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Let Ok be any domain with field of fractions K. Let F(X, y) € Ok[X, Y]
be a homogeneous polynomia of degree n, coprime to y, and assumed to
have unit content (i.e., the coefficients of F generate the unit ideal in Q).
Assume that gcd(n, char(K)) = 1. Let h € Ok and assume that the poly-
nomial hz" — F(x, y) isirreducible in K[x, y, z]. We denote by Xg /K the
nonsingular complete model of the projective plane curve Cg /K defined
by the equation hz" — F(x, y) = 0. We shall assume in this article that
9(Xgn) = 2.

When K is a number field, Mordell’s Conjecture (now Faltings Theo-
rem) implies that | X h(K)| < oo. Caporaso, Harris, and Mazur ([CHM,
1.1]) have shown that if Lang's conjecture for varieties of genera typeis
true, then for any number field K, the size | X(K)| of the set of K-rationa
points of any curve X/K of genus g(X) > 2 can be bounded by a constant
depending only on g(X). Prior to the paper [CHM], Mazur and others had
asked whether | X(K)| can be bounded by a constant depending only on
g(X) and the Mordell-Weil rank of X/K over K (that is, the rank of the
group J(K) of K-rationa points of the jacobian J/K of X/K). These far-
reaching questions are totally open. Asweshall recall in Sect. 1, the method
of Chabauty-Coleman sometimes yields a bound for | Xg,(K)| depending
only on g(Xg.) when it is known in advance that the Mordell-Weil rank of
Xk.n/K is small. Unfortunately, the Chabauty-Coleman method does not
yield abound for | Xg 1 (K)| independent of the coefficients of hz" — F(x, y)
for all curves of theform Xg . It does, however, produce such a nice bound
for the number of primitive integral solutions of F(x, y) = h, as we now
explain.

Let K = Q and Ok = Z. A classical Thue equation is an equation
F(x, y) = h where F(x, 1) does not have repeated roots. Thue showed in
1909 that such an equation has finitely many solutions (x, y) € Z?if n > 3.
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Let ussay that (x, y) isaprimitivesolutionif gcd(x, y) = 1. Inthiswork, we
are interested in the following open question raised for instance by Erdos,
Stewart, and Tijdeman ([Ste, p. 816]). Let N(F, h) denote the cardinality
of the set

{((X,y) € Z%| F(x,y) = hand gcd(x, y) = 1}.

Isthereabound for N(F, h) intermsof n only whenever n > 3? Two known
results on N(F, h) are asfollows:

Theorem (Bombieri-Schmidt, [B-S]). Assumethat F(x, 1) isirreducible.
Thereexistsa constant B, which canbetakentobe215when nissufficiently
large, such that N(F, h) < Bin*™+ where w(h) equals the number of
prime factors of h.

This bound depends on n and h. A generaization to the case where
F(x, 1) has distinct roots is given in [Ste, Theorem 1]. Let r(Xg) denote
the Mordell-Weil rank over QQ of the jacobian of Xg,/Q.

Theorem (Silverman, [Si1]). Assumethat F(x, 1) hasdistinct rootsin Q.
There exists an ineffective constant h(F) such that for all n'" power-free

h > h(F), the bound N(F, h) < n2"*(8n3)"Xen) holds.

For afixed F, this bound depends only on n and r (Xg ), but only works
for h sufficiently large. For animprovement inthe special casewhere F(x, 1)
has aroot in Q, see [Fuj]. Our main theorem is:

Theorem 3.9. Ifr(Xgn) < 9(Xgn), then N(F, h) < 2n3 —2n — 3.

This bound only holds when r(Xgy) is smal, but when it holds, it
depends only on n. We are able to refine our method in some special cases
to obtain a bound of the form N(F, h) < O(n?). There is no empirical
evidence that would indicate that N(F, h) cannot always be bounded by
O(n).

Both [B-S] and [Si1] make use of diophantine approximation methods,
and in particular make use of the Thue-Siegel-Roth theorem on approxi-
mations of algebraic numbers. The proof of Theorem 3.9, by contrast, does
not involve diophantine approximation; it relies instead on the method of
Chabauty-Coleman. In order to use this method to bound | Xg(Q)|, one
needs to pick a prime p and compute enough of a regular model X /Z, of
Xen/Qp to be able to bound the number N; of components of multiplicity
1 in the special fiber X/Fp. The number N is not, in general, bounded
by a constant depending only on g(Xg ). Hence, this method does not al-
ways enable us to bound | Xg 1 (Q)] in terms of g(Xgp) only. Surprisingly,
however, it is possible to bound, in terms of n only, the number of reduc-
tion classes in the speciad fiber of aregular model X /Z, of the primitive

solutions of F(x,y) = h. Let F(x,1) = c]_[iszl(x — o))" in Q[x], and set
d*(F) := ¢ [1isj (@i —aj) € Z. To obtain a bound on the number of
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reduction classes in the special fiber of the primitive solutions, the most
difficult case to be treated is when p | d*(F) and p | h. In this case, our
main result is:

Theorem 3.5/3.8. Let Xgn/Q be such that for some prime p > n,
p|d“(F)andp| h.Let X/Z, betheregular minimal model of Xgh/Q,.
Let N denote the set of reductions in the special fiber X, of the solutions

of F(x, y) = hin Z%vvith ged(x, y) = 1. Then |[N| < snp.

In the cases where p fails to divide both h and d*(F), similar results
are obtained in the proofs of 3.1, 3.2, and 3.3. Determining whether J(Q)
has rank less than g(Xgp) isin genera very difficult. There is no known
algorithm that provably determines the Mordell-Weil rank of a jacobian,
even for eliptic curves. Upper bounds for the rank are obtainable, at least in
theory, by computing the size of a suitable Selmer group. The Mordell-Well
rank in the case of superelliptic curves of the form yP = f(x) with p prime
istreated in [P-S] and [Sch]. A computational implementation in the case
p = 2 and deg(f) = 6 is discussed in [St3]. There are at this time no
educated guesses regarding the proportion of isomorphism classes of non-
singular plane Thue curves of degree n whose Mordell-Weil rank over Q is
lessthan (n—1)(n—2)/2. Similarly, fixing F, there are no general resultson
the proportion of the n-th power free integers h such that the Mordell-Weil
rank of Xg, islessthan g(Xgp). To our knowledge, it isnot known whether
the set of such integers is aways infinite, or even non-empty. On a more
positive note, we can produce in 3.10 infinitely many explicit examples of
Thue equations where the bound given in Theorem 3.9 holds.

The method of Chabauty-Coleman, when applicable, very often aso
provides bounds for | Xg,(Q)| and not just for N(F, h). In particular, we
show:

Theorem 3.1/3.2. Let p > n be a prime with p 1 d*(F). Assume that
r(Xen) < g(Xen)- Then [Xen(@)] < np+ 8=3(2g — 2). In particular,
there always exists such aprime pwith p < max(2n, 2d*(F)), o | Xgn(Q)]

is bounded by a constant depending only on F, and not on h.

Thisexplicit theorem isa special case of [Si2, Theorem 1], which states
that if X/K isany curve of genus g > 2 over a number field, and Xy /K
is any twist of X, then | X, (K)| can be bounded in terms of a constant
¢ = ¢(X/K) and the Mordell-Weil rank of X,/K.

This paper is organized as follows. In the first section, we refine the
method of Chabauty-Coleman so that it can be applied to any regular model
over Zy of acurve X/Q of genus g > 1 with p* > 2g + 1. In the second
section, we describe some regular models of the curves Xgj. We then
prove in the third section our main theorem on primitive solutions of Thue
equations using these models.
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1. Themethod of Chabauty-Coleman

Let K be any number field with a place v over a prime p. Let K, denote
the completion of K at v, with uniformizer 7 and residue field Fy, where
g isapower of p. Let X/K be a smooth proper geometrically connected
curve of genus g > 1, with Jacobian J/K. When the rank of J(K) isless
than g, the method of Coleman-Chabauty alows one to bound | X(K)]| in
terms of the number of zeros of a well-chosen p-adic analytic function
Aw : X(Ky) — K,. Coleman [Co2, 0.ii] considered the case where the
curve X has good reduction at v (that is, where X/K, hasasmooth model X
over Ok,). McCalum [McC1] applied the method of Chabauty-Coleman at
primes of bad reduction in the special case of Fermat curves. In Theorem 1.1
below, we show that the method of Chabauty-Coleman produces bounds for
| X(K)| evenwhen X/K isnot assumed to have good reduction. At the 1999
Arizona Winter School, McCallum suggested that a slight variant of [Co2,
0.ii] should hold on any regular model X/, ; we prove that his suggestion
isindeed correct in 1.11.

