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Abstract. Let (B,MB) be a noetherian regular local ring of dimension 2 with residue
field B/MB of characteristic p > 0. Assume that B is endowed with an action of a finite
cyclic group H whose order is divisible by p. Associated with a resolution of singularities
of Spec BH is a resolution graph G and an intersection matrix N .

We prove in this article three structural properties of wild quotient singularities, which
suggest that in general, one should expect when H = Z/pZ that the graph G is a tree,
that the Smith group Zn/Im(N) is killed by p, and that the fundamental cycle Z has
self-intersection |Z2| ≤ p. We undertake a combinatorial study of intersection matrices
N with a view towards the explicit determination of the invariants Zn/Im(N) and Z. We
also exhibit explicitly the resolution graphs of an infinite set of wild Z/2Z-singularities,
using some results on elliptic curves with potentially good ordinary reduction which
could be of independent interest.
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damental cycle.
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1. Introduction

Let B denote a regular local ring of dimension 2 with maximal ideal MB. Let H be a
finite cyclic group acting on B, and let Z := Spec(BH). Assume that the action of H on
Spec(B) is free off the closed point, and that MH

B is the only singular point of Z. When
the order of H is not divisible by the residue characteristic p of B/MB, MH

B is called a
tame cyclic quotient singularity. Otherwise, MH

B is a wild cyclic quotient singularity.
Let f : X → Z be a resolution of the singularity, minimal with the property that the

irreducible components of f−1(MH
B ) are smooth with normal crossings. Such a resolution

exists when BH is excellent ([1], [4], [15], [19]). Attached to this resolution are two natural
objects that we now describe, the intersection matrix N , and the resolution graph G.
The exceptional divisor f−1(MH

B ) consists in n irreducible components Ci, i = 1, . . . , n.
Denote by N := ((Ci ·Cj)X ) the associated symmetric matrix. The matrix N is negative
definite and, in particular, det(N) 6= 0. Let G denote the graph whose vertices are the
n irreducible components of f−1(MH

B ), and where two vertices C and D are linked by
(C · D)X edges. For future reference, recall that the degree of a vertex C in a graph G is
the number of edges connected to C, and a vertex of degree at least 3 on a graph is called
a node.

Much is known about tame cyclic quotient singularities. Most importantly, their res-
olution graphs, called Hirzebruch-Jung strings, are the simplest possible graphs: trees
without nodes. Moreover, for a given H , the set of such strings is finite and explicitly
describable1. The key property of tame cyclic actions that allows for a description of their
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1These facts are well-known for surfaces over C (see, e.g., [6], III.5, or [18], p. 207). For the general

case, see [13], and also [35], 6.4 and 6.8, and [11], section 2.
1
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resolution graphs is that such actions can be given in simple normal forms, producing

explicit equations for the ring B̂H . In contrast, wild cyclic actions are much more difficult
to classify. Even in the simplest case of Z/pZ acting on k[[x, y]], explicit equations for
k[[x, y]]H have only been obtained in a few cases, such as in equicharacteristic 2 in [2],
and in some cases where p = 3 in [30], 5.15.

Our goal in this article is to provide information on the graphs which can arise as
the resolution graph of a wild cyclic quotient singularity. To illustrate the difficulty in
completely classifying such graphs for a given p, we will show when p = 2 that the set of
non-singular matrices arising (up to permutation) as intersection matrices of the resolution
of Z/2Z-quotient singularities is infinite (4.1; see also [2], p. 64, in the equicharacteristic
case).

We discuss in section 2 three general structural properties of wild cyclic quotient singu-
larities. Rather than completely stating below all the hypotheses of the three theorems, let
us say that in rather general situations, we can show that a wild cyclic quotient singularity
satisfies the following:

• the irreducible components of the resolution of a Z/pZ-quotient singularity are
rational, and the graph of the resolution is a tree (Theorem 2.8).

• The multiplicity of the local ring BH is at most |H| (Theorem 2.3). This latter
result imposes additional restrictions on the possible resolution graphs since the
fundamental cycle Z of a singularity depends only on the intersection matrix, and
its self-intersection |Z2| is bounded by the multiplicity of BH ([36], 2.7).

• The order |H| kills the finite Smith group ΦN := Zn/N(Zn) (Theorem 2.6). In
particular, | det(N)| is a power of p when H = Z/pZ.

In section 3, we undertake a completely combinatorial study of intersection matrices N ,
with a view towards an explicit determination of the invariants occurring in our theorems
on quotient singularities, namely the Smith group ΦN and the fundamental cycle Z. We
obtain in particular a general explicit formula for the order of ΦN when the graph G(N)
is a tree (3.14).

It is clear that one of the main question in the classification of wild Z/pZ-quotient sin-
gularities is the determination of the types of intersection matrices which can occur in the
resolution of the singularity. We do not know if such intersection matrices always satisfy
further combinatorial restrictions in addition to the three addressed in this paper: the
associated graph G(N) is a tree, the Smith group ΦN is killed by p, and the fundamental
cycle Z has |Z2| ≤ p.

We end section 3 with a detailed study, for each prime p, of a family of star-shaped
intersection matrices N satisfying the above combinatorial restrictions (3.17). We show
in section 4 that some of these matrices do appear as intersection matrices associated
with Z/2Z-quotient singularities (4.1). This result uses some facts about elliptic curves
with potentially good ordinary reduction which could be of independent interest. Further
work on these matrices in the context of model of curves can be found in [26].

I thank Michel Raynaud for his generous contributions to this article. Several of the
arguments in section 2 are due to him. I also thank Qing Liu and Werner Lüktebohmert
for helpful discussions, and the referee for a careful reading of the article.

2. General properties of quotient singularities

We prove in this section several general properties of quotient singularities of surfaces
and of their associated intersection matrices. Let B be a normal noetherian local domain
endowed with an action of a finite group H . Let A := BH . Let B̂ denote the completion
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of the local ring B with respect to its maximal ideal MB. Similarly, let Â denote the
completion of A with respect to its maximal ideal MA. The action of H on B extends to

an action on B̂, and the ring (B̂)H is a normal complete domain. Consider the canonical

injection Â −→ (B̂)H .

Lemma 2.1. Let B be a normal noetherian local domain endowed with an action of a

finite group H. If x ∈ (B̂)H , then Im(Â) contains |H|x and x|H|. In particular, (B̂)H is

integral over Im(Â).

If |H| is coprime to char(A/MA), then the map Â → (B̂)H is an isomorphism. If

char(B) = 0, then Â and (B̂)H have same fields of fractions and, if in addition Â is

normal, then the map Â → (B̂)H is an isomorphism.

Proof. Let x = {bn} be an element of the projective limit B̂ := lim
←−

B/Mn
B fixed by H .

Since H is finite, |H|x = {∑σ∈H σ(bn)} and x|H| = {∏σ∈H σ(bn)} belong to the projective

limit Â. Thus x is a root of the monic polynomial X |H|−x|H| with coefficients in Â. When
|H| ∈ Â is invertible in Â, |H|x ∈ Â implies x ∈ Â, so Â = B̂H .

Assume that |H| 6= 0 in Â. Let y = {cn} ∈ B̂H . Then x/y = |H|x/|H|y, and Â and

(B̂)H have same fields of fractions. If Â is integrally closed, then the map Â → (B̂)H is

an isomorphism because (B̂)H is integral over Im(Â), with same field of fractions as Â.
�

The map Â −→ (B̂)H is clearly not surjective if Â is not normal, and the completion of
a normal noetherian local domain A need not be normal in general, unless, for instance, A
is excellent ([28] (33.I)). In this section, we consider the following two types of rings. Let
(B,MB) be a regular noetherian local domain of dimension 2, endowed with an action of
a finite group H . We will say that B is if type I or type II when it satisfies the following
additional conditions:

Type I: Assume that B contains a complete regular noetherian local domain R of
dimension 1, such that for all σ ∈ H , σ(R) ⊆ R. Assume in addition that there exist
an R-algebra of finite type B0 endowed with an action of H , and a prime ideal P of
B0 with σ(P) = P for all σ ∈ H , such that the local ring B with its action of H is
isomorphic to the localization of B0 at P. Assume also that there exists x ∈ B such that
MB = (MR, x) and such that the natural R-map R[X](MR,X) −→ B, sending X to x,

extends to an R-isomorphism R[[X]] → B̂.

