C0 ([19], 2.10).

By construction, we have a natural map Norm(X ′)→ X ′×OK
OL. Let N → Norm(X ′)

denote a resolution of the singularities of Norm(X ′). Consider the commutative diagram
of OL-morphisms:

N −−−→ Norm(X ′) −−−→ Y




y





y

X ′ ×OK
OL −−−→ Z ×OK

OL

The mapsN −→ Norm(X ′) −→ X ′×OK
OL induce maps of the associated Picard functors

PicX ′/OK
×OK

OL
∼= PicX ′×OK

OL/OL
−→ PicNorm(X ′)/OL

−→ PicN/OL
,
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whose composition induces the canonical map of Néron models

η : QK ×OK
OL → QL.

Considering the special fibers over k, we obtain a commutative diagram:

Pic0
Nk/k −−−→ (QL)0

k
x





x





Pic0
X ′

k
/k −−−→ (QK)0

k

Since we do not have additional information on the special fiber X ′
k, we cannot conclude

that the bottom horizontal map is an isomorphism. It is however faithfully flat ([24],
4.1.2). Since the special fiber of Y is reduced, we find that the top horizontal map is an
isomorphism ([4], 9.5/4).

Let D denote the irreducible component of Nk lying above Yk. The composition D ↪→
Nk → Yk is an isomorphism. The image of D in (X ′)red

k is the curve C0, and we will
identify the map D → C0 with the quotient map ρ : Yk → Yk/ 〈σ〉. Consider the
following diagram whose top right horizontal morphism is an isomorphism:

Pic0
D(k) ←−−− Pic0

Nk
(k)

∼
−−−→ (QL)0

k(k)

ρ∗

x





x





x





Pic0
C0

(k) ←−−− Pic0
X ′

k
(k) −−−→ (QK)0

k(k).

We may now conclude the proof of Theorem 5.3 using the same method as in the case
where the reduction of Jac(X)/K is purely unipotent. Consider again the element
∑d−1

i=1 gcd(ri, rd)Si in Jac(X)(K), which reduces to the element
∑d−1

i=1 gcd(ri, rd)τi in ΦM .

Proposition 3.6 shows that the latter element is zero in ΦM . Thus,
∑d−1

i=1 gcd(ri, rd)Si

reduces in the connected component (QK)0
k. Consider now the element

∑d−1
i=1 gcd(ri, rd)Si

in Jac(XL)(L). Our discussion above shows that it reduces to the element rd(
∑d−1

i=1 ri(Pi−
Pd)) in Jac(Yk)(k).

Since the morphism Pic0
X ′

k
/k → (QK)0

k is faithfully flat and since each of the above

squares commutes, we find that the element
∑d−1

i=1 gcd(ri, rd)Si, which reduces to rd(
∑d−1

i=1 ri(Pi−
Pd)) in Pic0

Yk/k(k), in fact reduces to an element in ρ∗(Jac(Yk/ 〈σ〉)). Thus, the image

of rd(
∑d−1

i=1 ri(Pi − Pd)) in Jac(Yk)/ρ
∗(Jac(Yk/ 〈σ〉)) is trivial. Each Pi − Pd defines an

element of order p in Jac(Yk)/ρ
∗(Jac(Yk/ 〈σ〉)) (2.5). Since rd(

∑d−1
i=1 ri(Pi − Pd)) = 0, we

conclude that
∑d−1

i=1 ri(Pi − Pd) = 0. Then Proposition 2.5 implies that p divides ri for
all i = 1, . . . , d − 1, and since |C0 · C0|p = r1 + · · ·+ rd, we find that p divides rd, which
contradicts our assumption.