Let A/K be any abelian variety of dimension g. We will write T'(A,
Qa/k,) for the module of global sections over A, of the sheaf of differen-
tials @, /k,- Asa p-adic Lie group, A(K,) is endowed with a logarithm
map

log : A(K,) - Hom(I'(A, Qa/k,), K,) = K2,

as we shall recall below, borrowing from [Wet]. The Chabauty rank of
A at v, denoted by Chab(A, K, v), is the dimension of the K,-subvector
space of K9 generated by the elements of log(A(K)). Note that since log
is a homomorphism, Chab(A, K, v) is less than or equal to the Mordell-
Well rank of A(K). Define the Chabauty rank of a curve X/K at v to
be Chab(J, K, v), and denote it by Chab(X, K, v). Let Xns(Fq) denote the
subset of non-singular Fq-points of the special fiber X of aproper flat model
X/0k, of X/K,. Letr : X(K,) — Y(Fq) denote the reduction map. The
main theorem of this section is:

Theorem 1.1. Let X/K bea curve of genus g > 1 defined over a number
field K with completion K,, unramified over Q. Assumethat Chab(J, K, v)
< . Letd beapositive integer suchthat p > dand p® > 2g— 1+d. Then,
for any subset U C Xns(Fq) of the special fiber X of a model /O, of
X/K,, we have

-1
W) NXK)] < U+ (h) (29-2).

Our theorem applies whenever p issuch that pP~! — p > 2g — 2. The
only obstacle to applying the Chabauty-Coleman method to even smaller
primes is finding a suitable variant of Lemma 1.5. The key to the method
of Chabauty-Coleman is the remark that if Chab(A, K, v) < g, then there
exists alinear projection 6 : K9 — K, such that the composition 6 o log :
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A(K,) — K, isan analytic function A that vanishes on A(K). Aswe shall
recall, it turns out that there aways exists a differential n € I'(A, Qa/k,)
such that d(») = n. Given acurve X/K andamap j : X — J defined
over K, one can consider the associated analytic function A o j : X(K,) —
J(K,) — K, and the differential j*(n). A bound for | X(K)| is obtained by
bounding the number of zeros of A o j in terms of the number of zeros of
j*(n). The proof of 1.1 is postponed to 1.8.

We begin by fixing some notation. Let V/K, be a proper, geometrically
integral variety of dimension e. A model V/0Ok, of V/K is an integral
scheme vV and a flat proper morphism V — Spec(Ok,) such that the
generic fiber of this morphism is the given map V — Spec(K). Let V :=
V X spec(ok, ) SPEC (O, / (1)) denote the special fiber of V. Since V isproper,
we have a reduction map r : V(K,) — V(Fq), which sends points in
V(K,) to pointsin V(Fq). More precisely, let P be apoint in V(K,). The
image of P under the map r is the intersection of 'V with the closure of
the image of P in V. This map is well-defined because the closure of the
image of P in V, corresponds to the prime spectrum of the ring of integers
@, in some finite extension L /K,, and such aring @ islocal when K, is
complete. If Q € V(Fy), denote by Dqo(L) the set r=1(Q) N V(L). When
P e V(K,), theset Dr(p)(K,) iscalled theresidue class of P. For simplicity,
we may denote the set Do (K,) smply by Do.

Let now A be the Néron model over O, of an abelian variety A/K.
The scheme A is not in genera proper over Ok, but the natural map
A(Ok,) — A(K,) is dways an isomorphism. We use this map to define
areduction mapr : A(K,) — A(Fy).

Denote by Vns(Fq) the set of points of 'V (Fq) which are smooth points
of the map V — Spec(0O,). Since the field Fy is aso the ground field
for V, wefind that the set V,s(Fq) isin fact the set of regular points of vV
with residue field Fy. Let Q € Vns(Fq). Each point P € V(K,) for which
r(P) = Qugivesrisetoaprime ? in 9y g of height e. Since O g isaregular
local ring, & can be generated by e elements zy, .. ., z.. We will call these
z local coordinates for P. Each z can be evaluated at any other point
P e DQ(K,) by setting z; (P’) equal to theimage of z in O /%', where
P’ isthe prime in O g corresponding to P’. A set of local coordinates
defines a bijection between Dq(K,) and 709k, x --- x w0k, (Where the

product contains e terms). Indeed, let @V’Q denote the completion of the
ring Oy, q With respect to the prime ideal . One shows that the canonical

map from Homy, (@V’Q, Ok,) to Homy, (Ov,q. Ok,) isabijection. We
say that the formal power series

Yo iz e Kllz Lzl

i1,...,ie>0

converges in Do(K,) if, for any P’e Do(K,) with residue field L, the
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sum _
D an e z(P) e ze(P)

i1,....ie=0

convergesin L,,. This power series defines an analytic map from Dq(K,) to
K,. Weshall userepeatedly thefollowing important fact: Given any analytic
map A on V(K,) which, when restricted to Dq(K,), is equal to an analytic
map given as above by a power series expansion converging on Dq(K,),
then the determination of the zeros of 4 on Dq(K,) is equivaent to the
determination of the zeros of the power series on the set (7 9k,)°.

Proposition 1.2. Let A be an abelian variety of dimension g and let €
I'(A, Qa/k,). Then there exists a unique map A, : A(K,) — K, such
that: a) A, isanalytic, b) d(x,) = », and c) A, is a group homomor phism.
Let A be the Néron model of A over Ok,. Let P € A(K,), and choose
asetzy, ..., zyof local coordinates for P. Thenthereisanonzerot € O,
(independent of P) such that tA, restricted to D, p (K,) has alocal power
series expansion

Uy=bo+ Y b2z z

il .4.,igZO

with by € K, and isbi, i, € Ok, for £ = 1,...,g. This power series
expansion converges on Dyp) (K,).

Proof. Let O denote the identity in A(K,). The multiplication law
A Xgpec(og,) A = A givesamap O, —> Our© Bok, Oar©- SiNCE
O 4.r(0) isasmooth local ring, we can choose a set of local coordinates at O,
and obtain by completion the formal group law #:

QKU[[Z]_, RN Zg]] —_—> (QKU[[Zl» cey Zg]] ®(9Ku (9KU[[Z]_, ey Zg]].

Letn € I'(A, Qa/k,)- Thusn isan invariant differential on A (see, e.g.,
[Sha], page 168). Thereisanonzerot € Ok, suchthat ty € T'(A, Q4 /0, )-
Theinvariant differential tn induces an invariant differential for the formal
group law, in the sense of [Hon], page 216, and can be written as

tn—Z Z &y...igtZi - 25z

""" ig.¢ € Ok, Itisshownin[Hon], 1.3, that aformal integral Gy, €

K [[21, ..., Zg]] of ty exists. We choose Gy, such that G,(0) = O. Such
a formal integral converges on the kernel of the reduction Dy, because
limp_ o X"/In|, = 0 for any 0 < x < 1. Taking a basis ny, ..., ng of
the invariant differentials, Honda describes in [Hon], Theorem 1, a strict
isomorphism f of forma groups over K, between ¥ and the additive
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formal group of dimension g. Evaluating on points, we obtain a group
homomorphism

f . DI’(O)(KU) = j‘ﬁ(n@Ku) — Kg’

givenby P = (G, (P), ..., G, (P)). Since ty can be written in terms of
N1, ..., ng, it follows that there exists a projection p : K9 — K, such that
the composition p o f : Dy (K,) — K, isagroup homomorphism given
by the power series Gy,.

Let H beany open subgroup of A(K, ), suchas Dy () (K,). Since A(K,) is
compact, [A(K,) : H]isfinite, soforany P € A(K,), thereissome positive
integer cp such that cpP € H. Thus, any homomorphism ¢ from H to a
K,-vector space W extends uniquely to ahomomorphism ¢ : A(K,) - W
by setting @(P) := ¢(P)/cp. In particular, the homomorphism G, extends
uniquely to ahomomorphism iy, : A(K,) = K,. Welet &, := %ktn.

Let P € A(K,), and let tp denote the map P’ — P’ + P on A(K,).
Writing tja, for the composition A, o tp, we see that d(tja,) = d(i, +
Ay (P)) = dA, so the differential di,, must be trandation invariant. Hence,
it must be equal to n on al of A(K,) since n isalso trandation invariant.

To show that 1, has the desired convergent power series expansion
at any point in A(K,) (which implies in particular that 1, is analytic),
we note that if P € A(K,), then for al P’ with r(P) = r(P’), we can
write 4,(P) = 1,(P" — P) + 1,(P), with (P — P’) € Dy(K,). Let
us denote as ¢p the map from O 4 ) t0 O 4 (p) iNduced by tp and use
zZ = ¢p(z),i = 1,...,0, asloca coordinates on D, (K,). Then, 1,
expanded on Dy (p) (K,) using thecoordinates z; , . . . z; hasthe‘same’ power
seriesexpansion asits power seriesexpansionon Dy (o) (K,) using zs, . . ., Zg,
except with adifferent constant term (namely, A, (P) instead of 0).

The function %, is unique because any analytic homomorphism A :
A(K,) — K, with d(1) = n must have the same power series expansion
as A, in some neighborhood of O and must therefore equal A, on this
neighborhood; since any neighborhood contains an open subgroup of finite
index in A(K,) this means that » = A, everywhere. This concludes the
proof of 1.2. Further information about p-adic integration can be found in
[Col] and [CZ].

We define
log : A(K,) — Hom(I'(A, Qa/k,), Ky)

by the formula log(P)(1) := A,(P). This map is well-defined since A, is
unique. It is clearly agroup homomorphism since the maps A, are. Let

9,7 : Hom(F(A, QA/KU)a Kv) —_ KU

denote the evaluation at 1. Then 1, = 6, olog. It follows from the definition
of Chabauty rank that whenever Chab(A, K, v) < g, there is a nonzero
differential n € I'(A, Qa/k,) such that A,(A(K)) = 0.
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Proposition 1.3. Let X/K, be a smooth proper geometrically connected
curve of genus g > 1. Given a differential w € I'(X, Qx/k,), there is an

analytic map
(1) ro  X(Ky) — K,

such that d(A,,) = w. Moreover, let X be any model for X over Ok, and
assume that Xns(Fg) is not empty. Let P € X(K,) be any point with
r(P) e Yns(Fq). Let u bealocal coordinate for P. Then there isa nonzero
t € Ok, (independent of P) suchthat tA,, hasalocal power seriesexpansion
converging on Dy p (K,) of the form

=\ am
2 th, = —u"
2 ao+n;lm

with ap € K, and a, € O, for m > 0.