Type II: Let k be a field. Suppose that B contains k, and that for all σ ∈ H and
all c ∈ k, σ(c) = c. Assume that there exist a k-algebra of finite type B0 endowed with
an action of H , and a prime ideal P of B0 with σ(P) = P for all σ ∈ H , such that the
local ring B with its action of H is isomorphic to the localization of B0 at P. Assume
also that there exist elements u, v ∈ MB with MB = (u, v) and such that the natural
k-homomorphism k[U, V ](U,V ) → B, sending U to u and V to v, induces an isomorphism

k[[U, V ]] → B̂.

Lemma 2.2. Let B be a regular noetherian local domain of type I or II. Then the ring

A := BH is excellent and, hence, Â is normal and excellent too.

Proof. Indeed, in case I, the domain RH is a complete domain. Since the field of fractions
of R is a finite extension of the field of fractions of RH , and since R is integral over RH ,
we find, using [29], 32.1, page 112, that R is a finitely generated RH-module. Then a
theorem of Eakin ([28], page 263) shows that R being noetherian implies that RH is also
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noetherian. It follows that the ring RH is excellent ([28], (34.B)). Since the domain B0 is
a finitely generated RH-algebra, the domain BH

0 is also a finitely generated RH-algebra
([8], Theorem 2 in V.1.9, page 323). Hence, BH

0 is excellent since RH is ([28] (34.A)).
Then BH is also excellent since it is isomorphic to (BH

0 )P∩BH
0

([8], Prop. 23 in V.1.9).

For B in case II, it is clear that BH
0 is a finitely generated k-algebra and, again, BH is

excellent. �

Let us recall now the notion of multiplicity of a local ring ([5], 11.4). Let A be a
noetherian local ring of dimension d, with maximal ideal MA. Denote by length(A/Mn

A)
the length of the A-module A/Mn

A. Then there exists a polynomial gA(x) ∈ Q[x], called
the Hilbert-Samuel polynomial of MA, such that for all sufficiently large n,

gA(n) = length(A/Mn
A).

The polynomial gA(x) has degree d and, writing gA(x) = adx
d + · · ·+ a0, the multiplicity

mult(A) of A is defined to be d!ad ∈ N.

Theorem 2.3. Let H be a finite cyclic group acting on a regular noetherian local domain

B of dimension 2 of type I or II. In case of type II, assume that k contains the |H|-roots
of unity. Let A := BH . Then mult(A) ≤ |H|.

Proof. Since mult(A) = mult(Â), it suffices to bound mult(Â). Consider first the case
where B is of type I, with MB = (MR, x). Consider the element t :=

∏
σ∈H σ(x). Clearly,

t ∈ A. Write σ(x) = c0 + c1x + · · · ∈ B̂, with ci ∈ R. Since σ preserves the maximal ideal
of B, we find that c0 ∈ MR. A straightforward calculation using the fact that σ is an
automorphism shows that c1 /∈ MR. Thus, the power series t has reduced order |H| (that
is, modulo MR, t is exactly divisible by x|H|). It follows from [8], VII.3, no 8, corollary of
proposition 5, that the morphism R[[T ]] → R[[x]], sending T to t, is injective, and R[[x]]
is a free R[[T ]]-module with basis 1, x, . . . , x|H|−1.

Consider now the inclusions

RH [[t]] ⊆ R[[t]] ⊆ B̂ = R[[x]].

It is clear that R[[t]] is free of rank dividing |H| over RH [[t]]. It follows that B̂ is free of
rank dividing |H|2 over RH [[t]]. Consider now the inclusions

RH [[t]] ⊆ (B̂)H ⊆ B̂.

Since RH [[t]] is regular and (B̂)H is normal of dimension 2 (and, hence, has depth 2),

(B̂)H must be a free RH [[t]]-module ([28], 18.H). Its rank is the degree of the associated
extension of fields of fractions, which divides |H|, since the degree of the field of fractions

of B̂ over the field of fractions of (B̂)H is exactly |H|.
Since (B̂)H is a free RH [[t]]-module of rank at most |H|, we obtain from the surjection

(B̂)H/(MRH [[t]](B̂
H))n → (B̂)H/(M( bB)H )n that for all sufficiently large n,

g( bB)H (n) ≤ |H| · gRH [[t]](n).

Dividing both sides by n2 and taking the limit as n → ∞, it follows immediately from
the definition of multiplicity that

mult((B̂)H) ≤ |H| · mult(RH [[t]]) = |H|.
Since RH [[t]] ⊆ Â ⊆ (B̂)H and Â is also normal (2.2), the same argument shows that

mult(Â) ≤ |H|.
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Assume now that B is of type II, and let p := char(k) ≥ 0. Consider the induced
action of H on the k-vector space MB/M2

B. After making a linear change of variables
if necessary, we may assume that the action of a generator of the cyclic group H on the
classes of u and v is in Jordan canonical form(

α 1
0 α

)
or

(
α 0
0 β

)
.

The eigenvalues α and β are |H|-th roots of unity, and the case of a single Jordan block
can only occur when p > 0, and which case p divides |H|.

Let x :=
∏

σ∈H σ(u), and y :=
∏

σ∈H σ(v). An easy computation shows that modulo

the ideal (u, v)|H|+1, x ≡ u|H|, and y ≡ v|H| if the action is diagonalizable. When the
action consists of a single Jordan block, we find that

y ≡ v(u + αv)(2αu + α2v) . . . ((|H| − 1)α|H|−2u + α|H|−1v)

≡ α
(|H|−1)|H|

2 ((αv)p − αvup−1)|H|/p.

One verifies that x and y form a system of parameters of k[[u, v]]. Hence, the map
k[[X, Y ]] → k[[u, v]], which sends X to x and Y to y, is injective with image k[[x, y]],
and k[[u, v]] is a finitely generated module over k[[x, y]] ([37], Corollary 2 on page 293,
Remark on page 293, and Corollary 2 on page 300). One verifies then that k[[u, v]] is a
free k[[x, y]]-module of rank |H|2, with basis {uivj, 0 ≤ i, j ≤ |H| − 1}. It follows as in

the case of Type I that Â and (B̂)H are free of rank dividing |H| over k[[x, y]], and that

both mult(Â) and mult((B̂)H) are bounded by |H|. �

Remark 2.4 We review the definition of the fundamental cycle Z associated with an
intersection matrix N in 3.4. Let us note here that the above theorem imposes a non-
trivial condition on the fundamental cycle of the resolution of a quotient singularity, since
it is known that its self-intersection |Z2| is bounded by the multiplicity of BH ([36], 2.7).

2.5 Let A be a normal local ring of dimension 2 with maximal ideal MA. Let Z :=
Spec(A), and U := Z \ {MA}. Assume that a desingularization f : X → Z exists. This
is the case for instance if A is noetherian and excellent (see, e.g., [4], 1.1). In particular,
X is regular, f is proper, and the restriction of f to X \f−1(MA) → U is an isomorphism.

Denote by E1, . . . , En the irreducible components of f−1(MA). Let (C, D)X denote
the intersection number of two divisors C and D on the regular scheme X. The in-
tersection matrix associated with the exceptional divisor f−1(MA) is the matrix N :=
((Ei, Ej)X)1≤i,j≤n. The Smith group ΦN of the matrix N is defined to be the quotient
Zn/Im(N) (3.2). Our next theorem describes some properties of the group ΦN in several
important instances.

We review first some facts proved, for instance, in section 14 of [17]. Let E denote
the free Z-module with basis the irreducible components E1, . . . , En of f−1(MA). By
construction, the restricted morphism f : X \ f−1(MA) → U is an isomorphism. Using
its inverse followed by the open immersion X \ f−1(MA) → X, we obtain a morphism
U → X, and an associated ‘restriction’ map

ρ : Pic(X) −→ Pic(U).

The group homomorphism ρ is surjective, with kernel E. Define

θ : Pic(X) −→ E∗ := Hom(E, Z)

by the rule θ(∆)(Ei) := (∆, Ei)X , where for any divisor class ∆ represented by a divisor
D, we set (∆, Ei)X := (D, Ei)X . Let Pic0(X) := Ker(θ). Then we have the following
exact sequence ([17], 14.2):
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(2.5.1) 0 −→ ρ(Pic0(X)) −→ Pic(U) −→ ΦN −→ Coker(θ) −→ 0.

