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Let K be an algebraically closed field. Let f(x, y)e K[x, y] be an
irreducible polynomial of degree d. For each ae K, write the factorization
of f(x, y)+ain K[x, y] as

flx, I_] (fo. i(x, ¥))e.

When K has characteristic zero, Y. Stein [Ste] proved the following
inequality:

2, <d—1.

Using standard facts about algebraic surfaces, we are able to prove that a
sharper formula holds in any characteristic, namely,

¥ na\mm {Zdeg(f,,, }—lsd—l.

ae K

We are also going to consider a slightly more general problem. Let
a(xg, X1, X,) and P(x,, x;, x,) be two homogeneous polynomials in
K[ x,, x,, x,] of degree d. These polynomials define, in the projective plane
P2, two closed curves denoted respectively by C, and C_ . We assume that
ged(a, B) =1, so that C, and C, intersect only in finitely many points. For
ae K, let C,c P? denote the curve

C.,= {(xo, xl,xz)eP2|a(x0,x,,xz)——aﬂ(xo,xl,x2)=0}.

Let n,+ 1 denote the number of irreducible components of C,; we are
interested in bounding >, #, in terms of d.
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66 DINO LORENZINI

The meromorphic function «/f defines a map:
uP\{ConC,}—P!
(XOa X1 XZ) — (a(xo, X1, x2)’ ﬁ(x09 Xy, x2))'

We identify the elements of P'(K) with KU {0} in such a way that
(a, 1)e P’ corresponds to ae K and (1, 0) e P! corresponds to oo. With this
convention, the curve C,, ae P!, is the closure of m ~!(a) in P2 There exists
(see the Theorem below for more details) a birational map p: X — P2,
obtained by a finite sequence of blow-ups of points, and a map #: X — P,
such that the following diagram is commutative:

Pl

In

P2e—P)\{CynC.,.}

4———><1

In order to simplify the notations, we shall write n instead of # to
describe the map X - P'. Let F,:=n!(a) = X denote the fiber of n over
ac P! It is an effective divisor on X and as such we write it as

e+ 1
Z ai¥ai

where s, ; is the multiplicity of the irreducible component Y, ;. Let p
denote the number of blow-ups needed to describe the map p: X - P2
Since Pic(P?)=Z

Pic(X)~2Z+!

(see [Har, V, 3.2]). To bound } n, in terms of d, we shall, on one hand,
bouq_d p in terms of 4 and, on the other hand, study the subgroup of
Pic(X) generated by the irreducible curves Y, ;.

LemMA. Let m:X—P' be a morphism defined as above by a
meromorphic function. If n has connected fibers, then

Y m, <rank(Pic(X))—
aeP!

In particular, the number of reducible fibers is finite.

Proof. Let F be any fiber of n and denote by P the Q-vector space
P:=Pic(X)®Q/(Q-F).
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It is clear that dim¢, P =rank(Pic(X))— 1. Let P, be the subvector space of
P generated by the set {Y, ,, i=1,..,m,+1}. Zariski’s lemma states that
if D:=3%,dY,,deQ, is any divisor supported on F,, then

(1) D*<0.

(2) D?*=0if and only if D= qF, for some g Q.

(See for instance [BPV, III, 8.2], for a proof when K=C.) It is an easy
consequence of Zariski’s lemma that

P, has dimension m,,

and that
Pame= {0}.

To prove the desired inequality, it remains only to show that &, P,# P.
Let E be any line in P?\{Cyn C,.} and denote by £ its transform in X.
We claim that @ P,® QE < P. Assume on the contrary that £ @ P,,
and write E=Y,D,+gF with D c F™ Then (E-E)=Y D*<0 by
Zariski’s lemma, contradicting the fact that (E-E)=(E-E)=1.

Notations. Let k,: D,— C™ denote the normalization of C™ Let

ConC,.=1{P, .., P}

For each closed point P;, i=1, .., s, set

o :=|k,"(P)l and ¥ =Y &

i=1

THEOREM. Let a/f be a meromorphic function on P?. Let n: X - P' and
p: X = P? be the associated maps. Assume that m has connected fibers. Then
)y ¥ m,<d’-1.

aeP!
2) T n, ST (6045 — 1)1,
ue P!
(3) If the fiber F, is integral, then 3 n, <8 —1.
(4) If n is generically smooth, then 8'*' is constant for all but finitely
many fibers.

