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Abstract 

Lorenzini, D.J., A finite group attached to the laplacian of a graph, Discrete Mathematics 91 

(1991) 277-282. 

Let F = diag(cp,, . , r~_, , 0), 91, 1 t . 1 q, ~, , denote the Smith normal form of the laplacian 

matrix associated to a connected graph G on n vertices. Let h denote the cardinal of the set 

{i 1 rp, > 1). We show that h is bounded by the number of independent cycles of G and we 

study some cases where these two integers are equal. 

Let G be a connected graph with m edges, n vertices and adjacency matrix 

A = (aij). Let dj denote the degree of the ith vertex and define the laplacian of G 

to be the matrix M:=D-A with D=diag(d,, . . . ,d,). Let ‘J= 

(1,. . .) 1):Z” -Z. We define @ := Ker ‘JIIm M, where M is thought of as a 

linear map M: Z”-+ Z”. Let h denote the minima1 number of generators of the 

group @. Let P(G) = m - (n - 1) be the number of independent cycles of G. In 

[2,5.2] we showed that 

h(G) s P(G). 

In the present paper, we recall two other descriptions of the group @ and use 

them to characterize some families of graphs for which the equality h(G) = P(G) 

holds. We also give a new proof of the inequality L(G) c P(G). 

The finite abelian group @ can be described in terms of the Smith normal form 

F=diag(q,, . . . , Q)_~, 0) of M (see [2, 1.41). Any diagonal matrix E = 

diag(e,, . . . , e,_l, 0), row and column equivalent to M over the integers, induces 

an isomorphism 

@ = ZlelZ X . . . X Z/e,_lZ. 

The integers q1 1 . . . 1 cpn-l can be computed in the following way: vi = Ai/Ai_l 

where A0 = 1 and Ai is the gcd of the determinants of the i x i minors of M. The 
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integer 1 @I = A,_I = v1 - . - Q)_~ is well known: it equals the number of spanning 

trees of G (see [l, 6.31). The integer h(G) equals the cardinal of the set 

{i ) qi > l} = {i ) Ai > l}. A s we mentioned above, h c j3; obviously, i < n - 1. 

We say that a graph is simple if any two of its vertices are linked by at most one 

edge (i.e. aij c 1, Vi Zj). A 2-graph is a graph with di 2 2, Vi = 1, . . . , n. 

Lemma. Zf G is a simple 2-graph, then h s n - 3, unless G is the complete graph 
on n vertices, in which case the Smith normal form of the laplacian of G is 

F = diag(1, n, . . . , n, 0). In particular, the group Qi attached to a complete graph 

on n vertices is isomorphic to (ZlnZ)“-“. 

Proof. It is clear that AI = 1 when G is simple. Since G is a 2-graph, we can find, 

for each vertex Vi, a minor of the form 

Assume that h = n - 2, i.e. that A2 > 1: the case q = 0 is then excluded. In 

particular, for any i, A2 divides d, + 1. If a vertex Vj is not linked to vi, we have a 

minor 

di 0 

( > 0 dj 

and it follows that A2 divides didi. Hence dj + 1 and -d, = didj - (di + l)dj are 

divisible by A,. This cannot happen because we assumed A2 3 2. 

In case G is the complete graph on n vertices, the 2 x 2 minors of M are of the 

form 

(I: I:)? (,-‘, _:) and (“,’ .-‘,) 

so that A2=n. Since A,_,(G) =nne2, we conclude that F = 

diag(1, n, . . . , n, 0). 0 

Our next proposition classifies the graphs with & = p = n - 1 and h = p = n - 2. 

Let T be a tree with n vertices and denote by M its laplacian matrix. Let T be the 

graph corresponding to the matrix 2M and T’ be a graph obtained from T by 

removing a unique edge. 

Proposition 1. Let G be a 2-graph. 

(i) h=/3=n-liffG=TforsometreeT, 

(ii) h=p=n_2iffG=T’forsometreeT. 

Proof. It is straightforward to check that P(T) = n - 1 and P(T’) = n - 2. We 

computed F(T) = diag(2,2, . . . ,2,0) and F( T’) = diag(l,2, . . . ,2,0) in [2, 

Corollary 2.21. These facts can also be proven using the remark below. 
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Let G with 6 = /? = IZ - 1 and adjacency matrix A = (aij). We have 

~~aij=m=/3-(n-1)=2(n-1). 