The group Coker(θ) is trivial when A is Henselian ([17], 14.3 and 14.4). The group Pic(U)
is isomorphic to the divisor class group Cl(A).

Consider now a local domain B endowed with an action of a finite group H , such that
BH = A. There are natural group homomorphisms Cl(A) → Cl(B) and Cl(B) → Cl(A)
(the norm homomorphism), whose composition is the multiplication by |H| on Cl(A) ([8],
535-536). When B is a unique factorization domain, such as when B is regular, then
Cl(B) = (0), and it follows that |H| kills Cl(A) (which is isomorphic to Pic(U)).

Theorem 2.6. Let A be a normal local ring of dimension 2 such that Z := Spec A admits

a desingularization f : X → Z. Keep the notation introduced in 2.5.

(a) Assume that there exists a complete regular local ring B endowed with an action of a

finite group H and such that BH = A. Then |H| kills ΦN .

(b) Assume that there exists a regular local ring B of type I or II endowed with an action

of a finite group H such that BH = A. Assume also that either |H| is coprime to

char(A/MA), or that char(A) = 0. Then |H| kills ΦN .

(c) Let OK be a Henselian discrete valuation ring, with algebraically closed residue field k
and field of fractions K. Let V/K be a smooth proper geometrically connected curve.

Let L/K denote the Galois extension minimal with the property that VL/L has semi-

stable reduction. Let Y/OL denote the minimal regular semi-stable model of VL/L.

Let H := Gal(L/K) and let Z := Y/H. Assume that H is generated by an element

σ, and call σk the morphism induced by σ on Yk. Let P be a ramification point of the

map Yk → Yk/ 〈σk〉 and assume that σ(OY ,P ) ⊆ OY ,P . Let Q be the image of P in Z.

Let A := OZ,Q. Then |H| kills the group ΦN associated with a resolution of Spec A.

Proof. (a) It suffices to note that A = BH is also complete, and, hence, Henselian, so that
Coker(θ) is trivial. Since |H| kills Pic(U), it also kills ΦN in this case.

(b) Let B̂ denote the completion of the local ring B with respect to its maximal ideal

MB. Consider the canonical injection Â → (B̂)H . Under our hypotheses, it follows from
2.1 and 2.2 that A is excellent, and that this map is an isomorphism. Since a resolution
of Spec(A) gives by base change a resolution of Spec(Â) ([4], 1.7), we may apply part (a)

to Spec((B̂)H) to conclude that |H| kills ΦN .
(c) Let X → Z denote a desingularization of Z := Y/H . Let Z := Spec(A), and

let X := X ×Z Z → Z be a desingularization of Z. Let N be the intersection matrix
associated with X. By hypothesis, the regular domain OY ,P is endowed with an action of
H , and its ring of invariants OH

Y ,P is nothing but OZ,Q = A. Thus, the discussion in 2.5
can be applied to A, and we find using the sequence (2.5.1) that ΦN is killed by |H| if
Coker(θ) = (0). Let us now show that Coker(θ) = (0). By hypothesis, OK is Henselian.
Given any irreducible component C of multiplicity r in the special fiber Xk, there exists
a field M/K of degree r and a M-rational point P on V/K whose closure {P} in X
intersects Xk exactly in one smooth point of C, with ({P}, C)X = 1 = ({P},X red)X (use
for instance [12], 8.4). For each irreducible component Ei in the desingularization of Q

in X, we can restrict to X the corresponding divisor {Pi} on X . This shows that the
map θ : Pic(X) → E∗ is surjective, since E∗ is generated by the images of the classes

{P1}, . . . , {Pn}. �
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Example 2.7 Theorem 2.6, when applicable, shows in particular that the absolute value
| det(N)| of the determinant of the intersection matrix N of a resolution of a Z/pZ-quotient
singularity is a power of p.

In [31], Example 10, a (Z/2Z)-quotient singularity has resolution graph E8, thus pro-
ducing an example with det(N) = 1. It would be interesting to determine whether an
intersection matrix N with det(N) = 1 can possibly appear as the intersection matrix of
a Z/pZ-quotient singularity for infinitely many p.

In [31], Example 7, a (Z/3Z)-quotient singularity BH has resolution graph E6, which
has determinant p = 3. This singularity is rational, with fundamental cycle Z having
Z2 = −2. Since the singularity is rational, it follows that the multiplicity of BH is equal
to |Z2| ([3], Corollary 6), and we note that in this example, |Z2| < p.

In both examples from [31] quoted above, the ring of invariant BH is explicitly described,
but the details of the resolutions of the singularities are omitted. This author has not
independently verified the omitted computations.

Theorem 2.8. Let B be a complete regular noetherian local ring of dimension 2, endowed

with an action of a finite group H. Assume that the residue field k of B is algebraically

closed of characteristic p > 0. Let A := BH . Assume that there exists a desingularization

f : X → Spec(A). Assume also that the components of f−1(MA) are smooth and that

the divisor f−1(MA) has normal crossings. Then the graph associated with f−1(MA) is

a tree, and each irreducible component of f−1(MA) is a rational curve.

Proof. As we explained just before 2.6, our hypotheses imply that the group Pic(U) =
Cl(A) is killed by |H|. Therefore, since the kernel E of the natural map Pic(X) → Pic(U)
is free, we find that the torsion subgroup of Pic(X) is killed by |H|.

The ring A is normal and excellent, so that a desingularization f : X → Spec(A)
exists, and any such proper birational morphism f can be obtained as the blow-up of
an ideal I of A whose radical is MA ([19], C. on page 155). As in section IV.6 of [10],
we let n0 denote an integer such that Hq(X, InOX) = 0 for all n > n0 and q > 0. Let
Xn denote the base change of X → Spec(A) with Spec(A/In+1) → Spec(A). Then [10],
IV.6.1, shows that the canonical homomorphism Pic(Xn+1) → Pic(Xn) is bijective for all
n > n0. As in the proof of [10], IV.6.2, Grothendieck’s Existence Theorem shows that
Pic(X) = lim

←−
Pic(Xn), so that Pic(X) = Pic(Xn) if n > n0.

Let Xk denote the fiber of f above the closed point of Spec(A). The natural composition
Xred

k → Xk → Xn is then defined by a nilpotent ideal J . We claim that the natural map
Pic(Xn) → Pic(Xred

k ) is surjective with kernel a torsion group killed by a power of p.
Indeed, let N denote the nilradical of the structure sheaf of Xn. Then there exists a
filtration of the form (0) = N sJ ⊂ N s−1J ⊂ · · · ⊂ NJ ⊂ J . Each of these ideals defines
a closed subscheme of Xn, with natural morphisms

Xred
k = X(0) −→ X(1) −→ . . . −→ X(s−1) −→ X(s) = Xn.

Recall now Proposition 4.1 in [8]: Let R be a local noetherian ring, and let Y → Spec(R)
be a proper morphism. Let N be the nilradical of OY , and let J be an ideal of OY

such that NJ = (0). Let Y ′ denote the closed subscheme of Y defined by J . Then the
sequence of canonical homomorphisms

H1(Y,J ) −→ Pic(Y ) −→ Pic(Y ′) −→ H2(Y,J )

is exact. We can use this proposition for each morphism X(i−1) → X(i). Since the schemes
X(i) have dimension 1, the sheaf cohomology groups H2 must all vanish. Since p ∈ MA,
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we find that the group H1 occurring in each exact sequence is killed by a power of p, and
the claim follows.

Let Ci, i = 1, . . . , n, denote the irreducible components of Xk. The smooth commutative
group scheme Pic0

Xred
k /k

is an extension of the abelian variety
∏n

i=1 Pic0
Ci/k by a torus of

dimension equal to the first Betti number of the graph associated with Xk ([9], 9.2/8).
To prove our theorem, it suffices to show that Pic0

Xred
k /k

is trivial. Suppose that it is not

trivial. Then there exists a nontrivial torsion point L in Pic0
Xred

k /k
(k) of order ` coprime

to p|H|. Since Pic(Xn) → Pic(Xred
k ) is surjective and its kernel is a torsion group, L lifts

to a torsion point of order divisible by ` in Pic(Xn) = Pic(X), contradicting the fact that
|H| kills the torsion subgroup of Pic(X). �

Remark 2.9 It is asserted in the Math Review of [2] (MR0374136) that the exceptional
configuration of the resolution of a certain Z/2Z-singularity forms a cycle of rational
curves. Theorem 2.8 contradicts this assertion.