Proof of (1). In view of the previous lemma, we only need to estimate
how many blow-ups are necessary to obtain X from P2: we will show that
p <d*. Consider the following situation: let ¢ be a meromorphic function
on a surface X. Let C and D be two effective divisors on X such that
div(e)= C — D. The function ¢ defines a map

mX\{CnD}-»P.

481 156 1-6
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We are looking for a finite sequence of blow-ups
X”_Jiﬂ_, X, \— X, X

such that the rational map n: X - P' extends to a morphism n: X, - P".
Let PeCn D and let p: X —» X be the blow-up at P. As usual, up(C)
denotes the multiplicity of a curve C at a point P. We may assume without
loss of generality that u,(D)>= u,(C). We have

p*(C)=C+up(C)E,

where C is the strict transform of C in X and E is the exceptional divisor.
We can extend the rational map n: X - P' to a rational map 7: X - P!
using the two linearly equivalent divisors C':= C and D' := D+ (u(D)—
up(C))E. We have

(C"-D")g=(C-D)y—pp(C).

After performing at most (C- D), such processes, we obtain a surface X,
and two linearly equivalent divisors C, and D, on X, such that

C,nD,= inX,.

Hence, the associated rational map X, —P' is defined everywhere and

extends n: X — P'. Applying now this discussion to ¢ = a/f, we conclude

that p<d*=(Cy-C, )p:, and the first part of our theorem is proven.
Before turning to the proof of (2), let us make the following remarks.

Remark 1. We keep the notations introduced in the proof of (1). If the
curve C on the surface X is smooth and P is a point of C, then up(C)=1.
Moreover, the curve C is also smooth. Hence, X, is obtained after exactly
(C - D)y blow-ups.

ExaMpPLES. As the following examples will show, the inequality
> m,<p—1 in the above lemma may or may not be strict.

 Assume that char(K)#3, and let a(x,, x,, x,)=x3+ x; + x3 and
B(xg, X1, X3) =3x,x,x, define the Hessian family of elliptic curves. The
curves C, and C_, intersect in 9 distinct points. Hence, p=d>=9. The
associated fibration n: ¥ — P" has four singular fibers, each consisting of a
cycle of three rational curves. Hence, Y n, =Y m,=8=d? — 1.

o Let afxy, x,, x,) be a homogeneous polynomial of degree 4 in
K[x,, x,, x,] defining a smooth curve C, in P2 Let L denote the line
{x,=0} and let C_, be the curve d- L. Assume that C, and L. intersect
in only one point. One easily checks that the fiber F, has d’=1+m,

. components. Therefore, Y m,=m_=d*—1and ¥ n,=0.
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« Fix an integer d>3 prime to the characteristic of K and let
a(xg, X, X2) = x¢— x4 and B(xy, x,, X,) =x{— x5. The curves Cy and C,
intersect in d points and, therefore, X is obtained after d* blow-ups. Simple
computations show that the curve C, is reducible only when a=0, 1, oo,
and that for these three values, C, is the union of 4 lines. Hence,

Sn,=Ym,=3(d-1)<d*—1.

Remark 2. By an entirely different method, W. Ruppert [Rup, Satz 6]
shows that, in characteristic zero, the number r of reducible fibers in the
family {C,} is bounded by d*>— 1. When the generic fiber is assumed to be
smooth, he shows that r < 3(d— 1) and that this bound is achieved.

Proof of (2). A fiber F™! consists of the strict transform C™ of C**
and of m, —n, “exceptional” divisors. By the previous lemma, we have

ua

Z nugp— Z (”lu_—nu)—_l‘

ueP! aeP!

There are exactly p —3 (m,—n,) exceptional divisors that map onto P'
under 7. These divisors form s disjoint subsets S;, indexed by their image
P, under p: X - P2 Fix a point P, in C,n C, . We are going to show that
the order of the corresponding set S, is bounded by !°'+ (' —1. In
order to achieve this, we are going to construct a tree [ such that

|S,| < number of edges of I
and
3+ 6. = number of vertices of I

Our claim will follow from the fact that for any (possibly disconnected)
tree [,

number of edges of "< (number of vertices of I’} — 1.