Now that we know that p divides ri, we see that the multiplicities on the chain of G
that leaves C0 starting with Di can only be increasing or constant, because this chain of
vertices of degree 2 contains no vertex of self-intersection −1. If Di is not a node of G,
we continue along this chain and find either a terminal vertex, or a node of G. We cannot
find a terminal vertex because the multiplicity of a terminal vertex can only be at most
the multiplicity of its unique neighbor, with equality only if the self-intersection of the
terminal vertex is −1. Thus, GQi

contains a node of G. �

Remark 5.4 Let Ni denote the intersection matrix of the exceptional divisor, with
smooth components and normal crossings, of a resolution of the Z/pZ-quotient singu-
larity Qi. We recall here some properties of Ni:
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a) It is negative definite (a lemma attributed to Du Val in [10], 14.1).
b) The graph G(Ni) associated with Ni is a tree, and all components of the exceptional

divisor are rational ([19], 2.8).
c) Let ni denote the number of irreducible components in the exceptional divisor. The

Smith group ΦNi
:= Zni/Im(Ni) is killed by p ([19], 2.6).

d) The fundamental cycle Z of Ni is such that |Z2| ≤ p ([19], 2.3, 2.4).

6. The weakly ramified case

We present in this section some applications of Theorem 5.3. Let us recall our nota-
tion. Let K be a complete discrete valuation field with valuation v, ring of integers OK ,
uniformizer πK , and residue field k of characteristic p > 0, assumed to be algebraically
closed. Let X/K be a smooth proper geometrically connected curve of genus g > 0. When
g = 1, we assume in addition that X(K) 6= ∅.

Assume that X/K does not have semi-stable reduction over OK , and that it achieves
good reduction after a cyclic extension L/K of prime degree p. Let H = 〈σ〉 denote the
Galois group of L/K. Let Y/OL be the smooth model of XL/L. Let Z/OK denote the
quotient Y/H , with singular points Q1, . . . , Qd, and d ≥ 1. Recall the regular model
f : X ′ → Z introduced in 5.2.

6.1 The resolution of a singularity Q of Z is a local process, and depends only on the local
ring OZ,Q. It seems therefore natural to try to relate the ‘complexity’ of the resolution
graph to some local invariants of OZ,Q. In this respect, we propose the following.

Consider the Galois morphism ρ : Yk → Yk/ 〈σ〉. Associated with any point Q ∈ Yk/ 〈σ〉
is the following measure of the ramification of ρ over Q:

ν(Q) := δ(P ) =
∞

∑

j=0

(|Hj(P )| − 1),

where P is the preimage of Q in Yk and Hj(P ) denotes the j-th higher ramification group
at P . (For more general morphisms, we would define ν(Q) :=

∑

P∈ρ−1(Q) δ(P ).) Recall

from 2.2 that the morphism is weakly ramified at P if δ(P ) = 2(p− 1). Our guess is that
ν(Q) should also be an important measure of how complicated the exceptional divisor of
the resolution of Q is. To formulate this guess more precisely, we compare the expressions
of the genus g in the Riemann-Hurwitz formula and in the adjunction formula. The
Riemann-Hurwitz formula for the morphism ρ can be rephrased as

2g = 2g(Yk) = 2|H|g(C0)− 2(|H| − 1) +
d

∑

i=1

ν(Qi).

Consider now the model X ′. By hypothesis, it is minimal with the property that the
special fiber has smooth components and normal crossings. Thus, none of the vertices A
in the graph G := G(X ′) with degree 1 or 2 can have self-intersection −1 (we use here
also the fact that only the curve C0 can have positive genus ([19], 2.10)). Moreover, since
the curve X/K has potentially good reduction, the graph G(X ′) is a tree ([19], 2.10). The
adjunction formula

2g − 2 = X ′
k · X

′
k + X ′

k · Ω,
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with Ω a relative canonical divisor of X ′/OK , can be rewritten as

2g = 2|H|g(C0) +
∑

vertex A of G

(r(A)− 1)(dG(A)− 2)

= 2|H|g(C0)− 2(|H| − 1)