A variation on Theorem 2.8 is as follows.

Lemma 2.10. Let OK be a complete discrete valuation domain with algebraically closed

residue field k and field of fractions K. Let XK/K be a smooth proper geometrically

connected curve. Let L/K denote the Galois extension minimal with the property that

XL/L has semi-stable reduction. Let H := Gal(L/K). Let Y/OL denote the minimal

regular semi-stable model of XL/L. Let Z := Y/H.

(1) Let Norm(Z)/OL denote the normalization of Z ×OK
OL in the function field L(XL).

Then the natural morphism ϕ : Y → Norm(Z)/OL is an isomorphism.

(2) Let f : X → Z denote a desingularization of Z. Then any exceptional curve of f is

rational.

(3) Assume that Jac(XL) has good reduction over OL. Assume also that f is minimal

with the property that every irreducible component of Xk is smooth and Xk is a divisor

with normal crossings. Then the graph associated with the preimage in X of a singular

point of Z is a tree.

Proof. (1) The natural morphism ϕ : Y → Norm(Z)/OL is clearly an isomorphism on the
generic fibers. The normalization map Norm(Z) → Z×OK

OL is finite. This follows from
the fact that since OK is a complete discrete valuation domain, then Z is an excellent
scheme. It also follows from the fact that L/K is separable. We thus conclude that the
model Norm(Z)/OL is proper. The morphism ϕ is quasi-finite, since the quotient map
Y → Z is finite. We may therefore apply Zariski’s Main Theorem to obtain that ϕ is an
open immersion. Since the special fiber of the target of ϕ is connected and the special
fiber of the source is proper, we find that ϕ is in fact an isomorphism.

(2) Consider the natural OL-morphism Norm(X ) → Norm(Z) induced by the OK-
morphism f : X → Z. Since the morphism Norm(Z) → Z ×OK

OL → Z is finite, any
component of Norm(X ) above an exceptional component of f in X is contracted under
Norm(X ) → Norm(Z). Since Norm(Z) is regular and minimal by (1), any component
contracted by Norm(X ) → Norm(Z) is rational. Thus, all exceptional components of f
are also rational.

(3) The fact that Jac(XL) has good reduction over OL implies that the toric rank of
Jac(XK) over OK is zero. Under our hypotheses on X , the toric rank of Jac(XK) can be
computed as the first Betti number of the graph associated with Xk (see, e.g., [21], 1.4).
Thus, this graph is a tree. Since any subgraph of a tree is a tree, (3) follows. �
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3. Intersection matrices

We develop in this section a completely combinatorial study of intersection matrices
N , with a view towards an explicit determination of the invariants occurring in our the-
orems on quotient singularities. At the end of this section, starting in 3.17, we explicitly
describe, for each prime p, a family of star-shaped intersection matrices N satisfying the
combinatorial restrictions suggested by our theorems in the previous section. Many of
these matrices do indeed arise as intersection matrices associated with cyclic quotient
singularities (see 4.1, and [26], [27]).

Definition 3.1 An n × n intersection matrix N = (cij) is a symmetric negative definite
integer matrix with negative coefficients on the diagonal, and non-negative coefficients off
the diagonal. We associate a graph G = G(N) to N as follows. Pick n vertices v1, . . . , vn,
and for i 6= j link vi to vj in G by exactly cij edges. We will always assume, unless stated
otherwise, that G is connected. When this is the case, N is called irreducible.

Definition 3.2 Let N be an intersection matrix. Recall that there exist matrices P, Q ∈
GLn(Z) such that PNQ = diag(d1, . . . , dn) with d1 | d2 | . . . | dn. The diagonal matrix
PNQ is called the Smith Normal form of N . We define the Smith group ΦN of N to
be the group ΦN := Zn/N(Zn). Then Zn/N(Zn) is isomorphic to

∏n
i=1 Z/diZ. Clearly,

|ΦN | = det(N). We present in 3.14 a general formula for the size of ΦN when G(N) is a
tree.

Recall that if X, Y ∈ Zn, we write X > 0 (resp., X ≥ 0) if all coefficients of X are
positive (resp., if all coefficients are non-negative). We write X > Y if X − Y > 0, and
we write X ≥ Y if X − Y ≥ 0.

3.3 Let N be any symmetric integer matrix with negative integers on the diagonal, and
non-negative integers off the diagonal, and assume that its associated graph is connected.
In general, such a matrix need not be negative semi-definite. However, we claim that if

there exists a integer vector R > 0 such that NR ≤ 0, then either NR = 0 and N is

negative semi-definite, or NR 6= 0 and N is non-singular and negative definite.
Indeed, exercise 4.14 in [7], chapter 6, page 155, shows that −N is an M-matrix, and

exercise 4.15 implies that −N is positive semi-definite. Suppose now that NR 6= 0. Then
N is non-singular because otherwise −N does not satisfy condition (5) of Theorem 4.16
in chapter 6 of [7] (alternatively, use Theorem 2.7 (ii) of loc. cit.). Then Theorem 2.3
in [7], page 134, implies that all principal minors of −N are positive. Alternatively, use
exercise 2.6 on page 141.

When exhibiting below a symmetric integer matrix N with negative integers on the
diagonal, and non-negative integers off the diagonal, we will always find it helpful to also
exhibit an integer vector R > 0 with NR ≤ 0 and NR 6= 0, providing in this way a proof
that N is negative definite.

Definition 3.4 Attached to an intersection matrix N is a unique vector Z > 0 with
positive integer coefficients, and such that the coefficients of NZ are negative or zero, and
Z is minimal for this property. This vector is called the fundamental cycle of N ([3], p.
132).

The vector Z is in general quite a difficult invariant to understand. Therefore, for each
i = 1, . . . , n, we define below a vector Ri associated to N which is an upper bound for
the fundamental cycle Z of N (i.e., Z ≤ Ri), and is quite easy to compute in terms of N .
We found such substitutes for Z quite useful, since for instance, as we shall see in 3.14,
given N and one such vector Ri, the order of ΦN can be given explicitly. In addition,
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such vectors Ri naturally arise when considering the resolution of singularities of a normal
model of a curve.

Let N∗ denote the adjoint of N . By definition, N∗ is the matrix whose (i, j)-term is
the (i, j)-cofactor of the transpose of N , so that NN∗ = det(N)Idn = N∗N . (When
N = (a), we set N∗ = (1).) Let e1, . . . , en denote the standard basis of Zn. A symmetric
irreducible non-singular positive definite matrix with non-positive off-diagonal coefficients
has an adjoint with only positive coefficients ([7], Chapter 6, 2.5-2.7). As the intersection
matrix N is non-singular, −N has the above properties, and we find that (−1)n+1N∗ has
only non-negative coefficients. It follows that if we let (−1)n+1Ri denote the i-th column
vector of N∗ divided by the greatest common divisor of its coefficients, then Ri has positive
coefficients, and NRi = −piei for some positive integer pi. Note that the matrix N can
be completely recovered from the graph G(N) and the equality NRi = −piei. Let us also
note the following easy fact.

Lemma 3.5. Let τi denote the class of the vector ei in the quotient group ΦN := Zn/N(Zn).
Then the order of τi is pi.

Proof. Suppose that the order of τi is a. By construction, NRi = −piei. Thus a | pi.
By hypothesis, there exists a vector S ∈ Zn such that NS = aei. Write ab = pi, and
consider the equation N(bS+Ri) = 0. Since N is invertible, bS = −Ri. Since the greatest
common denominators of the coefficients of Ri is 1, we find that b = 1. �

3.6 By minimality of the fundamental cycle Z, the vector S := infi(Ri) is also an upper
bound for Z. However, even though the vector S is canonically associated with N , it is
not in general the fundamental cycle of N .

The knowledge of a vector Ri provides a bound on the self-intersection |Z2|. Indeed,
since Z ≤ Ri, write Ri = Z + X with X ≥ 0. Then R2

i = Z2 + 2Z · X + X2. Since N is
negative definite, X2 ≤ 0, and since Z is the fundamental cycle, Z · X ≤ 0. Hence,

|Z2| ≤ |R2
i |, for all i = 1, . . . , n.