Proof. Let J/K, denotethejacobianof X/K,.Weuse P € X(K,) toobtain
anembedding j : X — J defined over K,. Thisembedding induces an iso-
morphism j* from I'(J, 23/k,) to I'(X, Qx/k,), Soevery w € I'(X, Qx/k,)
is j*(n) for somen € I'(J, Qy/k,). Thefunction 4, := A, o j isan anaytic
map from X(K,) to K, and d(»,,) = d(x, o j) = j*di, = j*nw. We may
choose a non-zero t € Ok, for which ti, has a power series expansion
as in Proposition 1.2; we will use this expansion to derive power series
expansions of the form (2) for tA,,.

Let X" denote the subset of X that is smooth over Ok,. Denote the
Néron model of J by g. The universal property of Néron models implies
that the map j extends to an Ok, -map ¢ : X" — g. (In particular,
¢ xo,, Ky, = ].) Itfollowsthat j(Dyp(K,)) is contained in Dy jp)(K,).
We al'so obtain amap of local rings Og 4 p) — Ox.r(p SiNCE ¢ isa i, -
morphism. Completing @y 4 (p) a the prime corresponding to j(P) and
Ox r(p) a the prime corresponding to P givesamap v : Ok, [[Z1, ..., Zl]
—> O, [[u]], which yields a power seriesfor tA,, as

Il,A.A.Igzo

Furthermore, sinced(t),,) = j*(tn), thispower series must have aderivative

of theform .
¢*(Z Z ail ,,,,, ig,@zi]fl "'ZiggdZe)

(=11i1,....ig=0
witha;, i, € Ok,. Computing the above out (by the chain rule) gives

g

. 9
A0u) =3 Y Auip W@+ (2Pl

€=1i1,....ig>0
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which isin O, [[u]]du since % € O, [[u]] (sinceitis simply the formal
derivative of y¥/(z,) € O, [[ull). Thus, ti, has a power series at P that is
the formal integral of a power series with O, coefficients, asin (2).

1.4. Let us now prove a smple lemma that will alow us to bound the
number of zeros of A, in terms of information about local power series
expansions. Similar arguments can be found in [Col], [Co2], [McC1],
[McC2], and [WEet]. For simplicity, let us assume that K,/Qp is unrami-
fied. Let A : X(K,) — K, be a p-adic analytic function. Let P € X(K,)
withreductionr(P) = Qin X andlet u bealocal coordinate at P. Thislocal
coordinate induces a bijection Dg(K,) — pOk,. For simplicity, we shall
denote Dq(K,) by Dq. Suppose that A has a power series expansion of the
formi =ag+ Y v, 32u™, whereag € K,, am € Ok, and v(ay) = 0 for
some m, convergent on Dg. We can thus consider A as a power series A(u)
in the variable u, converging on the disk |u| < |p|. The p-adic Weierstrass
preparation theorem ([Kob, Thm. 14]) allows us to bound the number of
zeros of A in Dq. Asthis result is most easily stated on the disc O, we
will make the substitution z := u/ p. This gives us apower series expansion
forainzas

oo
8m
rMz2) = —p"z",
@ ao+n;lmp

converging for al z € O, . Let us make the definitions
(X, Dg) := min{m | v(ayn) < 0},
J(x, Dg) := min{m | v(a, pt/0) > v(anp™/m) foral ¢ > mj,

(inthe above formulawhen m = 0, read a,, p™'/mto be ag). The Welerstrass
preparation theorem then implies that the number of z € O, for which
A(2) = Oisat most J(A, Dg). It aso follows from this theorem that when
(A, Dg) > 0, the number of z € O, for which 1'(z) = 0 is a most
(X, Dg) — 1 (where 1/(z) denotes the formal derivative of A(2)).

Lemmalb. Letp> 2 Assumethat K,/Q,isunramified. Write (A, Dq)
smply as | . Let d be any integer suchthat p > d and p® > | +d.

a) Supposethatp | I+1,14+2,...,0r | +d—1.ThenJ(), Dg) < | +d—1.
b) Supposethat pf 1 + 1,1 +2,...,and | +d— 1. Then J(», Dg) < I.

Proof. Consider the function p(x) := X — log, X. It is clear that p(m) is
a lower bound for v(amp™/m) when am € O,, since v(X) < log, x. The
derivative of p(X) isp’(X) = 1— 1/xIn p, sowhen p > 2, thefunction p is
increasing for x > 1. Notethat p(l +d) = | +d —log,(l +d) > I, since
| +d < pd. Similarly, foral 1 <i < d—1,wehave p(l +i+d) > | +i—1.
Let us now prove a). Supposethat p | | +i forsome0 <i <d— 1. We

find that
A+ i P
U(I+ip )§I+| 1.
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Sincep ||l +i,andd -1 < p,Weflndthath(IJrJ for dl j =

i+1,.. |+d—1Hencev(""'jfJ y>14+j>1+i—1foral
j=i +l,...,| + d — 1. Aswe mentioned above,
ay4itd P’ H+d . .
————— ) > p(l +i+d I +i—1
<|+|+d >p(l +i4+d)>1+

Since p(x) isincreasing for x > 1, it followsthat foral j > | +i + 1, we
have v(ajp'/j) > | +i — 1. Hence, J(A, Dg) < I(A, Dg) +d — 1.

Part b) is clear when | = 0. To prove b) when | > 0, it is easy to see
that we need only show that v(?pj) > | foral j > |, since v(a'l—p') <
for I > 0.Now,sincept | +ifori =1,...,d— 1, wefind that

v(la:ii p'+i> > 4+i> 1.

Recall that p(I + d) > |. Using the fact that po(x) isincreasing for x > 1,
weseethat p(j) > | foral j > I, and Lemmal.5isproved.

Let us fix some notation to be used in our next proposition. Let X /0,
be any model of X/K,. Let Q € Xns(Fq). Denote by ©q the local ring
Ox.q.Let Py € X(K,) beapoint reducing to Q. Choose alocal coordinate
ufor Py. Let @Q denote the completion of thering O at the prime (u). One
easily shows that the natural map from the ring O, [[u]] of formal power
seriesto thering @Q (which sends u to u) isan isomorphism. It isalso easy
to check that the ©o-module of relative differentials Qp,/0x, 1S generated
by du. Any differential w € Qoq/0,, Can thus be written as a power series
o= sam1UMdu with ay, € Ok, foral m e Zo.

Since Q is anonsingular point of X, the local ring O o Isadiscrete
valuation ring, and we denote by vq its vauation. For any P € X,,
we denote by vp the valuation of the local ring O, p. A differential
w € T'(X, Qx/0.,) pulls back to a differential i*w via the natural map
i : Xk, — X from the generic fiber Xk, of X to X. We denote by (i*w)o
the divisor of zeros of i*w, and we shall write (i*w)o = ) _p vp(i*w)P.

Proposition 1.6. Let X/K, be a smooth proper geometrically connected
curve of genus g > 1. Let X /0O, be a model of X/K,. Keep the notation
introduced above. Let w € I'(X, Qx/0,,) and let Q € Xns(Fq). Then there
exists an element t € K, (dependent on Q) such that tw € I'(X, Qx0,)
and has a local power series expansion (when viewed as an element of

Q@Q/@KU)

© to =3 an.su"du,

m=0
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with am1 € Ok, for all m € Z-, such that

(4) min{m | v(@ni) =0} = Y [Ky(P) : K,Jvp(i*w),
r(P)=0Q
where the sum is taken over all points P of the scheme X, such that the
intersection of the closure of P in X with X is Q.
Proof. Since Qe islocaly free of rank 1 at Q because Q isasmooth

point by hypothesis, the element du is a generator of the stalk Q¢,,0,, Of
Qx/0, @ Q. We can write the stalk of w at Q as sdu, where s € Oq.

Factor s ass = y;'---yinn’, where the y; are generators for primes
corresponding to points P; on the generic fiber of X. It is not hard to see
that vp, (i*w) = ¢;. Indeed, one obtains the loca ring O, p, localizing
Og a the primeideal generated by y;, so we seethat the ideal generated by
Sin O, .p, isjust MQ , Where Mp, isthe maximal ideal in Ox,, p,; Since
f pullsback to agenerator for the stalk of Qx, /k, a Pj, sf must pull back
to adifferential with order of vanishing equal to vp, (s) = ¢; for dl j.

