On Modular Elliptic Curves

DINO J. LORENZINI*

Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138

Communicated by K. A. Ribet

Received October 24, 1991; revised December 17, 1991

The number of isogeny classes of elliptic curves E/\mathbb{Q}_p , having potentially good reduction at p, and which are quotients of the jacobian $J_0(p^2)$, is bounded by (p/4+4). © 1993 Academic Press, Inc.

Let $J_0(N)/\mathbb{Q}$ denote the Jacobian of the modular curve $X_0(N)/\mathbb{Q}$. Fix a prime $p \ge 5$, and let K denote the maximal unramified extension of \mathbb{Q}_p . Let

$$j: J_0(N) \to \prod_{i=1}^n A_i$$

be an isogeny, defined over K, and such that all factors A_i/K are simple abelian varieties. To obtain an upper bound on the number of factors A_i in $\prod A_i$ that have dimension 1, we proceed as follows. Recall that given an abelian variety A/K, the connected component of zero of the special fiber of its Néron model is an extension of an abelian variety of dimension $a_K(A)$ by the product of a torus of dimension $t_K(A)$ and an unipotent group of dimension $u_K(A)$. The integers a_K , t_K , and u_K are invariant under isogeny [Gro, IX, 2.2.7]. Recall also that an elliptic curve E/K with additive reduction over the ring of integers \mathcal{O}_K achieves semi-stable reduction after an extension K_d/K of degree $d \in I$:= $\{2, 3, 4, 6\}$.

Let S_d denote the set of elliptic curves in $\prod A_i$ having semi-stable reduction over K_d . The above discussion shows that

$$|S_d| \leq t_{K_d}(J_0(N)) + a_{K_d}(J_0(N)).$$

The integers $t_{K_d}(J_0(N))$ and $a_{K_d}(J_0(N))$ can be computed using a regular model of $X_0(N)/K_d$. We have done so for some values of N and have obtained the following result.

^{*} Research supported by a grant from the Fond national suisse de la recherche scientifique. Present address: Department of Mathematics, University of Georgia, Athens, GA 30602.

THEOREM. Let $p \ge 5$ be a prime, and let $N = p^2$. The number of factors A_i in $\prod A_i$ that have dimension one and do not have semi-stable reduction over K is bounded by (p/3 + 4). The number of such factors having potentially good reduction is bounded by (p/4 + 4).

It is likely that this bound is not best possible. Indeed, there is no reason to believe that, in general, the only simple factors of $J_0(N)$ that achieve semi-stable reduction after an extension of degree $d \in I$ are the factors of dimension 1.

Let us recall now how to compute the integers t_K and a_K associated to the jacobian of a curve. Let K be any complete field with respect to a discrete valuation. Let \mathcal{O}_K be its ring of integers and let k be its residue field, assumed to be algebraically closed. Let X/K be a smooth proper geometrically irreducible curve, and let A/K denote its jacobian. Let $\mathcal{X}/\mathcal{O}_K$ be a regular model of X/K. Its special fiber \mathcal{X}_k is an effective Cartier divisor and, as such, we write it as

$$\mathscr{X}_k = \sum_{i=1}^n r_i C_i,$$

where r_i is the multiplicity of the irreducible component C_i . We call a regular model $\mathcal{X}/\mathcal{O}_K$ of X/K a good model if the following additional properties hold:

- The components C_i are smooth of genus $g(C_i)$.
- If $i \neq j$, the intersection number $(C_i \cdot C_j)$ is equal to zero or one.

To \mathscr{X} we associate a graph G defined as follows: the vertices of G are the curves C_i , and C_i is linked to C_j by $(C_i \cdot C_j)$ edges. We let $\beta(G)$ denote the first Betti number of G. When X has a K-rational point, Raynaud (see [BLR, Theorem 4 on p. 267, and Propositions 9 and 10 on pp. 248–249]) has shown that, if $\mathscr{X}/\mathscr{O}_K$ is a good model of X/K, then

$$\sum_{i=1}^{n} g(C_i) = a_K(A),$$

and

$$\beta(G) = t_K(A).$$

Let K_q/K be a *tame* extension of prime order q. Given a regular model $\mathscr{X}/\mathcal{O}_K$ of X/K, it is possible to describe a regular model $\mathscr{Z}/\mathcal{O}_{K_q}$ of X_{K_q}/K_q , and, hence, to compute the integers t_{K_q} and a_{K_q} . Let $\mathscr{Y}/\mathcal{O}_{K_q}$ denote the normalization of the scheme

$$\mathscr{X} \times_{\operatorname{Spec}(\mathscr{O}_K)} \operatorname{Spec}(\mathscr{O}_{K_a}).$$