Recall that, if {D,} is any family of effective divisors on X, then one
defines its dual graph G({D;}) as follows: the vertices of G({D,}) are the
irreducible components of the divisors D,, and two vertices are linked by
one edge if and only if the corresponding curves intersect in X. The graph
G:=G(p '(P,))is a connected tree by construction.

Let

and
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Let &° denote the set of irreducible divisors in the support of
p YP,)nE, that intersect C,. Similarly, let & denote the set of
irreducible divisors in the support of p '(P,)n E, that intersect C, . The
sets £° and £~ are disjoint since Fyn F, = (. We can always write

E=T,u - uT,

and
Ex=T\u - T,

in such a way that the graphs G(T,) and G(7) are connected trees for all
1<i<kand ! <j<k' A path in G from a vertex in £° to a vertex in &~
is called special if it is minimal and if, except for its end vertices, no other
vertex on the path belongs to £°u &™.

We can write the set S, as a disjoint union of four sets

S, =MuN,uN, LO,

where
M={EeS,|[(E-E))#0and (E-E_)#0},
No=1{EeS,|(E-E;,)=0and (E-E,)#0},
N, ={EeS,|(E-E))#0and (E-E,)=0},
and

O={EeS,|(E-E,)=0and (E-E,)=0}.

Consider the following graph /' (M): its vertices are the graphs G(7;} and
G(T/)for 1 €i<k and 1 <j<k’ Two vertices G(T,) and G(T,) are linked
in I'(M) if and only if there exists a special path in G between an element
of T, and an element of 7. Clearly, there can be at most one special path
in G between an element of T, and an element of T, because the graph G
is a tree and the graphs G(T,) and G(7T;) are connected. Therefore, the
graph I'(M) is a tree. Since the images of the connected fibers £, and F,
under the blow-down of an element of S,, must intersect, the elements of
M define |M| distinct special paths from &° to & and, therefore, define
|M| distinct edges of I'(M).

Let E be an element of N,. Since the images of the connected fibers F,
and F, under the blow-down of an element of S, must intersect, there
exists an index j and a path in G from E to an element of T;. Denote by
vy the vertex corresponding to G(T/) in I'(M). Let I (M, E) denote the
tree constructed from the graph /(M) by adding to it an extra vertex and
linking this new vertex only to the vertex v, of I'(M). Let I'(M, N,) be the
tree obtained from I'(M) by performing the above construction for all
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elements of N,. Construct then a tree /(M, Ny, N, ), obtained from
I'(M, N,) in an analogous manner by adding a vertex and an edge for each
element of N, . Finally, let 4 denote the unique connected graph having
two vertices and one edge. Let I” denote the union of I'(M, N,, N, ) with
|0} disjoint copies of the graph 4. This new graph I" is a possibly discon-
nected tree with at least |S,| edges and at most k+k"+ [Nyl +
IN.,|+2|0| vertices.

The key point is to note that k+ [Ny +|0|<d? and that
K +|N,[+10/<3'". Let po: Ci¥4 — €5 denote the restriction of p to
C¢. To show that k + [Ny + 0] <48'%), it is sufficient to show that

k+|Nol +101<ipg (P
First, note that if E€&,, then
EnC=Enp,(P,)
Since by construction an element of 7, does not intersect an element of 7,
if i #], it follows that
k<IEF Ny '(P)).

We claim now that if £ and F are elements of S,, then En F= (.

Indeed, let

b
X‘,—» —»X,,——pi—> —+XF~"—'> . P?

be a sequence of blow-ups such that 7 extends to X, and such that p,
contracts £ and p, contracts F. By construction, (E-E)y = (F-F), = —1.
If EnF# 3, then (F- F),, =0, a contradiction.

Note now that if £ is an element of Nyu O, then

EnCr=Enp, ' (P,)
Therefore, since £En C{f" # & by construction, it follows that
INol +101 < 1py (PO —EG pg (P

This concludes the proof of (2).