After dividing s by 7 we obtain an element s; that isnot in 79q (thus
t = 7~ will satisfy the statement of the proposition). Now complete Oq
at (u). We obtain a power series expansion s;du = Y~ jamu™du. It is
easy to check that @Q/(n) is the completion of Oq/(m) a the maximal
idea (u). Thus the valuation vg of Oq/(7) extends to a valuation on

@Q / (), again denoted by vq, and identified with ord,. Denoting by ¢, the
map taking Oq to O/ (7), itisclear that

min{m | v(am) = 0} = vo (¢ (S1)).

n
Sincevg (¢ (s1)) = Y £jvo(Px(y))),itsufficestoshow that vg (¢, (v))) =
j=1
[K,(P)) : K,]. Thisfollows from the fact that:
va(@=(¥)) = dimg, ((Oo/mTOQ)/(d=(¥)))) = ranke,, (Oa/vi0q)
= [KU(P]) . Kv]a
since Oq/y;Oq isafree Ok, -module. This concludes the proof of 1.6.

Let us now apply Lemma 1.5 and Proposition 1.6 to the sort of p-adic
analytic function that arises in the Chabauty-Coleman method.

Proposition 1.7. Let X/K beacurveofgenusg > 1defined over anumber
field K with completion K, unramified over Q. Let X /O, be any model

for X/K,, and let U C Xns(Fq). Let d be any positive integer such that
p>dandp®>2g—1+d.IfA,isasin (1), then

5) W N O)] < Ul + (E%;) (29-2).
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Proof. Choose Q € U. For any nonzero element t € K,,, multiplying 1,
by t will not change the zeros of A,,. Furthermore, Ay, = ti,, (Sihce diy, =
d(th,) and i, (0) = 0 = tA,(0)),s0[r 1 (Q)NA, 10| = [r " (Q)NA, (0)].
Thus, we may choose tg € K, and apply Proposition 1.6 to obtain a power
series expansion of the form (3) for which equation (4) holds (since w €
I'(X, Qx/k,) in(1), wefirst chooset’ sothat t'w € T'(X, Qx/0,,) ad apply
1.6 to t'w). We denote by Z(w, Q) thesum > p_olKy(P) : K,Jvp(i*w)
appearing in the statement of Proposition 1.6. When | (Ao, Dq) > 0, we
must have Z(w, Q) = I (Atgw, Dg) — 1, since d(Ay,) = tw. Since

Y Z.Q < ) IKMP:KJvp(i*w) =29 -2 < p' —d -1,

QeU PeXk,

wefind that | (A0, Dg) < p® —d, and we can apply Lemma 1.5 (note that
the hypothesis on the coefficients of 1 in 1.4 issatisfied since Z(w, Q) > 0).
When | (A0, Do) = 0, then 4, isinvertible and |Dg N A,%(0)] = 0. We
obtain

Nt o< Y [Dena ko)
QeU
IDgN1;%(0)|>0

>~ Ihgwr DQ)

QeU

© Y Z@Q+d

pl(Z(@,Q)+2),...,
or pl(Z(w,Q)+d)

+ ), (Ze,Q+D.
pf<_2<c2g,Q)d+i>,
1=2,...,

A

A

If p| (Z(w, Q) + i) for somei = 2,...,d, then Z(w, Q) > p — d.
Since ) gy Z(w, Q) < 29— 2, thereare at most (2g — 2)/(p — d) points
Qe an(Fq) forwhich p | (Z(w, Q) +i) forsomei =2, ..., d. Plugging
thisinformation into (6) showsthat |r ~(U)NA_1(0)| isbounded asdesired
by

29— 2 d—1
. §|U|+<1+m> (29 - 2.

> Z. Q)+ Ul + @ -1
QeU P-

We are now ready prove Theorem 1.1.

1.8. Proof of 1.1. Each differentia n € I'(J, 2;/«,) givesrise to a homo-
morphism 4, : J(K,) — K,. Since Chab(J, K, v) < g, thereisanonzero
n for which 4, (J(K)) = 0. We may assume that X(K) contains a point Q,
as otherwise our assertion is trivial. Hence, we may embed X(K,) into J
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viathe mapping j : X — J,whichsends P € X(K,) totheclassof P — Q.
Now, n pulls back to adifferentia » on X, and 1, restrictsto afunction A,
that vanishes on X(K) (because j sends pointsin X(K) to pointsin J(K)).
Applying Proposition 1.7 then gives the desired resuilt.

1.9. Notethat if an abelian variety A/K is K-isogenousto aproduct [ A;,
then Chab(A, K, v) = ) Chab(A;, K, v). Thus, the method of Chabauty-
Coleman can be applied to A if and only if Chab(A;, K, v) < dim(A;) for
somei. We will use this fact later.

Note that the Chabauty rank Chab(A, K, v) is zero if and only if the
Mordell-Weil rank of A/K iszero. When thisisthe case, we can strengthen
Theorem 1.1 asfollows.

Proposition 1.10. Let X/K beacurveof genusg > 1 defined over a num-
ber field K with completion K, /Q suchthat v(p) < p— 1. Let X /O, be
any regular model for X/K,. If the Mordell-Weil rank of X/K is zero, then
IX(K)| = [Xns(Fg)|.

Proof. We claim that for each Q € Xns(Fy), the set r~1(Q) contains at
most one K-rational point of X. Indeed, suppose that P and P’ belong to
r~1(Q) N X(K). Then P’ — P belongs to the kernel of reduction of J(K),
which does not contain any torsion point other than O (see for instance [ Ser,
LG 4.25-4.26]). Thus, P’ = P.

The following statement, suggested by McCallum at the 1999 Arizona
Winter School, is obtained from Theorem 1.1 by considering d = 1 and
U= xns(Fq)-

Corollary 1.11. Let X/K be a curve of genus g > 1 defined over a num-
ber field K with completion K, unramified over Q. Let X /O, be any
regular model for X/K,. If p > 2g and Chab(J, K, v) < g, then [ X(K)| <
| Xns(Fo)| + 29 — 2.

Inview of 1.10 and 1.11, it is natural to wonder, under the hypotheses
of 1.11, whether the bound for | X(K)| can be made to depend on the
precise value of Chab(J, K, v), such as a bound of the form |X(K)| <
[ Xns(Fg)| + 2Chab(J, K, v).

2. Congtructing regular models of curves

Let K be afidd with a discrete valuation vk. Let @Ok denote the ring of
integersof K, withmaximal ideal (k) and residuefieldk. Let p := char(k).
Let X/K be the nonsingular proper model of the plane curve C/K given
by a homogeneous equation f(x,y,2) € Ok[X, Y, z] with unit content.
Explicitly resolving the singularities of Proj(Ok[X, Y, z]/(f)) to produce
aregular modd X /0 of X/K isvery difficult in genera; in this article,
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we use instead a quotient construction to obtain information on a regular
model of X/K. This construction can be summarized as follows. It may
happen that over a Galois extension L /K, anorma model % /0 of X, /L
can be described. If the Galois group Gal (L /K) acts on Y, lifting its action
on Spec(@, ), then we may consider the quotient ¥ /Gal (L /K) asascheme
over Spec(Ox ). The scheme Y /Gal(L/K) isanorma model of X/K and,
thus, a desingularization p : X — Y /Gal(L/K) leads to aregular model
X/0k of X/K. A key feature of this method is the fact that when Y is
regular, the singularities of Y /Gal(L /K) are quotient singularities and that
when L /K istame, such singularities arewell-understood and, thus, amodel
for X/K can be described.

To apply the Chabauty-Coleman method to the case of the curves
Xk.n/Q, we need a description of a regular model for Xgj, over Z‘r’)”r.
These models are obtained in two steps, first by describing a model of Xgp,
over awell-chosen extension L /Qp™, and then by using the quotient con-
struction to obtain a model over Z!". The second step is done in the next
section, in Propositions 3.1, 3.2, 3.3, and 3.5. In this section, we first con-
struct regular models of the curves X, over the appropriate extensions L,
and then we review for the convenience of the reader the details of the quo-
tient construction. To deal with the caseswhere F(x, 1) doesnot havesimple
roots, we introduce the following notation. Let F(x, 1) = c]_[iszl(x — o)
in K[x]. Let

d*(F) := P [ J(oi — o)) € Ok.
i]

When acurve has potentially good reduction after atameextension L /K,
such as the superelliptic curves X := Xgp, with nx 1 d*(F) and p > n
(see 2.1 below), the quotient construction is applied to the smooth minimal
moddl Y /0, of X._/L, where L /K is chosen large enough to ensure that
XL /L has good reduction. In this case, the resulting model for X/K is not
hard to describe and this description is reviewed in 2.15.

Thecoreof thissectionisthestudy of thedifficult casewhererx | d*(F)
and k| h. Inthis case, we are not able to describe a proper regular model
for Xgp over ZY", but we will construct in 3.5 just enough of a regular
model to be ableto bound the number of residue classes of primitiveintegral
solutions to the Thue equation F(x, y) = h. Let L /K be the splitting field
over K of the polynomia F(x, 1), andlet % /O bethe normalization of the
model

C = Proj O.[x, Y, z]/(hZ" — F(X, y)).

The quotient construction is applied to % /@, in 3.5. In this section, we
describe some smooth open affine subsets of the model ¥ and prove in
2.6 the crucial result that the reductions of the primitive integral solutions
are contained in at most n such open subsets. Let us start with a couple of
preliminary lemmas.
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Lemma2.1. Assumethat char(k) 1 n. Let X := Xgp/K.

a) If nx +d*(F) and 7k 1 h, then X/K has good reduction.
b) If nx + d*(F) and nx | h, then X/K achieves good reduction over

L := KW/h).