Let

$$\pi: \mathscr{Y} \to \mathscr{X}$$

denote the natural map; let $\mathscr{Z}/\mathcal{O}_{K_q}$ denote the minimal desingularization of $\mathscr{Y}/\mathcal{O}_{K_q}$. Let

$$R_q = \bigcup_{q \mid r_i} C_i.$$

The map π is ramified over R_q . If $\mathscr X$ is a good model, then $\mathscr Y$ is a (good) regular model of X_{K_q}/K_q if and only if R_q is a nonsingular scheme, i.e., if and only if $R_q = \bigsqcup_{q \mid I_{r_i}} C_{i\cdot}$. The reader will find a proof of this fact in the complex case in [BPV, Theorem 5.2]. One easily checks that when q=2 or 3, one can always find a regular model $\mathscr X/\mathscr O_K$ such that R_q is nonsingular. The map π can be described as follows.

• If $q \nmid r_i$, then $\pi^{-1}(C_i) =: D_i$ is irreducible, and the restricted map

$$\pi_{\mid D_i}: D_i \to C_i$$

is an isomorphism. The curve D_i has multiplicity r_i in \mathcal{Y}_k .

• If $q \mid r_i$ and $C_i \cap R_q \neq \emptyset$, then $\pi^{-1}(C_i) =: D_i$ is irreducible, and the restricted map

$$\pi_{\{D_i}\colon D_i\to C_i$$

is a morphism of degree q ramified over $|C_i \cap R_q|$ points of C_i . The curve D_i has multiplicity r_i/q in \mathscr{Y}_k . Its genus is computed using the Riemann-Hurwitz formula.

• If $q \mid r_i$ and $C_i \cap R_q = \emptyset$, then

$$\pi:\pi^{-1}(C_i)\to C_i$$

is an etale map, and each irreducible component of $\pi^{-1}(C_i)$ has multiplicity r_i/q in \mathscr{Y}_k . Note that when C_i is a rational curve, then $\pi^{-1}(C_i) = D_1 \sqcup \cdots \sqcup D_q$ is equal to the disjoint union of q rational curves, and each restricted map

$$\pi_{\mid D_i}: D_i \to C_i$$

is an isomorphism.

When gcd(N, 6) = 1, Edixhoven ([Edi], 1.5) has computed a regular model of $X_0(N)/K$. Using his description of a regular model for $X_0(N)/K$ and the facts recalled above, one can compute the integers $t_{K_d}(J_0(N))$ and $a_{K_d}(J_0(N))$, for $d \in I$. We have computed these integers when $N = p^2$, with $p \ge 5$, and our computations are summarized in the tables below. The above theorem is an immediate consequence of these computations.