We also note here a bound for |Z2| of a different type. Let 1 ≤ zmin denote the smallest
coefficient of the vector Z. Let e denote the exponent of the group ΦN . Then

(3.6.1) |Z2| ≤ ezmin.

Indeed, write tZ = (z1, . . . , zn), and assume that zmin = zi. Then |Z2| ≤ |Z · Ri| =
pizi ≤ ezmin (3.5). Our next lemma is immediate from this inequality. We also note that
|Z2| ≤ pizi implies that if |ΦN | = 1, then Z = Rj for some j, and |Z2| = zmin.

Lemma 3.7. Assume that ΦN is killed by an integer e, and that the fundamental cycle

Z of N has a coefficient equal to 1. Then |Z2| ≤ e.

Remark 3.8 An intersection matrix N of type E8 has trivial Smith group ΦN and a
fundamental cycle Z with |Z2| = zmin = 2. Such an intersection matrix is shown in
[31], Example 10, to occur as the intersection matrix associated with a Z/2Z-quotient
singularity.

Remark 3.9 Let X → Z be a resolution of a singularity. Let X ′ → X be a proper
birational morphism of regular schemes. Then the fundamental cycle Z ′ associated with
the exceptional divisor of X ′ → Z, and its intersection matrix N ′, can be easily expressed
in terms of the fundamental cycle Z associated with the exceptional divisor of X → Z
and its intersection matrix N (see, e.g., [36], 2.9). It is easy to check that Z2 = (Z ′)2,
that zmin is also the minimum of the coefficients of Z ′, and that the groups ΦN and ΦN ′

are isomorphic.
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Example 3.10 Our next example shows that the bound in (3.6.1) is sharp when e > 1,
and that the hypothesis in 3.7 that the fundamental cycle Z of N has a coefficient equal
to 1 cannot be removed. We give below a matrix N with its fundamental cycle Z, and
an explicit computation of NZ. In our example, e = 2, and ΦN is of order 16 (use 3.14).
One checks by a direct computation that ΦN is isomorphic to (Z/2Z)4, that zmin = 2,
and |Z2| = ezmin = 4. It turns out that Z = R1 in our example.





−4 1 0 0 0 0 0 0
1 −2 1 1 1 0 0 0
0 1 −2 0 0 0 0 0
0 1 0 −2 0 0 0 0
0 1 0 0 −3 1 1 1
0 0 0 0 1 −2 0 0
0 0 0 0 1 0 −2 0
0 0 0 0 1 0 0 −2









2
6
3
3
4
2
2
2





=





−2
0
0
0
0
0
0
0





.

Notation 3.11 Let N be an intersection matrix. We found it useful to represent the
data (N, Ri) using the graph G(N) as follows. The graph G(N) has vertices represented
by bullets •. A positive number next to a vertex represent the coefficient of this vertex in
Ri, and a negative number next to a vertex is the self-intersection of the vertex in N . We
represent the relation NRi = −piei by attaching a ‘virtual’ vertex to Ci, represented by
an open circle, and we adorn this virtual vertex by pi. In many situations, it is possible
to think of this virtual vertex as the vertex of a larger graph to which G(N) is attached.
Note that G(N), Ri, and NRi, suffice to recover N . With this notation, the matrix
(N, R1 = Z) in above example is represented as follows:

2 2 6

3

3

4 2

2

2

3.12 For later use in describing intersection matrices, we record here the following stan-
dard construction. Given an ordered pair of positive integers r and s with gcd(r, s) = 1,
we construct an associated intersection matrix N = N(r, s) with vector R1 = R1(r, s) and
NR1 = −re1.

Suppose first that r > s. We can then find integers b1, . . . , bm > 1 and s1 = s > s2 >
· · · > sm = 1 such that r = b1s− s2, s1 = b2s2 − s3, and so on, until we get sm−1 = bmsm.
These equations are best written in matrix form:





−b1 1 . . . 0

1 −b2
. . .

. . .
. . . 1

0 . . . 1 −bm









s1
...
...

sm




=





−r
0
...
0



 .

We let N denote the above square matrix, and let R1 be the first column matrix above.
It is well-known that det(N) = ±r (see, e.g, [24], 2.6).

The fundamental cycle Z of N is simply Z = (1, . . . , 1). It is thus easy to find many
examples of such matrices N with (up to sign) prime determinant, say p, and |Z2| ≤ p.
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When r < s, we first write r = s− (s− r), and then proceed as above with the ordered
pair s and s − r. We get





−1 1 . . . 0

1 −c1
. . .

. . .
. . . 1

0 . . . 1 −cm′









s
s − r

...
1



 =





−r
0
...
0



 .

We let again N denote the above square matrix, and R1 the first column matrix. We
leave it to the reader to check that det(N) = ±r (use [24], 2.6).

For completeness, we note the following lemma.

Lemma 3.13. Let N be an intersection matrix whose associated graph G(N) does not

have a node. Then ΦN is cyclic of order | det(N)|.
Proof. By hypothesis, the graph G(N) is a chain of, say, m vertices. Then there exists
a permutation matrix T such that T−1NT is equal to a matrix of the form introduced
in 3.12. Looking at the lower-left corner, we find an (m − 1) × (m − 1)-minor having
determinant 1. Thus, the Smith normal form of N must be diag(1, . . . , 1, det(N)). Hence,
ΦN is cyclic. �

Let N be an intersection matrix such that G(N) is a tree. When the additional data
of one of the vectors Ri defined in 3.4 is given, we show below how to compute the order
of ΦN . The group structure of ΦN , on the other hand, is much more difficult to predict.

Given a graph G and a vertex vi, let dvi
(G), or simply di(G), denote the degree of vi in

G, that is, the number of edges of G attached to vi. We call a vertex vi with di(G) = 1 a
terminal vertex. Note that a tree with at least two vertices always has a terminal vertex
and, thus, in the explicit formula for | det(N)| given below, the right hand side is a priori
only a rational number.

Theorem 3.14. Let N be an n × n-intersection matrix whose graph G = G(N) is a

connected tree with vertices C1, . . . , Cn. Assume given a vector Ri defined in 3.4 with

NRi = −piei. Write tRi := (r1, . . . , rn). Then

| det(N)| = piri

n∏

j=1

r
dj(G(N))−2
j ,

and pi gcd(pi, ri) divides | det(N)|.
Proof. To prove the theorem, we first construct a larger integer matrix M = (Mij) which
contains the matrix N as a principal minor (i.e., the elements on the diagonal of N are
also on the diagonal of M when N is viewed as a minor of M). The most favorable case
is when p1 | r1.

When p1 | r1, let M be the symmetric (n+1)× (n+1)-matrix, with N in its lower right
corner, and with the coefficients of the first row of M being 0, except for M11 := −ri/pi

and M1,i+1 := 1. It follows that if we set tR := (pi,
tRi), then MR = 0. The pair (−M, R)

defines an arithmetical graph in the sense of [20], p. 481. The graph G(M) associated with
M has vertices D1, . . . , Dn+1, with Dk linked to D` by Mk` edges if k 6= `. It turns out that
the graph G(M) contains the graph G(N), with vertices C1 = D2, . . . , Cn = Dn+1, and to
obtain G(M) from G(N), one additional vertex, D1, is attached by exactly one edge to
Ci. In particular, G(M) is a tree. Let ΦM denote the torsion subgroup of Zn+1/Im(M).
If M11 denote the minor of M obtain by removing the first row and first column from
M , then | det(M11)| = |ΦM |p2

i ([20], 1.3). Since G(M) is a tree, the order of ΦM is given
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explicitly by a formula involving the coefficients of R and the degrees of the vertices in
G(M) ([20], 2.5). Using this formula and the fact that M11 = N , we find that

| det(N)| =

(

p−1
i

n∏

j=1

r
dCj

(G(M))−2

j

)

· p2
i .

Since dCj
(G(M)) = dCj

(G(N)) for j 6= 0 and j 6= i, and since dCi
(G(M))−dCi

(G(N)) = 1,
the theorem follows when p1 | r1.

The case where pi - ri requires a slightly more complicated construction. In order to be
able to later refer to it when needed, we number it.