Proof. Considerthemode C/Ok givenby Proj(Ok[X, Y, z]/(hzZ"—F(x, y))
and its normalization C" /9. The generic fiber of C"', that is, the curve
Xen, has genus equal to 2g(X) — 2 = n(s — 2) — >, ged(n, my). If
g(X) = 0, then X/K has obviously good reduction over O . Assume then
that g(X) > 0. Recall that deg(F)F = x5 + y. Thus, at asingular point

(X0, Yo) of the reduction F — h = 0, we find that deg(F)F (Xo, Yo) = O.
Since h # 0, p | deg(F) when the reduction has a singular point. When
mk 1 hand g 1 d*(F), we find that the geometric genus of G is equal
to g(X). Thus, G} isnon-singular since its arithmetical genus is equal to
the genus of X. It follows that " /O is the (minimal) regular model of
X/K.

If 7k | h, consider the change of variablesZ = /hz, X' = xandy =y.
Then Proj(O_[X, Y, Z1/(Z" — F(X, y'))) isamodel for X /L. Hence, we
may apply &) to find that X, /L has good reduction. This concludes the
proof of 2.1.

For most of the applications that we have in mind, the residue field
Ok / (k) will beF,, and we will assume that p > n. Thefollowing lemma
shows that we may assume, under these hypotheses, that F(x, 1) is monic.

Lemma2.2. Assumethat |Ok /()| > S. Then, up to a change of vari-
able, we may assume that F(x, 1) ismonic in O [X].

Proof. Let L/K be an extension such that F(x, y) = [T, (BiXx — o)™,
with 8, pi in@_. Thesubstitution y' = y+uxyields F(x, Y) = [T"_,((Bi +
pil)X — piy)" . Since the coefficients of F have no common factor, we must
have min(v (8i), v.(pij)) = 0O for each i. Thus, for each i, we will have
piu+ Bi € O for al but one choice of residue class for u. We have s
expressions pju + B and more than s residue classes in Ok /(wk), SO we
can choose u € Ok with pju+ B € O for al i. Then, the coefficient of x"
inFX, y) =[]_((Bi + pw)x — piy)™ will bein OF N Ok = O.

2.3. Someregular affine subsets of the normalization of ¢

In what follows, we assume that F(x, 1) is monic, that 7k | h and that
x| d*(F). Assumeasothat K iscomplete, so that for any finite extension
L/K, theintegra closure @ of Ok in L isalocal ring.

Let L/K be the splitting field over K of the polynomia F(x, 1). We
denote by v the valuation of @, , and let = be auniformizer of @ . Wewrite
our origina equation F(x,y) = h as

S
[[x—aip™ = pur",

i=1
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where p is unit in @, and w = v(h). Let us say that P = (a,b) is
aprimitive integral solutionto F(x, y) = hifa, b € Ok andged(a, b) = 1.
We will sometimes also refer to such an (a, b) asa primitive integral point.
We describe below an affine regular scheme U/O such that U x gpec(o, )
Spec(L) is open in Xgh and P € U(L) has a non-trivial reduction
modulo (7). In other words, the closure of P in U includes a point on
the special fiber of U.

Consider any root o; of F(x, 1) suchthat v(a—aib) = max;(v(a—a;b)).
Let t := v(a — a;b). Change variables from x to zp := X — ¢y, S0 that
F(zo.y) = 2o[[;_1(Z0 — 7;y)", where yj = aj —a; for j < i and
Yj = aj41 —«; for j > i. Define sy := 0, and then recursively define

S = minfu(y)) |t > v(yj) > S},

for k > 1. We obtain in this way afinite increasing sequence of integers. If
t is not the largest integer of this sequence, add t to the sequence. Denote
the elements of the new sequenceby s < § < -+ < Sy = t. Define, for
k < m,
S = Ay v(y)) = s

The set 8y, is defined to be {y; | v(y;) > sm}. If y isaroot of F(zg, 1), let
n(y) denote its multiplicity. Then, for k < m, define z, to be zo/7%, and let
F« be the polynomial

k
Fk(Zk, y) = 1_[ 1_[ (HSK—SJ' Zx — W_Sj y)n(}’) 1_[ (Zk i )/7T_Sky)n(y),

j=0yesdj V¢Uij(:05j

Set
k m
U=y (O NS+ ) () N
j=0 yes; j=k+1 yesj

Then F(z«, y) = Fo(2o, y) U Finally, let

A= OLlze Y1/ (F(ze y) — u ™),

for k < m (recall that h = u7™). Note now that when (a, b) is primitive
and 7 | h, then v(b) = 0. Indeed, if v(b) > 0 and (a b) is primitive,
then v(a) = 0. Thus, v(a — «jb) = 0 for al j, contradicting the fact that
v(F(a, b)) = v(h) > 0. Hence, v(b) = 0. If follows that for j # i, the
inequality

v(a—bej) > min(v(a — ba;), v(be; — baj))

impliesthat either v(a—boj) = tand v(e; —j) > t, or v(a—be;) < tand
v(a—ba;) = v(e; — ;). In particular, wefind that when (a, b) isprimitive,
w = Um.
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Lemma24. Assumethat p t n. Thering Ay, isregular and Spec(An)/
Spec () is smooth.

Proof. The generic fiber of A, iseasily checked to be smooth. Hence, we
need only check points on the special fiber of An,. We note that modulo 7,
the equation Fn,(zyn, Y) = u isequivalent to the equation

(1‘[ (zm — (//7DY) ”“) (H IEEZRN) (”) ~T=0,

YE€8m j=0 yes;

because 7*~Ym = 1 as noted earlier. Since x # 0 and p 1 n, this equation
defines a nonsingular affine curve in A2, Thus, the special fiber of A, is
nonsingular; therefore al the points on the specia fiber of A, are regular
and A, isaregular ring.

Lemma25. Assume that p 1 n. The affine scheme Spec A, is an open
subset of Y, the normalization of € := Proj O [X, Y, z]/(hZ" — F(X, y)).

Proof. Since A, contains Ag andisregular, Ay, containstheintegral closure
of Ag. Thus we have a natural map ¢ : Spec(Ayn) — Y, with Y normal
and v generically an isomorphism. We are going to show below that  is
quasi-finite. It follows then from Zariski’'s Main Theorem that j isan open
immersion. There is a natural ring homomorphism A, — Ay that sends
Z_1 to 7 S-17,. Define

k
Gk(z, y) == 1_[ 1_[ (7% Sz — ym ™ y)n(y)-

j=0yesj

Let S denote the multiplicative subset of A, generated by Gy(z, y). We
clamthat Ay isintegral over S:_ll(Ak_l). Indeed, it suffices to show that z,
isintegral over S_% (Ax_1). Recdll that in Ay,

m
Fe(ze, Y) — um ™ = Gy_1(zk_1, ¥) 1_[ 1_[ (Zk — )/T[_S‘y)n(y) — Y

j=kyesj
=0.

Thus, theimageof z in A, istheroot of amonic polynomial over S_ _11 (A1)
(since Gy_; is of course a unit in thisring). Hence, it follows that the map
Spec(Ax) — Spec(Ax_1) is quasi-finite for any k > 1, which concludes
the proof of 2.5.

Let U(wj) := Spec(Am). The primitive integral point P = (a, b) in
Xe.n(L) corresponds to the point (7 ~'(a— a;b), b) in U(x;)(L). Sincethis
point isintegral, it has anon-trivial reduction in the special fiber of U («;).
Denote by & the set of integra primitive solutions, so that

P = {(XY) € (Ox)? | F(x,y) = hand ged(x, y) = 1}.
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Proposition 2.6. Assumethat p 1 n. The closure of & in the normalization
Y/, of /0, iscontained in at most s regular affine open sets, namely,
this closureis contained in the union of the images of the sets U («;), where
«aj runs through all the roots of F(x, 1) such that there exists a primitive
integral point (a, b) with v(a — «jb) = max; (v(a — «jb)).

Proof. The proposition follows from our next lemma.

LemmaZ2.7. Letz | h.Let (a b) and (@, b') be elements of . Suppose
that v(a—«jb) = max;(v(a—a;b)) and v(@ — ;') = max; (v(@ —a;b’)).
Then v(a — ajb) = v(@ — a;b’).

Proof. Recall that v(b) = O when 7 | h and (a, b) is primitive. Suppose
that v(a— ajb) and v(@ — «;b’) are not equal. We may assume without loss
of generality that v(a/b—«;j) > v(@ /b’ — ;). We claim that thisinequality
impliesthat v(a/b — «j) > v(@ /b’ — «;) for al j. Indeed, v(a/b — «j) >
v(@ /b —aj)isclearif v(@ /b'—ai) < v(a/b—aj). Thuswemay assumethat
v(@ /b —a;) > v(@/b—aj). Fromv(a/b—a;) > v(@ /b’ — ;) wefind that
v(@a/b—a /b)) = v(@ /b —a). Itfollowsfromv(a/b—a’/b’) > v(a/b—«;)
that v(a@' /b’ — «j) = v(a/b — «j), and our claim is proved. This claim
contradicts the fact that v(F(a, b)) = v(F(@, b)) = v(h), and the lemma
follows.