TABLE I

	TABLE I		
p = 12k + 1	p = 12k + 5	p = 12k + 7	p=12k+11
$k-1$ $12k^2-3k-1$	k $12k^2 + 5k$	k $12k^2 + 9k + 1$	$ \begin{array}{c} k+1 \\ 12k^2 + 17k + 6 \end{array} $
	TABLE II		
p = 12k + 1	p = 12k + 5	p = 12k + 7	p = 12k + 11
k — 1	k	k	k + 1
2(k-1)	2 <i>k</i>	2 <i>k</i>	2(k+1)
3(k-1)	3 <i>k</i>	3 <i>k</i>	3(k+1)
	TABLE III		PAYSON METALLER STATES
6 <i>k</i>	21k, 3 k	2 k, 3 k	21k, 31k
k-2 $2(k-2)$	k-1 $2(k-2)$	k-2 $2(k-1)$	k-1 $2(k-1)$
	TABLE IV	obleddedddddd y y y y y y y y y y y y y y y	
2 k, 3 k - 1	2 k,3 k-1	2 k, 3 k-1	2 k, 3 k-1
k-1 $2(k-2)$	k 2(k - 2)	$k-1 \\ 2(k-1)$	$k \\ 2(k-1)$
	TABLE V		
2 [k, 3 k - 1	2 k, 3 k-1	2 / k, $3 / k - 1$	2 k, 3 k-1
k 2(k-1)	$k+1 \\ 2(k-1)$	k 2k	k + 1 2k
	TABLE VI	· · · · · · · · · · · · · · · · · · ·	
2 k, 3 k + 1	$2 \nmid k, 3 \nmid k + 1$	2 k, 3 k+1	2 k, 3 k + 1
k+1 $2(k+1)$	k+2 $2(k+1)$	k+1 $2(k+2)$	k+2 $2(k+2)$
	$k-1$ $12k^{2}-3k-1$ $p = 12k+1$ $k-1$ $2(k-1)$ $3(k-1)$ $6 k$ $k-2$ $2(k-2)$ $2(k-2)$ $2(k-2)$ $2(k-2)$ $2(k-1)$ $k-1$ $2(k-1)$ $k+1$	$p = 12k + 1 p = 12k + 5$ $k - 1 k$ $12k^{2} - 3k - 1 12k^{2} + 5k$ $TABLE II$ $p = 12k + 1 p = 12k + 5$ $k - 1 k$ $2(k - 1) 2k$ $3(k - 1) 3k$ $TABLE III$ $6 k 2[k, 3]k$ $k - 2 2(k - 2)$ $TABLE IV$ $2[k, 3]k - 1 2[k, 3]k - 1$ $k - 1 2(k - 2)$ $TABLE V$ $2[k, 3]k - 1 2[k, 3]k - 1$ $k - 1 2(k - 2)$ $TABLE V$ $2[k, 3]k - 1 2[k, 3]k - 1$ $k + 1 2[k, 3]k + 1$ $2[k, 3]k + 1 2[k, 3]k + 1$ $k + 1 k + 2$	TABLE II $k-1 \ 12k^2-3k-1 \ 12k^2+5k \ 12k^2+9k+1$ TABLE II $p=12k+1 \ p=12k+5 \ p=12k+7$ $k-1 \ k \ k$ $2(k-1) \ 2k \ 2k$ $3(k-1) \ 3k \ 3k$ TABLE III $6 k \ 2 k,3 k \ 2 k,3 k$ $k-2 \ 2(k-2) \ 2(k-2) \ 2(k-1)$ TABLE IV $2 k,3 k-1 \ 2 k,3 k-1 \ 2 k,3 k-1$ $2 k,3 k-1 \ 2 k,3 k-1 \ 2 k,3 k-1$ $k-1 \ 2(k-2) \ 2(k-2) \ 2(k-1)$ TABLE V $2 k,3 k-1 \ 2 k,3 k-1 \ 2 k,3 k-1 \ 2 k,3 k-1$ $k+1 \ k+2 \ k+1$

It follows from Table II and Table III that there are no modular elliptic curves of conductor $(13)^2$.

The genus of $X_0(11^2)$ is equal to 6, and it is known that $J_0(11^2)$ is isogenous to a product of 6 elliptic curves [Lig].

REFERENCES

- [BLR] S. Bosch, W. LÜTKEBOHMERT, AND M. RAYNAUD, "Néron Models," Springer-Verlag, New York/Berlin, 1990.
- [BPV] W. BARTH, C. PETERS, AND A. VAN DE VEN, "Compact Complex Surfaces," Springer-Verlag, New York/Berlin, 1984.
- [Edi] B. EDIXHOVEN, Minimal resolution and stable reduction of $X_0(N)$, Ann. Inst. Fourier 40, No. 1 (1990), 31-67.
- [Gro] A. GROTHENDIECK, Séminaire de géometrie algébrique SGA 7, I, in "Lecture Notes in Math.," Vol. 288, Springer-Verlag, New York/Berlin, 1970.
- [Lig] G. LIGOZAT, Courbes modulaires de niveau 11, in "Modular Functions of One Variable, V," Lecture Notes in Math., Vol. 601, Springer-Verlag, New York/Berlin, 1977.