+

d
∑

i=1

(

|H| − 1 +
∑

vertex A of GQi

(r(A)− 1)(dG(A)− 2)
)

= 2|H|g(C0)− 2(|H| − 1) +

d
∑

i=1

γDi
gDi

,

(6.1.1)

where D1, . . . , Dd are the vertices attached to C0 in the tree G(X ′), and the integers γDi

and gDi
are defined as in 4.1 and (4.1.2). Since the graph GDi

is nothing but the graph
GQi

of the desingularization of Qi, we define our measure of the desingularization of Qi

to be γQi
gQi

:= γDi
gDi

for each i = 1, . . . , d. The integer gQi
:= gDi

depends only on the
intersection matrix of the desingularization and the marked vertex Di on its graph. Since
r(C0) = p and is divisible by γQi

, we find that γQi
= 1 or p.

6.2 Our guess regarding the resolution X ′ → Z of the singularities of Z is that

γQi
gQi

= ν(Qi) holds for all i = 1, . . . , d.

This equality would have interesting implications. For instance, since H = Z/pZ, we
always have ν(Q) divisible by p − 1, so that p − 1 divides γQi

gQi
when γQi

gQi
= ν(Qi).

Since γQi
= 1 or p, we find that

p− 1 divides gQi
when γQi

gQi
= ν(Qi).

Examples where gQi
= 2(p − 1) and 3(p − 1) are given in 4.7 and 4.9. It immediately

follows from the Riemann-Hurwitz formula and the adjunction formula that:

Lemma 6.3. With the above notation and hypotheses,

(6.3.1)
d

∑

i=1

ν(Qi) =
d

∑

i=1

γQi
gQi

.

We now prove the equality γQi
gQi

= ν(Qi) = 2(p− 1) for all i = 1, . . . , d in the weakly
ramified case, using Theorem 5.3.

Theorem 6.4. Let X/K be a curve with potentially good reduction after a ramified ex-
tension L/K of prime degree p. Keep the above notation. Then for all i = 1, . . . , d,

(a) We have γQi
gQi
≥ 2(p− 1) and ν(Qi) ≥ 2(p− 1).

(b) If the ramification points of Yk → Yk/ 〈σ〉 are all weakly ramified (in particular, if Yk

is ordinary), then γQi
gQi

= ν(Qi) = 2(p− 1).

Proof. (a) The fact that ν(Qi) ≥ 2(p − 1) follows immediately from the properties of a
wildly ramified extension: the higher ramification groups H0 and H1 must be non-trivial.
To prove that γQi

gQi
≥ 2(p − 1), we note first that Theorem 5.3 shows that p | ri. The

inequality follows then from Proposition 4.3.
(b) When the ramification points of Yk → Yk/ 〈σ〉 are all weakly ramified, we have

ν(Qi) = 2(p − 1) (2.2). It follows from (6.3.1) and from the fact that γQi
gQi
≥ 2(p− 1)

proven in (a) that γQi
gQi

= 2(p− 1). �
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Remark 6.5 Without the use of Theorem 5.3, we could only argue that γQi
gQi
≥ p− 1.

Indeed, if r(C0) does not divide r(Di), then γDi
= 1. Then we can use the fact that

gQi
≥ r(C0)− 1 established in 4.10.

Using the notation γQi
introduced in this section, we may now state a corollary to

Theorem 5.3.

Corollary 6.6. Let X/K be a curve with potentially good reduction after a wildly ram-
ified Galois extension L/K of degree p, as in 5.3. Let Ni denote the intersection matrix
associated with the resolution of Qi. Assume that γQi

= 1. Then p2 divides det(Ni).

Proof. The graph associated with the matrix Ni is GQi
, with a marked vertex Di on it.

Let RDi
denote the vector of multiplicities of the components of the resolution of Qi.