Slightly more can be said about the closure of & in Y /@, . Consider the
following two schemes, U («;) attached to a primitive integral point (a, b)
with associated valuation t, and U («j) attached to a primitive integral point
(&, b') with associated valuation t’. We claim that if v(e; —aj) > min(t, t'),
then the images of U(wi) and U(a;) in Y are equal. Assume t’ < t. It
follows that v(a’ — ajb) > t'. Thus, v(@ — ajb) = t/, and Lemma 2.7
shows that t = t’. We may then define an isomorphism from U(w;) to
U(wej) onthelevel of rings

OLIU, yI/(Fy (U, y) — ) —> OL[u, Y1/ (Fn(u, y) — w)

by settingu’ > u + 7 (e —aj)yand y — .

We have thus shown that there exist at most s digoint disksin @, each
centered at aroot of F(x, 1), such that if «; and «j belong to the same disk
(and have primitive solutions attached to them), then the images of U («;)
and U(ej) in Y areequal.

2.8. Thequotient construction. Let X/K be a smooth proper geometri-
cally connected curve of genus g. Let L/K be a cyclic Galois extension
with Galois group Gal(L/K) =< o >. Let 4/0, be a norma model of
XL /L suchthat Gal(L /K) actson ¥, lifting its natural action on Spec(©,).
An example of such amodel ¥ isthe normalization in L(X) of a normal
model over O of X/K. Another example is the minimal regular model
Y/O, of X_/L.Indeed, the following is well-known.
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29. Let Y /O betheminimal regular model of X, /L. Themap o induces
acanonical morphism X, — X, over themap o : Spec(L) — Spec(L).
Since X isthegenericfiber of Y, themap o induces abirational proper map
Y — Y Xspec(o,) SPEC(OL) over Spec((,). By the universal property of
aminimal model ([C-S, page 310]), this map extends to amorphism from Y
t0 Y X spec(o) SPeC(@y) over Spec(O,). Since Y isreduced and separated,
this extension is unique. Hence, there exists then a unique automorphism
7 : Y — Y over the automorphism o : Spec(O.) — Spec(O.).

210. LetG =<t>,witht:Y — Y lifting o : Spec(@.) — Spec(O.).
Thefollowing fact is standard: Since % /O, is projective, the quotient Z =
Y /G can be constructed in the usual way by gluing together the rings of
invariants of G-invariant affine open setsof Y. The scheme Z /O« isnormal
and, hence, its singular points are closed points of its specia fiber. We let
f : Y — Z denote the quotient map.

The normal scheme Z has quotient singularities. A desingularization
v : X — Z leads to a regular model X /0@ of X/K. Let K™ denote
the maximal unramified extension of K, and assume now that K = K™.
When L /K isatamely ramified field extension, the quotient singul arities of
Z are well-understood. We recall their properties below, closely following
Viehweg's article [Vie]. We refer the reader to his work for more details.
Though he states at the beginning of his paper that he considers only the
equicharacteristic case, his proofs of the facts listed below are also correct
in the mixed characteristic case.

211 ([Vie page 303]) LetT: Y — Yand 7% : U™ = U™ pethe

natural morphisms induced by t. Then the natural map
ATES LR S e
is an isomorphism of schemes over the residue field.
For any irreducible component Y; C Y, let

DY) := (€ G | u(Y) = Y} and 1(Y)) := {u € G | yy, = id).

2.12. ([Vie, page 303]) Let m; be the multiplicity of Y; in Y and let Z; :=
f(Y;). The multiplicity of Z; inZisequal tom; - [L : K]/[1(Y))].

Recall the following terminology. Let (C - D) denote the intersection
number on aregular model X of two divisors C and D. Let uscall chain of
rational curveson X adivisor D such that

(1) D =J, E, E smooth and rational curvefori =1,..., g.
(2 (Ei - Ej;1) =1fordli =1,...,9—1and (E - Ej) = 0 for al
j
j #1141 Moreover, (E; - Ej) < —2forali.Letuscal E; and Eq the
end-components of the chain.
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Consider again a norma model Y% /@, with an action of Gal(L/K)
lifting the action on Spec(©| ). Assumethat U /O isasmooth open subset
of ¥/0. suchthat U isinvariant under the action of G. Let Z := U/G.

2.13. ([Vie, Sect. 6]) There exists a regular scheme X /O and a proper
birational morphism v : X — Z such that v induces an isomorphism
between X — {v1(Zsing)} and Z — {Zgng} and such that, for any z € Zgpg,
v~1(2) is a connected chain of rational curves. The point z belongs to an
end-component of the chain. Since U issmooth, wefindthat if zisasingular
point of Z, then v=1(2) intersects the rest of the special fiber X with normal
crossings in exactly one point, say on E;. (Viehweg statesin 8.1.d) on page
306 of [Vi€] that themodel X, obtained by taking the quotient of U and then
resolving the singularities, hasnormal crossings.) Let uscall the component
Eq the terminal component of the chain v~1(2). The other end-component

of the chain v=(2) is attached to an irreducible component of X \ v™(2).

2.14. ([Vie, Sect. 6]) Let f : U — Z denote the quotient map. Let
Zi, ..., 2y be the closed points of Z that are ramification points of the
morphism f : U — Z'* Then (z1, ..., z) is the set of singular points
of Z. Moreover, if v: X — Z isthe desingularization of Z described in
2.13, then the multiplicity of the terminal component on the chain v=1(z)

isequal to the number of closed pointsin the fiber T @),

2.15. We now apply the quotient construction to the case where the model
Y /0O, issmooth. Thescheme Z = Y/ < 7 > hasanirreducible special fiber.
The reduced special fiber 7" is obtained asthe quotient of Y by the action
of <7 > and isthen asmooth and proper curve. The multiplicity of ZinZ
equals [L : K]/I1(Y). The singular points of Z are the ramification points
71, ..., 24 of the morphism f : Y — 7' and the singularity at each of
these pointsisresolved by achain of rational curves. Theterminal curve on
the chain resolving z; has multiplicity equal to the number of closed points

in the fiber T_l(zi). The regular model X /O obtained as the minimal
desingularization of Z isthus very simple.

3. Applications of the method of Chabauty-Coleman

We may now apply the method of Chabauty-Coleman to the case of Thue
equations. Let g := g(Xgn). We distinguish four cases, according to the
divisibility of d*(F) and h by p. Our main result is stated in 3.9 below.

Proposition 3.1. Let Xg,/Q be such that for some prime p, p 1 d*(F),
p{n, p? > 2g+1,andeither p { horn | ord,(h). Let K beany number field
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having anunramified prime‘ of norm p. Assumethat Chab (Xg n, K,B) < 0.
Then

-1
Xen(K)| < (20 - 2)%2 + 1%, ().

where X /Z isthe minimal regular model of Xg p,.

Proof. Whenn | ordy(h), an obvious change of variable over Q showsthat
Xg,h isisomorphic to X p-0dp( - We are thus reduced to the case where
p 1 h. In this case, as noted in 2.1, Xgn/Q, has good reduction over Zp.
Thus, we can apply 1.1.

Proposition 3.2. Let Xg,/Q be such that for some prime p, p 1 d*(F),
pfn, p? > 2g+1, p|handn{ordy(h). Let K beany number field having
an unramified prime B of norm p. Assume that Chab(Xgp, K, B) < @.
Then

-1
Xen(K)| < (29—2)%2+np.

Let s denote the number of distinct roots of F(x,1) in Q. If ged(n,
ordp(h) = 1, then [Xen(K)| < (29— 2) 5 >+ sp.

Proof. Let X := Xgn. Asnoted in 2.1, X has good reduction over the
extension Q,(+/h), which is tame. Thus, we may apply the quotient con-
struction to describe aregular model of X/Qj over Zi . Let L := Q?j(«”/ﬁ).
The extension L/(@'F‘Jr is Galois of order m := n/gcd(n, ordy(h)), with
cyclic Galois group. Let &, be a primitive m-th root of unity, and denote
by o : L — L, with o(/h) = &,v/h, a generator of Gal(L/Qj). The
morphism o liftsto amorphismo : X — X by setting

o : L[u,v, w]/(F(u,v) —hw") — L[u, v, w](F(u, v) — hw")

with o(u) = u, o(v) = v and o(w) = w. Let Y denote the normalization of
Proj(OL[x, Y, z]/(F(x, y) — 2")). Then % /O isthe smooth minimal model
of X_/L (see 2.1). The morphism o : X, — X_ extends to a morphism
oY — Y by setting

o OLX Y, Zl/(F(Xy) = 2 — OLIX, Y, 2]/ (F(X, y) — Z")

with o(x) = X, o(y) =y, and o(z) = &mz. When restricted to the spe-
cia fiber Y of Y, the morphism o becomes an automorphism & over F,,
of Y, of exact order m, which lifts the standard automorphism of order m
of Proj(K[x, y, z]/(F — z")). This automorphism has s fixed points. Pulling
back these fixed points on Y produces at most 3", ged(n, n;) fixed points
for the automorphism o of Y. Bounding Y_;_, gcd(n, n;) by n, we find that
the quotient map Y — Y/(c) istotally ramified over at most n points. It
follows from 2.14 that the desingularization X of Y /(o) has a special fiber
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containing at most n (smooth rational) components of multiplicity one. Note
that when m = n, the fixed points of the automorphism o correspond to
the totally ramified points of the map from Y to P! obtained by composing
the map from Y to Proj(k[x, y, z]/(F — z")) with the projection map from
Proj(k[x, y, z]/(F — z")) ontoits[x : y] coordinates. This composition map
has at most s totally ramified points. Thus, in this case the desingulariza-
tion X of Y /(o) has a specia fiber containing at most s components of
multiplicity one.