3.15 Using the data (N, Ri), we describe below how to embed the graph G(N) into the
graph of an arithmetical graph (G(M), M, R), generalizing what we did above when pi | ri.

We proceed as follows when pi - ri. We attach to G(N) at Ci a chain of vertices
D1, . . . , Dm to obtain the graph G(M): D1 is linked with one edge to both Ci and D2,
D2 is linked by one edge to both D1 and D3, and so on. The terminal vertex on the
chain is Dm. The matrix M restricted to the vertices of G(N) is the matrix N . The
matrix M restricted to the chain D1, . . . , Dm is up to permutation the matrix N(r, s)
constructed as in 3.12 with the ordered pair r := ri/ gcd(ri, pi) and s := pi/ gcd(ri, pi).
(This latter requirement specifies the integer m and all the elements on the diagonal of
M which corresponds to the vertices D1, . . . , Dm.)

We define the vector R as follows: R is equal to Ri when restricted to G(N), and when
restricted to the chain D1, . . . , Dm, it is equal to gcd(ri, pi) times the associated vector
R1(r, s) constructed as in 3.12. One checks that by construction, MR = 0. The matrix
M , with MR = 0 and its associated graph G(M), defines an arithmetical tree. The minor
of M corresponding to the chain D1, . . . , Dm has determinant ±ri/ gcd(pi, ri).

We can now complete the proof of Theorem 3.14 when pi - ri. Complete the tree G(N)
into an arithmetical tree (G(M), M, R) as above. Consider the principal minor MD1 of
M , obtained from M by removing the row and the column corresponding to the vertex
D1 (whose coefficient in R is pi). If pi - ri, the matrix MD1 consists of two blocks, and
the determinant of both blocks can be computed explicitly to give

| det(MD1)| = | det(N)| · pi/ gcd(pi, ri).

We now compute det(MD1) in a different way using the fact that G(M) is an arithmetical
tree, to obtain | det(MD1)| = |ΦM |p2

i , with an explicit formula for |ΦM | given by

|ΦM | = gcd(ri, pi)
−1

n∏

j=1

r
dCj

(G(M))−2

j

([20], 1.3 and 2.5). Since now | det(N)| = |ΦM |pi gcd(pi, ri), Theorem 3.14 follows. �

Example 3.16 An An-singularity is resolved by a chain of n (−2)-curves. Call Nn its
matrix (which up to permutation is of the form given in 3.20). Lemma 3.13 shows that
the Smith group of Nn is cyclic. Its order is n+1, and can be determined using Theorem
3.14 with the relation (n, n − 1, . . . , 2, 1)Nn = (−(n + 1), 0, . . . , 0).

We also have (1, . . . , 1)Nn = (−1, 0, . . . , 0,−1), so that Z = (1, . . . , 1) and |Z2| = 2.
When n+1 = p is prime, it would be of interest to determine whether the matrix Nn can
arise as the intersection matrix of a Z/pZ-quotient singularity. This question has recently
been addressed in [14].
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Example 3.17 Recall that a tree with exactly one node is called star-shaped. For each
prime p, and for any integer a ≥ 2, we exhibit below a class of intersection matrices N
whose associated graph G(N) is a star-shaped tree with exactly one node C, and a + 1
terminal chains attached to it. A criterion for the Smith group ΦN to be killed by p is
given in 3.21, and a criterion for |Z2| ≤ p is found in 3.22. The simplest matrices in the
family are represented in 3.18.

Fix α ≥ 0. Fix a ≥ 2, and consider positive integers r1, . . . , ra < p, such that p divides
r1 + · · · + ra. The square matrix N (of some size n) that we are going to construct will
have a graph G, and an associated vector R with NR = −pe for some vector e belonging
to the standard basis of Zn.

Let D1, . . . , Da, and C1, denote the vertices of G connected to C. We set the coefficient
of R corresponding to C to be p, the coefficient corresponding to Di to be ri, and the
coefficient of C1 to be p. The self-intersection of C is (C · C) := −(r1 + · · · + ra + p)/p.

The matrix N ‘restricted’ to the chain started by Di is taken to be the matrix con-
structed in 3.12 using the ordered pair p and ri. The vector R ‘restricted’ to the chain
started by Di is taken to be the corresponding vector described in 3.12. In particular,
the coefficient of R corresponding to the terminal vertex of the chain is 1. The terminal
chain started by C1 consists of α − 1 vertices, all of self-intersection −2. The vector R
restricted to this terminal chain has all its coefficients equal to p.

It is easy to check that the vector NR has all its coefficients equal to 0, except for
the coefficient corresponding to the last vertex on the chain started by C1, where the
coefficient of NR is −p.

Example 3.18 Let us denote by N(p, α, r1) the simplest intersection matrix in the class
of matrices introduced in 3.17: we take a = 2, and r2 := p−r1, so that the self-intersection
of the node C is −2. We represent this intersection matrix and its associated vector R as
follows, using the conventions introduced in 3.11:

p p p p p

-2 -2 -2 -2

p − r1

r1

1

1

The integer α is the number of vertices in the graph which have self-intersection −2 and
multiplicity p. When p = 2, then r1 must be 1, and the intersection matrix N(2, α, 1)
corresponds to the Dynkin diagram Dm with m = α + 2 being the number of vertices of
the graph.

3.19 Consider the data (N, R) described in 3.17. Then we can use Theorem 3.14 to find
that |ΦN | = pa.

3.20 Let us explicitly note here that the matrix N restricted to the chain started by C1

is the square matrix below, with the following relation:




−2 1 0 0

1 −2
. . .

. . .

0
. . .

. . . 1 0
. . . 1 −2 1

0 0 1 −2









α − 1
α − 2

...
2
1




=





−α
0
...
0
0




.
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Lemma 3.21. Let N denote the intersection matrix introduced in 3.17. Then ΦN is killed

by p if and only if p divides α.

Proof. We proceed to perform a row and column reduction of the matrix N . Each chain
can be dealt with separately, using the row and column operations in 2.5 of [24]. We leave
it to the reader to check that the matrix N is row and column equivalent to a matrix
consisting of two blocks, the Identity matrix of the appropriate size, and the matrix

A :=





(C · C) r1 . . . ra α − 1
1 −p 0 . . . 0
... 0

. . .
. . .

...

1
...

. . . −p 0
1 0 . . . 0 −α




.

Using its last line, the matrix A can be further reduced to the matrix

A′ :=





0 r1 . . . ra x
0 −p 0 . . . α
... 0

. . . 0
...

0
... −p α

1 0 . . . 0 0





(where x is a entry that we need not make explicit). Let A′′ denote the top right principal
minor of A′, of size (a + 1 × a + 1). Since pa = |ΦN |, the group ΦN is killed by p if and
only if p divides the greatest common divisor of the determinants of the (2× 2)-minors of
A′′. Clearly, if p kills ΦN , then p divides the determinant

∣∣∣∣
r1 x
0 α

∣∣∣∣

and, hence, p | α since p > r1. Suppose now that p | α. Then, after having reduced A′′

modulo p, it is easy to show that p divides the determinant of any (2 × 2)-minor of A′′.
�

Lemma 3.22. Assume that α ≥ p. Then the fundamental cycle Z of the intersection

matrix N introduced in 3.17 is such that |Z2| ≤ p.

Proof. Consider the vector R > 0 with NR ≤ 0 associated with N in 3.17. Then R ≥ Z,
and |R2| ≥ |Z2| (3.6), but this inequality is not strong enough to prove our lemma in
general since |R2| = p2. However, since R has a coefficient equal to 1 and R ≥ Z, we find
that zmin = 1, so that when ΦN is killed by p, the lemma follows from 3.7.

When α ≥ p, let us modify the vector R as follows. Denote by E1, E2, . . . , Eα−1 the
consecutive vertices on the chain of G(N) started by C1, so that E1 is the terminal vertex.
In particular, Eα−1 = C1, and for convenience, we will let Eα := C, where C is the node
of G(N). Define S ∈ Zn

>0 to be a vector equal to R when restricted to the graph of G(N)
minus E1, . . . , Ep−1, and set the coefficient of S corresponding to Ei to be i. Then S > 0,
and it is easy to check that NS = −e, where e is the standard basis vector corresponding
to the vertex Ep. Since the coefficient of S corresponding to Ep is equal to p, we find that
|S2| = p, so that |Z2| ≤ p, as desired. �

For future reference, we record here:

Corollary 3.23. Let N = N(p, α, r1) be the intersection matrix introduced in 3.18, with

fundamental cycle Z. When p divides α, then ΦN ' (Z/pZ)2 and |Z2| ≤ p.
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Proof. Follows from 3.19, 3.21, and 3.22. �

Intersection matrices of type N(2, 2β, 1) are shown in 4.1 to arise as intersection ma-
trices of wild Z/2Z-quotient singularities. A larger subclass of the matrices introduced in
3.17 will be shown to arise as intersection matrices of Z/pZ-quotient singularities for all
odd primes p in [26] and [27]. These matrices also arise in Theorem 2.2 of [25].