Then the determinant of Ni can be computed in terms of the coefficients of RDi
/γDi

(see

[19], Theorem 3.14). In particular, it is known that r(C0)
γDi

gcd( r(C0)
γDi

, r(Di)
γDi

) divides det(Ni).

Under our hypotheses, r(C0) = p, p divides r(Di) (5.3), and γDi
= 1. �.

Remark 6.7 Let X/K be a curve with potentially good reduction after a wildly ramified
extension L/K of degree p, as in 5.3. Let Ni denote the intersection matrix associated
with the resolution of Qi. Then p kills the Smith group ΦNi

([19], 2.6) and, thus, | det(Ni)|
is a power of p. It follows from (4.10.3) that ordp(| det(Ni)|)(p− 1) ≤ gDi

.
In the examples of graphs and matrices Ni given in 4.9 with gDi

= 3(p − 1), we find
that both | det(Ni)| = p2 and | det(Ni)| = p3 can occur (in (b) and (c)(ii), respectively, in
(a) and (c)(i)).

Theorem 6.8. Let X/K be a curve with potentially good reduction after a wildly ramified
Galois extension L/K of degree p. Assume that all ramification points of Yk → Yk/ 〈σ〉
are weakly ramified (this is the case if Yk is ordinary). Keep the above notation. Then,
for all i = 1, . . . , d, we have ri = p, and GQi

is a graph1 with a single node Ci, of degree
3:

p p p p p

-2 -2 -2 -2
Ci

p− r1(i)

r1(i)

1

1C0
Di

The intersection matrix N(p, αi, r1(i)) of the resolution of Qi is uniquely determined as
in 4.7 by the two integers αi and r1(i), with 1 ≤ r1(i) < p. The integer αi is the number
of vertices of self-intersection −2 (including the node Ci) on the chain in GQi

connecting
the node C0 to the single node Ci of GQi

, and this integer αi is divisible by p.

Proof. Theorem 6.4 (b) shows that γQi
gQi

= 2(p− 1) for all i = 1, . . . , d. Proposition 4.3
classifies the graphs with γQi

gQi
= 2(p− 1), and the statement on the shape of the graph

follows.
The Smith group of the intersection matrix N(p, αi, r1(i)) is computed in [19], 3.19 and

3.21, and is found to be of order p2, and killed by p if and only if p divides αi. Theorem
2.6(c) of [19] shows that this Smith group must be killed by p. The divisibility p | αi

follows. �

1A bullet • represents an irreducible component of the desingularization of Qi. A positive number
next to a vertex is the multiplicity of the corresponding component, while a negative number next to a
vertex is the self-intersection of the component.
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Remark 6.9 It is natural to wonder whether the statements of Theorem 6.4 (b) and 6.8
hold for the resolution of Qi when Pi is a weakly ramified ramification point of Yk →
Yk 〈σ〉, without also assuming as we do in 6.4 (b) and 6.8 that all ramification points are
weakly ramified.

Corollary 6.10. Let X/K be a curve with potentially good reduction after a wildly ram-
ified Galois extension L/K of degree p, as in 6.8. Suppose that g > 1, and that all
ramification points of Yk → Yk/ 〈σ〉 are weakly ramified. Then

(a) X(K) 6= ∅.
(b) Let A/K denote the Jacobian of X/K. Let A/OK be its Néron model. Then the

unipotent part U/k of the connected component of the identity in Ak/k is a product
of additive groups Ga,k.

(c) The group of components ΦA,K of the Néron model is isomorphic to (Z/pZ)2d−2.

Proof. Part (a) is immediate since it follows from 6.8 that a regular model of X/K contains
a component of multiplicity 1. It follows from [22], 2.4, that p kills U , since the maximal
multiplicity in the regular model X ′/OK is equal to p. That U is now split follows from
[27], Ch. VII, no 11, Proposition 11. This proves (b).