Consider now the minimal regular model Xo/Zp of X/Qp. A pointin
X(Qp) specidizes in the special fiber Xo/F, to asmooth point, belonging
to ageometrically integral irreducible component C/IF, of multiplicity one.
Let Xo := xonpZ?j . Sincethe self-intersection of C in X o equal sthe self-
intersection of C xp, F in Xo (see, eg., [B-L, 1.4]), wefind that C xp, Fp
cannot be contracted in Xy and, thus, corresponds to a component in the
minimal regular model Xog of X/Qp . Since there is a natural morphism

X — Xoo, our description above of the special fiber of X impliesthat there
are a most n components of X, that can contain the reduction of a Q-
point, and that each such component is a smooth rationa curve. Moreover,
each such component C meets the divisor %o — C in exactly one Fy-point.
Hence, the number of points in X, that can be reductions of Qp-rational
pointsis at most np. This concludes the proof of 3.2.

Let K be any number field, and let 3 be a maximal ideal of Q. Let
N(F,h,K,93) denote the number of solutions (X, y) € ((9K)§B of F(x,y) = h
with ged(x, y) = 1.

Proposition 3.3. Let Xg/Q be such that for some prime p, p { h and
p | d*(F), with pt nand p? > 2g + 1. Let K be any number field hav-
ing an unramified prime B of norm p. Assume that Chab(Xgp,K,J) <g.
Let a(p) denote the number of FFp-rational points of the affine curve
F(X,y) —h =0mod p. Then

-1
N(F. h, K, ) < (29— 2)272 +ap.

Proof. Consider the model C/Z, given by C = Proj(Zy[x, y, zl/(F —
hz")). The specia fiber €/F}, is a plane projective curve with possible
singularities only at points (X : y : z) with z = 0. None of the singular
points of € can be the reduction of aprimitive integral point (a, b). Resolve
the singularities of € to obtain aregular model X /Zp, of Xgn/Qp. Theonly
points in 3 /F that can be reductions of primitive pointsin Xgn(Qp) are
the pointsin X (F,) that correspond to T ,-rational points of C with z # 0.
Applying 1.1 finishes the proof.
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Remark 3.4. When pisnot too large compared to n, abound for a( p) better
than the Weil bound can be obtained as follows. Project an irreducible
component of degree d of the curve C/F, that is not a line onto an F,-
rational projective line. Then the projection map has degree at most d. It
follows that a(p) < np.

Proposition 3.5. Let Xg,/Q be such that for some prime p, p | h and
p | d*(F), with pf nand p? > 2g + 1. Let K be any number field having
an unramified prime B of norm p. Assume that Chab(Xgp, K, B) < @.
Assume also that the splitting field L/QY of F(x, 1) is a tame extension
(this happens for instance if p > s). When p < s, assume that F(x, 1) is
monic. Then N(F, h, K, B) < (2g — 2)2%; + snp.

Proof. Let X := Xgn. When p > s, we use 2.2 and change variables
so that F(x, 1) is monic. We may now use Proposition 2.6, which de-
scribes smooth open sets in a regular model of X over @,. Since the
extension L/Q is tame, it is cyclic, and we can thus use the quotient
congtruction to obtain information on a regular model of X over Z. Let
Y /0O bethe normalization of €/ := Proj(OL_[X, Y, z]/(F — hz")). Let
(o) = Ga(L/QY). The morphism o induces obvious automorphisms
o:Y—>Yando : € - C over o : Spec(O®) — Spec(O,), compat-
ible with the natural map ¥ — €. We shal denote by G := (o) the
group of automorphisms of Y, resp. C, generated by o. Fix aroot «; of
F(x, 1) such that there exists a primitive solution P = (a, b) € (Z?{)z with
t := v (a—bej) = max;(v.(a—bej)). Recall the notation introduced just
before 2.6: Let U («;) = Spec(O_[u, y1/(Fm(u,y) — n)). Let

U* L OLIX YI/(F(X, y) —h) — OL[u, y1/(Fn(u, y) — @)

be given by x > m{u + oy, and y +> y. The induced morphism v :
U(xj) — € was shown to induce an open immersion ¥ : U(wj) — Y in
2.5. The following lemma, whose proof is omitted, describes the possible

components of the special fiber U (w;).

Lemma3.6. Let k be any algebraically closed field. Let n € N with
char(k) 1 n. Let &, denote a primitive n-th root of unity in k. Let f(x, y) be
homogeneous of degree n in k[x, y], and let u € k*. Then f(X,y) — uz"
factors in K[x, y, z] if and only if there exist d | n and g € K[X, y] with

f =gV Then f — 2" = [173(9 - &' "yz").

We will also need the following lemma describing the action of G on
the components of U («;j). Recall the definitions of D(Y;) and I(Y;) in2.11.

Lemma3.7. Let Yy,...,Yyq denote the irreducible components of Y
whose generic points belong to U(wi). Then D(Y,) = D(Yj) = G and
(Y =1(Ypforal e, jef(l, ..., n/d}.
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Proof. Since p 1 n, the group of n-th roots of unity is contained in Q'
and acts on G/, as follows. A generator &, induces an automorphlsm
¢ : C — Cgivenby:

OLIx. y. 2/(F(x, y) — hz") > OLIx. v, 2)/(F(x. ) — h2"),
where X — X, y — Yy, and z — &,z. The automorphism ¢ induces an

automorphism ¢ : Y — Y. The generator &, also induces an automorphism
@ U(aj) — U(aj) given by
OLLU, Y1/ (Fn(U, Y) — ) = OL[U, yI/(Fn(u, y) — ),

whereu — &;luand y — £ 1y. Thereader will easily verify that v o ¢ =
@ o . Lemma 3.6 shows that ¢ acts transitively on {Ys, ..., Yy,q}. Since
the morphismso : ¥ — Y and ¢ commute, and since ¢ acts trangitively
on{Yy,..., Yo/}, we find that D(Y,) = D(Y;) and 1(Y,) = I(Y;) for all
¢,j € {1 ...,n/d}. Welet D := D(Y;) and | := I(Y;). Note now that
D = G. Indeed, if P = (&, b) reducesto Y; for some j, then o(P) reducesto
a(Yj).Since (a, b) € (Z?j)z,wefind that P reducestoapointinY; No(Yj).
Since P reduces to anon-singular point of U (i), wefindthat Y; = o(Y)).
This concludes the proof of Lemma 3.7.

Thefollovving subset of Y, V(w) := ﬂreG (Y (U(e))), isG-invariant.
Let P denote the closure of P in Y. Then P e ¥/(U(e;)) by construction.
Since P isfixed by 7, T(¥/(U(e))) contains P and, thus, P € V(«;).

LetD = PrOj(an[X Yy, z]/(F—hz")and D’ := Proj(Zp[X, y, zl/(F—
hz").Let Z'/Z and Z /7'y denote the normalization of D’ and D, respec-
tively. Clearly Z = Y /G. We have the following commutative diagram:

Y, ¢ ¥ > e Spec(01)
Lo |
Z, ¢ Z— D Spec(Z)
L |
7z, ¢ 7z 5 o Spec(Zp).,

where Y; is one of the n/d irreducible components of the special fiber of
V(ai), corresponding to afactor G| (u, y) of degreed of F(u, y) — u. The
map p induces a morphism p; : Y; — p(Yj), given in coordinates by the
bottom horizontal map below:

OLIX YI/(FO y) — ) —2 0L [u, yI/(Fm(u, y) — 1)

| l

(DL[Xa y]/(T[L, X =« y) — (OL[U, y]/(T[L» G] (ua y))
Thismorphism isclearly of degree at most d.
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Consider now the case where | = G. (This case happens for instance
if i € Q) Then V(ai) — V(ei)/G is an isomorphism. The morphism
g, Z, — €,(Z,) induced by p; is aso of degree at most d. The curve
€,(Z,)/Fp is asmooth projective line. The primitive integral point (a, b)
cannot reduce to theintersection point Q of all the components of the special
fiber of ©O’. The morphism ¢/, is defined over F, and there are at most dp
[Fp-retional points in the preimage in Z, of ,(Z)) \ {Q}. Since there are
at most n/d such components, we conclude that at most np points in the
image of V(«;) in Z' can be residue classes of primitive integral points.