4. Examples with p = 2

It is known that a tame Z/2Z-quotient singularity has a resolution with an irreducible
exceptional divisor. In contrast, as the following theorem shows, there is no bound on the
number of irreducible components in the exceptional divisor of the minimal resolutions of
wild Z/2Z-quotient singularities.

Theorem 4.1. Let β ≥ 1 be any integer. Then there exist an excellent regular local ring

B of mixed characteristic (0, 2), and when β is odd, an excellent regular local ring B′ of
equicharacteristic 2, both endowed with an action of Z/2Z, such that the resolution of

the associated wild quotient singularities on Spec BH and Spec(B′)H have intersection

matrices equal up to permutation to the matrix N(2, 2β, 1) described in 3.18.

This theorem will follow from results on the reduction of certain elliptic curves which
may be of independent interest. The proof of Theorem 4.1 is postponed to 4.8.

Recall that an elliptic curve C/k over an algebraically closed field of characteristic p > 0
is called ordinary if C(k) has exactly p points of order dividing p. Otherwise, it is called
supersingular and C(k) does not have any point of order exactly p. When p = 2, only one
isomorphism class of elliptic curves is supersingular, the class with j-invariant j = 0.

Let OK be a Henselian discrete valuation domain, with field of fractions K, uniformizer
πK , and algebraically closed residue field k. We let p := char(k). Let E/K be an elliptic
curve having potentially good reduction. By definition, E/K is such that there exists
a finite Galois extension L/K such that EL/L has a smooth model Y/OL. The generic
fiber of Y is isomorphic to the curve EL/L. We denote by Yk the special fiber, which by
assumption is an elliptic curve. When Yk is an ordinary elliptic curve, we say that E/K
has potentially good ordinary reduction.

Assume L/K Galois, and let H := Gal(L/K). Attached to the extension L/K is a
sequence of (not necessarily distinct) subgroups of H , the higher ramification groups H =
H0 . H1 . . . . . The valuation of the different of the extension OL/OK is expressed using
Hilbert’s formula:

∑∞
i=0(|Hi| − 1) (see, e.g., [32], IV.2, Proposition 4). For convenience,

we define sL/K by the formula

sL/K + 1 =
∞∑

i=0

(|Hi| − 1).

Then sL/K > 0 if and only if L/K is wild.
Recall that the special fibers of minimal regular models of elliptic curves are labeled

with a Kodaira symbol. The symbol I∗n refers to a special fiber consisting in a configuration
of n + 5 rational curves, 4 of them of multiplicity 1, and n + 1 of multiplicity 2, with dual
graph given by

1

1

2 2 2 2
1

1
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Theorem 4.2. Let OK be a Henselian discrete valuation domain with algebraically closed

residue field k of characteristic 2. Let E/K be an elliptic curve with additive reduction

and potentially good ordinary reduction. Then there exists a quadratic extension L/K
such that EL/L has a smooth model Y/OL, and E/K has reduction of type I∗4sL/K

.

Proof. We first treat the equicharacteristic case. Any ordinary elliptic curve can be given
over K by an equation y2+xy = x3+a2x

2+a6, with a6 6= 0 (the non-trivial 2-torsion point
is (0,

√
a6)) (see, e.g., [33], App. A, 1.1). This latter equation has ∆ = a6, and j = 1/a6. It

follows that this curve has potentially good reduction if and only if a6 /∈ πKOK . Since the
curve with j = 0 is supersingular when p = 2, we find that the reduction is potentially good
and ordinary if and only if a6 ∈ O∗K . The reduction is good when a2 ∈ OK (reduce mod
πK the above equation). In general, this curve achieves good reduction over L := K(z)
with z2 + z + a2 = 0 (to see this, make the change of variables y = Y + zx). Since we
assume that E/K has additive reduction, the extension L/K must be non-trivial and
ramified.

Let v denote the discrete valuation of K, and vL the valuation of L. We claim that
it is possible to change coordinates such that the new coefficient a′2 has odd negative
valuation. Indeed, suppose that a2 = u/π2m

K with v(u) = 0. Since k is algebraically
closed, it is possible to find b ∈ OK such that πK | (b2 + u). Then the change of variables
y = Y + b

πm
K

x produces the new equation

Y 2 + xY = x3 +
b2 + πm

Kb + u

π2m
K

x2 + a6,

with v(
b2+πm

Kb+u

π2m
K

) > −2m. Since the extension L/K must be ramified, repeating this

process finitely many times must lead to a new equation where the new coefficient a′2 has
odd negative valuation. It is easy to check that L is the splitting field of both z2 + z + a2

and t2 + t + a′2.
Assume then that a2 = uπ−r ∈ K∗ with negative odd valuation −r and u a unit. Our

elliptic curve E/K is given by the equation y2 + xy = x3 + a2x
2 + a6. Set s such that

r = 2s − 1. An integral equation for E/K with v(∆) = 12s is given by

y2 + πsxy = x3 + π2sDx2 + π6sa6.

It follows from Tate’s Algorithm ([34], IV 9.4, p. 367) that this equation for E/K is already
minimal. More precisely, our equation satisfies the conditions of Step 7 in loc. cit. We
leave it to the reader to show that the reduction is of type I∗4r. An easy computation shows
that the higher ramification groups satisfy H0 = · · · = Hr = Z/2Z, and Hr+1 = {0}, so
that r = sL/K , as desired. This complete the proof of the theorem in the equicharacteristic
2 case.

Assume now that K is of mixed characteristic 2. An elliptic curve has potentially good
ordinary reduction if and only if its j-invariant is a unit in OK . Let j0 ∈ O∗K , and let
Ej0/K be the elliptic curve given by the equation

y2 + xy = x3 − 36

j0 − 1728
x − 1

j0 − 1728
.

This is an elliptic curve with j(Ej0) = j0 and ∆ = j2
0/(j0 − 1728)3. Since v(j0) = 0, we

find that this curve has good (ordinary) reduction over OK .
Since j0 6= 0 and j0 6= 1728 by hypothesis, an elliptic curve with j-invariant j0 has

only two automorphisms. Therefore, we find that two curves with same j-invariant j0 are
quadratic twists of each other.
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Since we assume that OK has algebraically closed residue field, we find that any non-
trivial extension L/K is ramified. It follows that an elliptic curve E/K with j-invariant j0

and with additive reduction and potentially good ordinary reduction is a quadratic twist
of Ej0/K by a ramified quadratic extension L/K. Pick D ∈ OK such that L := K(

√
D)

has degree 2 over K, and consider the quadratic twist ED/K given by the equation

(4.2.1) y2 = x3 +
D

4
x2 − D2Ax − D3B,

with A = 36/(j0 − 1728) and B = 1/(j0 − 1728). Without loss of generality, we may
assume that v(D) = 0 or 1. Consider first the case where v(D) = 1. The equation (4.2.1)
is not integral, and an obvious change of variables transforms it in

y2 = x3 + Dx2 − 24D2Ax − 26D3B.

We conclude from Tate’s algorithm that the reduction is of type I∗2n with n = 4v(2).

The valuation of the different of the extension L/K is computed as follows:
√

D is a

uniformizing parameter, and σ(
√

D) −
√

D = −2
√

D has valuation vL(2) + 1. It follows
that

∑∞
i=0(|Hi| − 1) = vL(2) + 1, so that the reduction is I∗4vL(2), as desired.