Proof of (3) and (4). [1f the fiber F, is integral, then it is the strict trans-
form of the curve C,. The map p restricts to a morphism p,: F, —» C, and
clearly |p, '(P,)| <& Let again S, denote the set of exceptional divisors
contracting to P, under p and which map onto P' under n. Each element
E of S, intersects F, in a point of p, '(P,) and each point in p, '(P,) is in
the intersection of F, with an element of S,. As we pointed out in the proof
of (2), the elements of S, do not intersect and, therefore, (S, <|p, "(P,),
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which shows (3). Note that the inequality |S,| <|p, '(P,)| may be strict as,
for instance, in the family x?x, — ax}(x,+ x,) at the node P=(0, 0, 1) for
b=1.

Assume now that the map is generically smooth. There exists then an
open U in P! such that F, is smooth for all be U. Therefore, it follows from
the definitions that |p, '(P,)| =6 for all be U. Let E be a divisor in S,
for some /€ {1, .., s}. The restricted map n: £— P' may be ramified; but
since the number of such ramification points and the number of such
divisors E are finite, there exists a dense open set V' < U such that, for each
E fixed, the value of |F,n E| is constant for all be V. In particular, for
beV, we have 8" = |p, (P, ) =% pcs, |Fy El.

Remark 3. Assume that §') is constant on a dense open set of P'. The
following examples show that the finitely many exceptional values of 5@’
can be both bigger and smaller than the generic value. We also give an
example to show that (3) is false if the fiber F, is not assumed to be
integral.

+ Consider the Legendre family of elliptic curves given by
V2=x{x—1)(x—a).

The curves Cy and C, are nodal cubics that intersect in three points: at the
two nodes and at (0, 1,0). We have 8’ =6""=4 and 6’ =5; all other
curves C, have 6“ = 3.

« Assume that char(K)>d > 3, and consider the polynomial
S, p)ta=x(x+1)x+2)-...-(x+d=2)y+x+a.

We show in Remark 5 below that the associated map n has connected
fibers. Since this family has d — 1 reducible curves at a=0, 1, .., d—2, the
inequality (3) in the above theorem shows that the generic values of §'¢
must at least equal d The curves C, intersect on the line at infinity in two
points, so that 6=’ =2. In particular, 3 n, > 6" —1.

Let us now prove the inequality stated at the beginning of this article.
We say that a polynomial f(x, y)e K[x, v] of degree d is not a composite
polynomial if f(x, y) cannot be written as A(g(x, v)) with g(x, y)e K[x, y]
and h(z)e K[z] of degree at least 2. In particular, an irreducible polynomial
is not a composite polynomial. For each « € K, write

g+ 1

S yy+a= T (fo)=.

i=1

Note that, if f(x, y) is not a composite polynomial, then n,>0 for all
values of ¢ where f(x, y)+ a is reducible.
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COROLLARY 1. Let K be an algebraically closed field. If f(x, y)e K[x, y]
is not a composite polynomial and has degree d, then

2 n,<min {3 dea( i)} =1 <=1
ae K i

Proof. Let a(xy, X;, X3) = x4 f(xo/X5, X;/x,) and B(x,, X, x,) = x9. Let
L, be the line {x,=0} in P2 The divisor C, is equal to d- L. In par-
ticular, 8!’ =1, Vi=1, .., 5. Let m: X —» P! denote the morphism associated
to «/f3. We shall show below that the hypothesis “f(x, ») is not a composite
polynomial” implies that n has connected fibers. Once this fact is
ascertained, we can conclude the proof of the corollary as follows: let

no+ 1
CFii=Y G,
i=1
The linear system defining the normalization map x,: D, — Cf® < P? has
degree at most (3. deg C; ;). In particular,

A

Y SOy deg(Cy ) = Z deg( /o, )-

j=1

Hence, it follows from part (2) of the previous theorem that

Y on,< Z (8 +6*'~1)—-1 =(Z(5}°’>—1 <)Y deg(fy. ) — 1
a Jj=1 J i
Let ¥ -5 C-% P! be the Stein factorization of = (see [Har, III, 11.5]).
Since 4 is a finite morphism, C is a (smooth) curve. We have the following
commutative diagram:

¥y 2,5

| l

Alb(X) —— Alb(C)

We claim that C is a smooth rational curve. First, note that
dim AIb(X) <dimy H'(X, C3) (see [Ses, exposé 8, Thms. 1 and 3]). Since
H'(X, ¢3)= H'(P?, Cp) = {0} (see [Har, V, 3.4, and II1, 5.1]), the abelian
variety Alb(X) must be trivial. Hence C is isomorphic to P!, because
otherwise C would inject into Alb(C) (see [Mil, 6.1]) and the diagram
above would not be commutative.