The order of ΦA,K can be computed using the intersection matrix of the regular model
X ′. Since the associated graph is a tree, we find using [13], 2.5, that |ΦA,K | = p2d−2. Part
(c) follows since ΦA,K is killed by [L : K] because A/K has potentially good reduction
([5]). �

Note that in general the special fiber Ak/k need not be killed by p, even when its
subgroup U and quotient ΦA,K are both killed by p (see [11] for a general discussion of
such phenomena).

6.11 Let A/K be the Jacobian of a smooth proper and geometrically connected curve
X/K having a K-rational point. For use in our next corollary, we recall below the main
result of [3], Theorem 4.6. Identify A/K with its dual A′/K via the map −ϕ[Θ] : A→ A′

as in [3], just before 4.6. Let X /OK denote a regular model of X/K. Let M be the
intersection matrix of Xk. Identify, as recalled in [3], 2.3, the component group ΦA/K with
the group of components ΦM of M (ΦM is the torsion subgroup of Zv/Im(M)). Then
Grothendieck’s pairing

〈 , 〉K : ΦA/K × ΦA/K −→ Q/Z

coincides with the pairing 〈 , 〉M : ΦA/K ×ΦA/K −→ Q/Z considered in 3.1. In particular,
this pairing is non-degenerate. Recall also the definition of the functorial subgroup Φ0

A/K

of ΦA/K in 1.3. We denote by (Φ0
A/K)⊥ the orthogonal of Φ0

A/K under Grothendieck’s
pairing.

Corollary 6.12. Let A/K be the Jacobian of a curve X/K of genus g > 1 having po-
tentially good reduction after a Galois extension L/K of degree p, as in 6.8. Assume
that all ramification points of Yk → Yk/ 〈σ〉 are weakly ramified. Then ΦA/K is a Z/pZ-
vector space of dimension 2d− 2, and Φ0

A/K is a subspace of dimension d− 1. Moreover,

Φ0
A/K = (Φ0

A/K)⊥.

Proof. It follows from 6.10 that X(K) 6= ∅. We can thus use the results of [3] recalled
above. We produce below explicit generators for the groups ΦA/K and Φ0

A/K . For each

singular point Qi on the model Z/OK , denote by Ai and Bi the terminal components of
multiplicity 1 in the exceptional divisor of the resolution of Qi in X ′. Let αααi denote the
image in ΦA/K of the vector E(Ai, Bi), i = 1, . . . , d−1 (notation as in 3.1). Let βββi denote
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the image in ΦA/K of the vector E(Ai, Ad), i = 1, . . . , d − 1. We have seen in 6.10 that
ΦA/K is a Z/pZ-vector space of dimension 2(d− 1).

We claim that {ααα1, . . . ,αααd−1,βββ1, . . . ,βββd−1} is a basis for ΦA/K , and that {ααα1, . . . ,αααd−1}
is a basis for Φ0

A/K . To prove our claim, consider the matrix V := (〈αααi,βββj〉)1≤i,j≤d−1

with coefficients in Q/Z. We can use the computation (4.8.1) to show that V is the
diagonal matrix diag(c1/p (mod Z), . . . , cd−1/p (mod Z)), where for each i = 1, . . . , d−1,
0 < ci < p and p divides cir1(i)−1. In particular, ci/p 6= 0 in Q/Z. It follows that the set
{ααα1, . . . ,αααd−1,βββ1, . . . ,βββd−1} is linearly independent in (Z/pZ)2d−2. Hence, it is a basis.

It follows from the explicit computations in [17], 3.7 (a), that 〈αααi,αααj〉 = 0 for all 1 ≤
i, j ≤ d− 1. Since the pairing 〈 , 〉 is perfect on (Z/pZ)2d−2, we find that {ααα1, . . . ,αααd−1}
generates a maximal isotropic subspace.