When v(D) = 0, consider an Eisenstein equation for L/K, given by the equation
z2 + az + b, with v(a) ≥ 1 and v(b) = 1. It follows that a2 − 4b = Dc2 for some element
with v(c) ≥ 0. More precisely, we must have v(a) = v(c) ≤ v(2). The valuation of the
different of the extension L/K is computed as follows: a root β of z2 + az + b = 0 is a
uniformizing parameter, and σ(β)−β = −a−2β. Thus, vL(σ(β)−β) = vL(a). It follows
that

∑∞
i=0(|Hi| − 1) = vL(a). Our goal is to show that the reduction is then I∗4(vL(a)−1).

Note that D
4
− a2

4c2
= − b

c2
. Make the change of variables y = Y + a

2c
x in (4.2.1) to obtain

an equation of the form

y2 +
a

c
xy = x3 − b

c2
x2 − D2Ax − D3B.

This equation is not integral, and an obvious change of variables transforms it into

y2 + axy = x3 − bx2 − c4D2Ax − c6D3B.

We conclude from Tate’s algorithm that the reduction is of type I∗2n with n = 4v(a) − 2,
as desired. �

Remark 4.3 The proof of Theorem 4.2 in the equicharacteristic case exhibits explicitly
elliptic curves satisfying all the conditions in the theorem. Indeed, choose an odd integer
r > 0. Then there exists a quadratic extension L/K such that sL/K = r: take L to be the
splitting field of z2 + z +π−r

K . There also exists an elliptic curve E/K with good ordinary
reduction over L, and reduction over K of type I∗4r: take E/K given by the Weierstrass
equation y2 + xy = x3 + π−r

K x2 + 1.

Remark 4.4 The proof of Theorem 4.2 in the mixed characteristic case exhibits explicitly
elliptic curves satisfying all the conditions in the theorem. Indeed, when the field K of
mixed characteristic 2 is fixed, the proof shows that an elliptic curve E/K with additive
reduction and potentially good ordinary reduction has reduction over K of type I∗4m with
0 < m ≤ 2v(2).

Choose an even integer r > 0 and a field K of mixed characteristic 2 with v(2) = r/2.
Then there exist a quadratic extension L/K such that sL/K = r: take L to be the splitting
field of z2 − πK . There also exists an elliptic curve E/K with good ordinary reduction
over L, and reduction over K of type I∗4r: take E/K given by the Weierstrass equation
(4.2.1) with j0 = 1 and D = πK .
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Choose an odd integer r > 0 and a field K of mixed characteristic 2 with v(2) = (r+1)/2

(so that 2 = uπ
(r+1)/2
K ). Then there exist a quadratic extension L/K such that sL/K = r:

take L to be the splitting field of z2 + π
(r+1)/2
K z + πK . There also exists an elliptic curve

E/K with good ordinary reduction over L, and reduction over K of type I∗4r: take E/K
given by the Weierstrass equation (4.2.1) with j0 = 1 and D = 1 − πKu2.

Remark 4.5 Theorem 4.2 complements Theorem 2.8 in [25], where X/K is assumed to
have potentially multiplicative reduction.

Corollary 4.6. Let OK be a Henselian discrete valuation domain with algebraically closed

residue field k of characteristic 2. Let E/K and E ′/K be two isogenous elliptic curves

with potentially good ordinary reduction. Then these curves have same reduction type.

Over Qunr
2 , this reduction type is either I∗4 or I∗8 .

Proof. Since the curves are isogenous, the quadratic extension L/K such that EL/L has
good reduction also has the property that E ′L/L has good reduction. Theorem 4.2 shows
that the reduction of both curves is then of type I∗4sL/K

. As noted in 4.4, over the field

Qunr
2 with v(2) = 1, the reduction is of type I∗4m with 0 < m ≤ 2v(2). �

Let OK be a Henselian discrete valuation domain, with field of fractions K and al-
gebraically closed residue field k of characteristic 2. Let E/K be an elliptic curve with
additive reduction, and potentially good reduction. Assume that there exists a quadratic
extension L/K such that EL/L has a smooth model Y/OL. Theorem 4.2 shows that such
L/K always exists when the reduction is potentially good ordinary.

The Galois group H := Gal(L/K) acts on Y and on Yk. Let P ∈ Yk be a closed point of
Y fixed by the action of H . The associated local ring OY ,P is then endowed with an action
of H , and it is natural to wonder whether the desingularization of Spec(OY ,P )H can be
described explicitly. While this seems to be a difficult problem when Yk is supersingular,
we do so below in the case where Yk is ordinary.

Corollary 4.7. Let OK be a Henselian discrete valuation domain with algebraically closed

residue field k of characteristic 2. Let E/K be an elliptic curve with additive reduc-

tion, and potentially good ordinary reduction. Then the intersection matrix associated

with the minimal resolution of Spec(OY ,P )H is up to permutation equal to the matrix

N(2, 2sL/K , 1).

Proof. Let L/K denote the quadratic extension such that EL/L has a smooth model
Y/OL. Denote by Z/OK the (normal) quotient Y/H . Let σ denote the automorphism
of Yk/k induced by the action of a generator of H on Y . Under our hypothesis, σ is
the standard involution of the elliptic curve Yk, and it has exactly two fixed points P1

and P2. The scheme Z is singular exactly at the images of these fixed points ([26], 5.2),
which we denote by Q1 and Q2. We know that the minimal regular model of E/K is of
the form I∗4sL/K

. In particular, it contains four components of multiplicity 1. Consider a

minimal resolution X1 → Z of Q1, and a minimal resolution X2 → X1 of the preimage
of Q2 in X1. Let X2 → X denote the contraction to the minimal regular model X of
E/K. We claim that both resolutions X1 → Z and X2 → X1 have exceptional divisors
which contain irreducible curves of multiplicity 1 in the special fiber (X1)k and (X2)k,
respectively. Indeed, if for instance X1 contains no curves of multiplicity 1 in (X1)k,
then by inspection of all possible Kodaira types, we would find that all curves in the
resolution of Q1 would get contracted under X2 → X . But by construction, the only
curve on (X2)k which possibly can be of self-intersection −1 is the irreducible component
corresponding to Zk. This component has multiplicity 2 ([26], 5.1). Such a curve can
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only be of self-intersection −1 if it intersects normally two components of multiplicity 1.
This is a contradiction as we are assuming that no curves of multiplicity 1 are found in
the minimal desingularization of Q1.

Without loss of generality, we can assume that the origin of the elliptic curve E/K re-
duces to the point Q1 in Z. Our discussion above implies that there exists a component of
multiplicity 1 in the resolution of Q2, and since the field K is Henselian with algebraically
closed residue field, we find that there exists P ∈ E(K) reducing in Zk to Q2. Consider
the translation τP by P on E/K. This translation extends to an automorphism τ of the
quotient Z. Thus, the singularities Q1 and Q2 are isomorphic, and since the minimal
model of E/K has type I∗4sL/K

, we find that each singularity is of type N(2, 2sL/K , 1). �

4.8 Proof of Theorem 4.1. Theorem 4.1 follows immediately from 4.3, 4.4, and 4.7. �

Remark 4.9 The class of intersection matrices which occur in the resolution of a wild
Z/2Z-quotient singularity is far from being understood. In particular, one may wonder
whether there is any restriction on the number of nodes in a minimal resolution graph
G(N). We conclude this section with a remark on how one could construct Z/2Z-quotient
singularities such that the graph associated with a minimal desingularization of the sin-
gularity has more than one node.

Choose a discrete valuation field K and an elliptic curve E/K such that there exists a
quadratic extension L/K such that EL/L has good supersingular reduction. Assume that
the reduction of E/K is of type I∗n for some n > 0, so that the graph I∗n has two nodes.
Let Y/OL denote the smooth model of EL/L. Since [L : K] = 2, H := Z/2Z acts on Yk.
The automorphism group of Yk injects into SL2(F3), and so contains a unique element of
order 2, the canonical involution of Yk/k. Since Yk is supersingular, this involution has a
single fixed point, so the quotient Z := Y/H has a single singular point. Let X → Z be a
minimal resolution of this singularity. Let X → X0 denote the contraction to the minimal
regular model of E/K. Since the special fiber of X0 has graph I∗n with two nodes, the
graph of the exceptional divisor in X must have at least two nodes.

Finding explicit equations for E/K with [L : K] = 2, potential supersingular reduction,
and reduction over K of type I∗n for some n > 0, is not completely obvious. One such
equation is given in Example 2 of [16], p. 179, over the field Q(

√
26).
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