Since any connected graph has at least (n - 1) nonzero coefficients aij and AI 1 aij, 

we get 

2(n - 1) = c aij > AI . (n - 1). 
i<j 

Our assumption that h = IZ - 1 implies that AI > 1 and the above inequality forces 

A, = 2. So M = 2N with N associated to a tree. 

Let G with h = /3 = n - 2. Since 

2n-3=m=Ca kl > min{a,[ # 0} * (n - l), 
k<l 

there must exist i <i with aij = 1. Let or, . . . , v, denote the vertices of G. Write 

{u,, . . . 7 V,}={Vi, Vj}LJAoLlA,UB, where A, is the set of vertices not linked 

to either vi or vj, Al is the set of vertices linked to exactly one of the vertices vi or 

vi and B is the set of vertices linked to both vi and vj. If vk E A,, U A,, say with 

a& = 0, every coefficient a& of the kth row of M is divisible by A2 because of the 

existence of a minor of the form 

0 = aik -1 = -aij 

-aek 
* 

We claim that m>1+2b+A,.a, where a=~A,UA,~ and b=IBj. The 

vertices Vi and Vj are linked by one edge; each vertex in B defines two distinct 

edges. It is clear that each element of Al defines at least A, edges of G, distinct 

from each edge previously defined. Consider now the full subgraph of G spanned 

by the vertices in A,,. We get a disjoint union of connected components 

A,,=CIU-- . U C,. Each C, has at least A2 . (ICil - 1) distinct edges. Since each 

Ci is linked to the rest of the graph (G is connected), each Ci defines AZ . lC,l 

distinct edges of G. 

Our assumption that & = n - 2 implies that A, > 1. This implies that the 

inequality 

m=2(a+b+2)-3>A,*a+26+1 

is an equality. In particular, 

(1) AZ = 2. 

(2) Each Ci is a ‘double tree’ linked by a double edge to a vertex in AI. 

(3) Each element of A, is linked to vi or Vj by a double edge. 

(4) Elements of B are linked only to Vi and Vj. 
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Let G’ be the subgraph of G spanned by vi, Vj and the elements of B. We have 

/3(G’) = (2b + 1) -[(b +2) - l] = b. Using [2, Theorem 2.11, we obtain an 

isomorphism 

@(G) = (Z/22)” x @(G’). 

Since by hypothesis, the minimal number of generators of @(G) equals 

n - 2 = a + b, h(G’) must at least equal b = P(G’). If n’ = b + 2 denotes the 

number of vertices of G’, we see that G’ has to satisfy h(G’) = /3(G’) = n’ - 2. 

As shown in the previous lemma, G’ has to be a complete graph unless b = 0. If 

b >O, G’ is a complete graph only when b = 1. But if b = 1, F(G’) = diag(l,3,0) 

and 

CD(G) = (Z/22)“-’ x Z/62 

would be generated by IZ - 3 elements, a contradiction. Hence b = 0 and G = T’ 

for some tree T. 0 

Remark. Let G and G’ be any connected graphs. Let v denote a vertex of G and 

w a vertex of G’. Let r be the graph obtained as the union of G and G’ with the 

vertex w identified to the vertex v. One checks easily that @(I) = @(G) x 

@(G’). In fact, if we number the vertices of G by v,, , . . , v, = v = w and the 

vertices of G’ by w = v,, . . . , v,+~, we see that the laplacian M of r is almost 

made up of two blocks. By adding all rows to the sth row and all columns to the 

sth column, M becomes equivalent to a matrix made up of two disjoint blocks; 

the Smith normal form of the top left (resp. bottom right) corner block can be 

used to compute the Smith normal form of the laplacian of G (resp. G’). 

The graphs of the form T or T’ considered in the previous proposition can be 

generalized using the above process to give a more general family of graphs with 

h = /3. Let L, denote the loop of length q > 1, the only connected graph with q 

vertices, q edges and all degrees equal to two. It is not hard to check that the 

group @(L,) is cyclic of order q: in this case, h = 6 = 1. We can then build up, 

using the above construction, ‘trees of loops L,’ and obtain in this way connected 

graphs with 6 = p. 