It remains to show that ααα1, . . . ,αααd−1 belong to Φ0
A/K , and that neither βββ1, . . . ,βββd−1, nor

any non-trivial linear combination of βββ1, . . . ,βββd−1, belong to Φ0
A/K . For this, since K is

complete, we can pick K-rational points ai and bi of X (i = 1, . . . , d−1) whose closure in
X ′ intersect X ′

k in a smooth point of Ai and Bi, respectively (see, e.g., [4] 9.1/9). Then
ai− bi and ai−ad are divisors of degree 0 on X, which we identify with K-rational points
in the Jacobian A/K of X/K. These rational points reduce in the component group ΦA/K

of the Néron model of A/K to the points αααi and βββi, respectively. Since A(K) ⊂ A(L),
we can reduce ai − bi in the special fiber of the Néron model A′/OL. This special fiber is
isomorphic to the Jacobian of the special fiber Yk of the smooth model Y/OL of XL/L.
It is clear that by construction, the reduction of ai − bi is trivial, so that αααi ∈ Φ0

A/K for
i = 1, . . . , d− 1. On the other hand, the reduction of ai− ad is the divisor Pi−Pd, which
is a non-trivial p-torsion point when viewed in the quotient A′

k/η(Ak). This shows that
βββi /∈ Φ0

A/K for i = 1, . . . , d−1. Moreover, any non-trivial linear combination of the images

of the divisors Pi−Pd is not zero in A′
k/η(Ak) (2.5), so no non-trivial linear combination

of βββ1, . . . ,βββd−1 belongs to Φ0
A/K . �

Example 6.13 Examples of curves having good reduction after an extension of degree
p can be obtained as twists as follows. Choose a smooth proper curve C/k having an
automorphism σk of order p. Over an appropriate ring OK with residue field k, there
exists a smooth scheme Y0/OK with an OK-automorphism σ such that C is k-isomorphic
to Y0

k , and σ restricted to Y0
k induces the given automorphism σk. It is shown in [25],

section IV, Thm. 2.2, that one can take OK to be the Witt ring W (k)(ζp), with ζp a
primitive p-th root of unity. If one wants a lift in equicharacteristic p, one can trivially
take OK = k[[t]].

Choose any cyclic (ramified) extension L/K of degree p. The twist of Y0
K/K by L/K

and σ is a curve X/K which achieves good reduction over L. Starting with an ordinary
curve C/k produces a curve X/K having potentially good ordinary reduction over L.

Corollary 6.14. Fix any odd prime p. For each integer m > 0, there exist a regular local
ring B of equicharacteristic p endowed with an action of H := Z/pZ, and a regular local
ring B′ of mixed characteristic (0, p) endowed with an action of Z/pZ, such that Spec BH

and Spec(B′)H are singular exactly at their closed point, and the graphs associated with a
minimal resolution of Spec BH and Spec(B′)H have one node and more than m vertices.

Proof. As we noted in 6.13, there exist a field K of either mixed characteristic (0, p) or
of equicharacteristic p and a curve X/K without good reduction over K, and with good
ordinary reduction over a Galois extension L/K of degree p. Let H := Gal(L/K). Let
Y/OL denote the smooth model of XL/L. Let Z/OK denote the quotient Y/H . Let P
denote a ramification point of the morphism Yk → Yk/H , and let B := OY ,P . Theorem
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6.8 shows that the resolution of singularity of Spec BH has an intersection matrix of type
N(p, α, r1) for some α ≥ 1 and 0 < r1 < p.

Immediately after the statement of Theorem 6.8 given in the introduction, we briefly
alluded to the fact that the integer α is likely to be related to the valuation of the different
of L/K. Thus, in principle, by choosing K and L/K appropriately, the above method
will produce examples with α as large as desired. Since at this time we do not know how
to prove in general that α is related to the valuation of the different of L/K (except when
p = 2, and g = 1, see [19], 4.1), we proceed below with a different argument to prove the
existence of resolutions with α as large as desired.