By restriction, we have a map

P\ {Con L, )5 P 2 P



74 DINO LORENZINI

Without loss of generality, we may assume that g(L_\{Cyn L. }) is the
point oc in P'. The map

mPNL, »P"\{w}
factors then into
PAL, 5P\ {x} 5P\ {x}
This sequence of morphisms induces the maps

K[x, y] <~ K[2] < K[1],

with A, (1) :=h(z)e K[z] and g,(z):=g(x, y)e K[x, y]. Since the com-
position h-g equals n, we have

S(x, y)=h(g(x, y)).

Hence, h(z) must be a linear polynomial because f(x, y) is not a composite.
Therefore, the morphism 4 is an isomorphism and the fibers of n are
connected because the fibers of g are connected by construction.

COROLLARY 2. Let f(x, y)=T1"%"L:(x, y)" be a product of linear
polynomials. Assume that ny>0 and that the lines in K?, defined by the
equations L (x, y)=0 and L,(x, y})=0, do intersect. Assume also that
ged(ry, ...r,, . 1)=1. Then f(x, y) is not a composite polynomial and the
polynomial f(x, y)+ a is irredubible if a #0.

Proof. The fact that f(x, y)+ a is irreducible follows immediately from
the previous corollary once we have shown that f(x, y) is not a composite
polynomial. Suppose ab absurdo that f(x, y) is a composite polynomial
and factor it as

flx, y)y=(glx, y)—ay)-...-(glx, y)—a,),

with s>1 and ;e K for all i=1, ..., s. Without loss of generality, we may
assume that g(x, y) is not a composite polynomial. Since f(x, y) is a
product of linear terms, each polynomial (g(x, y) —«,) must factor into a
product of linear terms. The polynomial g(x, y) cannot have degree one;
otherwise the lines defined by L,(x, y)=0 and L,(x, y)=0 would not
intersect in K2 The previous corollary applied to g(x, y) implies then that
all the constants «, must be equal. Hence, s must divide ged(r,, ..., 7,, 1),
which is a contradiction since s> 1.

Remark 4. We may construct polynomials f(x, y)+ a that factor for
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several values of a as follows. Let /(x)e K[ x] be any polynomial of degree
m. For any constant q, let

f(x)+a= ﬁ Li“'(x)

j=1

denote the factorization of #(x)+a in K[x]. Pick k distinct elements of
K*, say ay, .., a,. Choose a polynomial r(x, 3} in two variables and & sub-
sets 1., ... I, of {1,.., m}. Set

Hx, y)=1+ (H L',""(x)) o <H L:"“(x)) (X, ).

jel jel

Finally, set

f(x’ ,V) = /(t) N t(xa )’)-
The polynomial f(x, y)+ a is then reducible for a =0, a,, .., a,.

Note that we may construct in this way a polynomial f(x, ») such that
there exist two distinct constants b and ¢ with >, deg(f, ;) # 2., deg(f. ,).

Remark 5. The polynomial f(x, y)=x(x+1)-...-(x+d=-2)r+x

has degree d and is not a composite polynomial. Indeed, the monomial

x*~ !y is the only monomial of degree d in f(x, y). If f(x, y) could be

written as h(g(x, y)) for some polynomial h(z) of degree 4> 2, then x¢ 'y
would be the #th power of a homogeneous polynomial of degree d/h. This
is clearly impossible. The polynomial f{x, y) provides an example where
the bound for ¥ n, given in Corollary 1 is achieved. Note also that in this
example the polynomial f(x, v) has integer coeflicients. This seems to
indicate that the bound for ) n, cannot be improved when K is not

assumed to be algebraically closed.
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