Example. We give now an example of a simple graph with h = /-I = II - 3. Let 

Kp,4 be a bipartite graph; a row and column reduction of its laplacian matrix M 

gives a diagonal matrix 

E=diag(l,l,p,...,p,q,...,q,pq,O). 
-- 

9-2 p-2 

In the case of K2,q, the matrix E is its own Smith normal form F = 

diag(1, 1,2, . . . ,2,2q, 0); hence & is a simple graph with h = n - 3 = p. Note 

that K2,q does not belong to the family of graphs described in the previous 

remark. 
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Let r be a graph with 2 vertices linked by exactly q edges. The graph K,,, is 

obtained from r by ‘dividing each edge of r in two’ and the graph obtained in this 

way has the property h = /3. We generalize these facts in our next proposition. 

Let G be any graph. By ‘dividing an edge e in k edges’, we mean the following 

operation; remove the edge e linked to the vertices v and U’ and introduce k - 1 

new vertices wl, . . . , wk-, of degree two such that wi is linked to w,+i, w1 is 

linked to v and wk-r is linked to v’. 

Proposition 2. Let G be a connected graph with p independent cycles. Let Gk be 
the graph obtained by dividing each edge of G in k edges. One has the following 
exact sequence of abelian groups: 

O--+ (Z/kZ)“-, @(G,J- @(G)+O. 

In particular, for any positive integer k > 1, h(G,) = p(Gk). 

To prove this proposition, we need to introduce a different description of Qi. 

Recall that M = B . B’ where B is the incidence matrix of G. We want to use this 

factorization of M to define Qi in terms of B. This point of view is ‘well known 

from the specialists’ in arithmetic geometry. The author learned the following 

formalism from conversations with Kenneth Ribet. 

Let E and V denote respectively the set of edges and the set of vertices of G. 

Z(E) and Z(V) denote the free abelian groups on these two sets. Choose an 

orientation for each edge of G. This orientation is given by two maps called 

tip, tail: E+ V. Let j:Z(E)+ Z(V) be defined by j(e) = tip(e) - tail(e) E Z(V). 

The map j is represented by the incidence matrix of G. Let X denote its kernel 

and y :X c, Z(E) the natural inclusion map. It is a free Z-module of rank 

P(G)=m-(n-1). F or any free Z-module T with basis t,, . . . , t,, let T* := 
Hom(T, Z). Recall that one has an isomorphism 6 : T 7 T* defined by S(ti)(ti) = 

6,, where 6, is the Kronecker symbol. One checks that the group @(G) is 

isomorphic to the cokernel of the map X + X* defined by 

X & Z(E)%Z(E)*aX*. 

It follows immediately from this description of Qi that: 

Corollary. @(G) . IS minimally generated by at most /3(G) elements since X* is free 
of rank p. 

Let Ek, V, denote the sets of edges and vertices of Gk; let jk :Z(E,)+Z(V,) be 

defined as above. We have two natural maps JG: Ek+ E and i: V 9 V,. 
The orientation of G being fixed, orient each vertex in n-‘(e), e E E such that 

_s,,, tip(f) - tail(f) = i(tip(e)) - i(tail(e)). 
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We can then define two maps 

and 

q :Z(V) +Z(Vk) by V(V) = i(u). 

The following diagram is commutative: 

Z(E) -L Z(V) 
P 
I I 

‘I 

Z(&) JL Z(V,) 

This diagram induces an injection a:X = Kerj+ X, = Kerj,. Since X and X, 
have same rank, coker(a) is finite and injects in coker(y), which is torsion free. 
Hence cv is an isomorphism. We can use this isomorphism to describe Qk := 
@(G,J as the cokernel of the map X+X* defined by 

x+ Z(E) 2j Z(E)* M”‘t. byk+ Z(E)* + x*. 

Proof of Proposition 2. The above discussion shows how to define a surjective 
map Gk+ @ whose kernel is killed by k. The group Qk can be generated by 

B(Gk)=B(G)=P 1 e ements. Hence the kernel of the map &-+ CD can also be 
generated by /3 elements. Therefore, in order to conclude the proof of the 
proposition, we only need to show that this kernel has order kS. Recall that the 
order of @(G) equals the number of spanning trees of G; it is easy to check that 
each spanning tree of G defines kS distinct spanning trees of Gk. Hence 
l@,J = kS 1@1. Cl 
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