Consider a quadratic extension K ′/K. Since p is odd by hypothesis, the extension
K ′/K is tame, and one knows how to compute a regular model of XK ′/K ′ from the model
X /OK of X/K obtained in Theorem 6.8: Simply normalize the base change X ×OK

OK ′

and resolve its singularities. A singularity on the normalization can only be the preimage
of a closed point of Xk that belongs to two irreducible components of Xk, and such that
both components have odd multiplicity. This singular point is resolved by a single smooth
rational curve.

Let L′ := LK ′, with [L′ : K ′] = p. The curve XK ′/K ′ achieves good ordinary reduction
over L′. The model Y ′/OL′ := Y×OL

OL′ is smooth, and we let P ′ denote the preimage of
P under the natural map Y ′ → Y . Let B′ := OY ′,P ′. We leave it to the reader to check,
using [7], 4.3, and the desingularization of the normalization of X ×OK

OK ′, that the
resolution of the singularity of Spec(B′)H has an intersection matrix of type N(p, 2α, r′1),
where r′1 := r1/2 if r1 is even, and r′1 := (r1 + p)/2 if r1 is odd.

Since we can make an infinite chain of quadratic extensions K ⊂ K ′ ⊂ K ′′ ⊂ . . . ,
and since the graph associated with N(p, β, r1) has at least β irreducible components, the
corollary is proved. �

Remark 6.15 Consider an intersection matrix N , and assume that for some prime p,
it satisfies all the conditions listed in 5.4, conditions which would have to be satisfied
if this intersection matrix was associated with the resolution of a Z/pZ-singularity: its
graph G(N) is a tree, | det(N)| is a power of p, the Smith group ΦN is killed by p,
and the fundamental cycle Z has |Z2| ≤ p. If det(N) = 1 and G(N) is a tree, then
the above conditions are satisfied for every prime at least equal to |Z2|. In particular,
when det(N) = 1, the matrix N could potentially be associated with the resolution of a
Z/pZ-singularity for infinitely many primes p.

An interesting consequence of our guess in 6.2 that γQi
gQi

= ν(Qi) holds for all i =
1, . . . , d, is that a matrix N as above can be associated with the resolution of a (Z/pZ)-
quotient singularity X ′ → Z occurring in models of curves as at the beginning of this
section only for finitely many primes p. Indeed, the choice of a vertex D on N lets us
define the integer gD associated with N and D. If N is the intersection matrix of the
resolution of a singularity Qi of Z with the marked vertex D linked to C0, we noted in
6.2 that p− 1 must then divide gD when the equality γQi

gQi
= ν(Qi) holds. Since there

are only finitely many vertices D, the set of integers gD is finite and, hence, any prime p
larger than the maximum of the integers gD cannot have the property that p− 1 divides
some gD.

Remark 6.16 Let X/K be a curve with potentially good reduction over an extension
L/K of degree p, as at the beginning of this section. Let Qi be a singular point of the
quotient Z, and consider the graph GQi

associated with the resolution of Qi in X ′ → Z.
One may wonder whether a node of G in GQi

could have its multiplicity in X ′
k divisible

by p2. Similar considerations are found in [18], Question 1.4.
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J. reine angew. Math. 527 (2000), 117–150.
[18] D. Lorenzini, Models of curves and wild ramification, Pure Appl. Math. Q. (Special issue in

honor of John Tate), 6 (2010) no 1, 41–82.
[19] D. Lorenzini, Wild quotient singularities of surfaces, to appear in Math. Zeit.
[20] D. Lorenzini, Wild quotients of products of curves, Preprint.
[21] D. Lorenzini and T. Tucker, Thue equations and the method of Chabauty-Coleman, Invent. Math.

148 (2002), 47-77.
[22] D. Penniston, Unipotent groups and curves of genus 2, Math. Ann. 317 (2000), 57-78.
[23] B. Peskin, Quotient singularities and wild p-cyclic actions, J. Algebra 81 (1983), 72-99.
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