Let us now consider the case where | C D. Then the image Z, of Y;
in Z = Y/G has multiplicity |D|/|I| > 1, and 2.14 indicates that to count
the components of multiplicity one (in a desingularization of Z") which
contain the reduction of primitive integral points, one first needs to count
the number of totally ramified points in the branch locus of Y; — Z,.
Consider the diagram

4 Y
[v v
V(@) —— YHV(@)).
where o @ v 1(V(ei)) — ¥ H(V(w;)) is defined so that the diagram
commutes. Consider an open set U of ¥ ~1(V(«;)) that is dense in each

fiber and is a special open set of U(w;). We find that on the level of rings,
o : U — U(e) induces the top horizontal map below

OLIU, YI/(Fu(u, y) — ) —— SHOLIU, YI/(Fu(u, y) — w))

w{ w{
OLIX YI/(FX, y) —h) ——  OL[X YI/(F(x,y) — h).
The bottom map o satisfies o(x) = x and o(y) = Y. Since the diagram

commutes, the top map satisfies o(r{ U+« y) = [ U+ y. Sinceo(r}f u+
oY) = o(r} )o(u) + o(ai)y, wefind that

t L .
o(U) = 4 aj —o(o)

o(m)) o(m))

(Notethat both 7| /o(rr}) and (e — o(ei)) /() ) belong to @, .) By hypo-
thesis, o := o}y, doesnot act trivialy on'Y,. The points where the morphism
Y, — Y,/ <7 > istotaly ramified is the set of fixed points of the map .
Note also that the reduction of any primitive integral point must be a fixed
point of o. On the plane curve G (u, y) = 0, the automorphism & is given
byur cu+cyandy+ vy, for somec, ¢ € k. Thusthe fixed points of &
lieontheline (c — 1)u + c'y = 0, and wefind that there are at most d such
points. Let now v : X — Z denote the minimal desingularization of Z. As
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we recalled in 2.14, the subset v=1(Z,) of the specid fiber of X contains
then at most d components of multiplicity one, each smooth and rational,
and each meeting the rest of the specid fiber in asingle point.

Consider now the minimal regular model Xo/Zp of X/Qp. A pointin
X(Qp) speciaizes in the special fiber %o/, to asmooth point, belonging
to ageometrically integral irreducible component C/IF, of multiplicity one.
Let Xo := Xo X7, Z?j. Since the self-intersection of such a component C
in Xo equals the self-intersection of C xp, Fp in X, (see, eg., [B-L, 1.4]),
we find that C xp, Fp cannot be contracted in X and, thus, corresponds
to a component in the minimal regular model g of X/QY . Sincethereis

anatural morphism X — X o, our description above of the special fiber of
X implies that there are at most n components of X, that can contain the
reduction of aQp-point, and that each such component is a smooth rational
curve (recall that there are n/d irreducible components Y;). Moreover, each

such component C meetsthedivisor X —C inexactly oneF p-point. Hence,

the number of points in X that can be reductions of Qp-rational points is
at most np.

Since the contribution of an open set of the form V(«;) to the number
of reductions of primitive integral points in the specia fiber of the model
X is bounded by np, and since the primitive integral points are contained
in at most s such open sets (2.6), wefind that the reduction of the primitive
integral points in the special fiber of the model X consists in a most snp
points. Thus 3.5 follows from 1.1.

3.8. The statement of Theorem 3.5/3.8 in the introduction follows im-
mediately from the proof of 3.5. Let us now state our main theorem. Let
N(F, h) denote the number of solutions (x, y) € Z? of F(x, y) = h with
ged(x, y) = 1.

Theorem 3.9. Let p be a prime! withn < p < 2n. Assume that the
Chabauty rank with respect to (p) of Xgnh/Q islessthan g := g(Xgn).
Then

N(F,h) <2n®—2n-3.

More precisealy,

a) If pthorn|ord,(h),andif pfd*(F), then | Xgnh(Q)| < 2g+s—4+
2n(n —1).

b) If p | h,n{ordp(h), and p t d*(F), then [ Xgn(Q)| < 29+s—5+
ni2n-—1).

¢) If pthandp|d*(F),then N(F, h,Q, p)

d) If p| hand p| d*(F), then N(F, h, Q, p)

<204+s—-5+n@2n-1).
<29+s—54sn(2n—-1).

1 As C. Pomerance pointed out to us, when n > 2, 010, 760, the existence of a prime p
withn < p < (1+ 1/16597)n is proven in [Scho]. We leave it to the reader to sharpen the
bounds presented in Theorem 3.9 using refinements of Bertrand's Postul ate.
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In particular, if the Mordell-Weil rank of Xgn/Q is less than g, then
N(F, h) <2n®—2n - 3.

Proof. We apply our previous results using the estimates p < 2n — 1 and
s <n.Theterm (2g—2)(p—1)/(p— 2) isbounded by 2g+ s— 5. To prove
a), apply 3.1, and bound | X, (F ) | asfollows. Let XE.h denote thereduction
of the plane curve Xg . We can bound | X h(F p)| using a projection from
apoint P of Yp’h(IF‘p) toalF,-line. If P isnot ontheline z = 0, wefind that

XenFp)l < (N=D(p—s+1+ Y (n—m)+1
i=1

We then consider the normalization map Xr, — Xg.h and find that

| Xk, (Fp)| < [Xen(Fp)| + Y _(ged(n, ) — 1).
i=1

Bounding ">, ged(n, n;) by n,wefindthat | Xr, (Fp)| < (n—1)(p+1)+1.
We leave it to the reader to check that the above bound aso holds when P
ison the line z = 0. To prove ¢), apply 3.3, and bound a(p) using 3.4 to
find that a(p) < np. To prove b) and d), use 3.2 and 3.5.

Note now that by Bertrand's postulate, there exists a prime p with
n < p < 2n. If the Mordell-Weil rank of Xgn/Q is lessthan g, then the
Chabauty rank with respect to (p) of Xg,/Qisasolessthan g, and wefind
that N(F, h) < 2n® —2n — 3.

Example 3.10. LetususeknownresultsontheMordell-Weil rank of certain
curves to obtain examples of Thue equations to which Theorem 3.9 applies.
First, recall that for any integers a, b, ¢, d, and e such that ad — bc # 0, the
curve Xgp, isisomorphic over Q to Xg her, Where G(X, y) = F(ax + by,
cx + dy). It follows that the Chabauty rank of Xg hen/Q is equa to the
Chabauty rank of Xgn/Q (at any prime). Thus, when the method of
Chabauty-Coleman can be applied to bound N(F, h, Q, p), it can aso be
used to bound the number of primitive solutions to any equation of the form
G(Xx, y) = he". Note that while such a change of variables does not change
the Q-isomorphism class of the underlying curve, it does change the notion
of aprimitive integral solution.

A Thue curve X, dways covers the superelliptic curve hyd = F(x, 1)
for any prime divisor q of n, so it is aways possible to attempt to bound
the Chabauty rank of such a Thue curve Xg , by applying theideas of [P-S]
to compute the rank of some quotient of Xgp,. One finds in the literature
afew explicit computations of Mordell-Weil ranks for superelliptic curves
D/Q of the form y? = F(x, 1), withn = deg(F) and g | n, q prime. For
instance,

(7) v = (% —x+6)2(x® 4+ 3x + 3)
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is considered in [P-S, 14.2], with Mordell-Weil rank 2 over QQ (see Sect. 5
of [Sch] for further examples). Let Dya denote the superelliptic curve as-
sociated with d9y® = F(x, 1). Clearly, Dgq isisomorphic to D over QQ, so
the jacobians of these curves have the same rank. We may thus apply the
Chabauty-Coleman method to X 4« @ soon as it is known that the rank of
D/Q islessthan the genus of D, asisthe case with (7).

Let ¢ be a prime. Bounds for the Mordell-Weil rank over Q of the
normalization Cy, of the curve Y2 = X’ + h are given in [St1], with an
‘added in proof”’ proven in [St2]. Using these results, one finds for instance
that when ¢ = 5and h isasfollows, therank of the genus 2 curves Cy,, Cys,
and C,0, isequal to 1:

h=11,h=11-13-17-19-23, h=-3-11-13-17-19.23. 29.

Consider now g, e € Z*, and the equation g?x* — y? = he?. This Thue
curve maps onto Cp,, with Y — q(x/€2)’ and X — (y/ze)?. In addition to
the above Thue curve, we also find that the curves given by hx? — y?¢ =
h+1e?t and hx‘*1 +xy* = h?e? have Cy, asquotients. When therank of C;,
can be computed using [St1] and [St2], Theorem 3.9 applies to the above
three examples of Thue curves having Cy, as quotient.

It is quite possible that the bounds obtained in Theorem 3.9 are too
large. Indeed, there are no known examples in the literature of a fam-
ily of Thue equations (Fj(x, y) = hj)2; with limj_, . degF; = oo and
limj_ o N(Fj, hj)/deg F; = oo. The following simple examples of Thue
equations with N(G, h) > n are well-known. Take G(x, y) = []_;(X —
ay) + hy", with ]_[i#(ai —aj) #0,8 € Z. Then {(&,1),i =1,..., n}
are primitive solutions.

It is known that N(F, h) < O(n) when disc(F) islarge compared to h
(see [Ste2, page 378]). We use below the fact that any subfield of Q(&,-1)
has an unramified prime of norm p to obtain, in some cases where the
Mordell-Weil rank of Xgp isat most g(Xg.n)/n, bounds for N(F, h, Q, p)
of the form O(n) and O(n?).

Theorem 3.11. Let p> 5beprimeandletn:= p— 1. Let X := Xgp.
Assume that Chab(X, Q(£p-1), (p)) < 9(X). Thisisthe casg, for instance,
if the Mordell-Weil rank of X/Q islessthan (s — 2)/2. Then

a) If ptd*(F), then | X(Q)| < 5n — 3.
b) If p | d*(F), then N(F, h, Q, p) < 2n? 4+ 4n — 5.

Proof. Our hypothesis allowsusto apply the results of the previous section.
Webound (2g—2)(p—1)/(p—2) by n°—2n—3, and sby n. Let u denote the
number of pointsin X(Q) withz = 0. Clearly, u < n.Letv := | X(Q)| —u.
Then, since niseven (and —1isin Q), we have | X(Q(&,))| = u + nv/2.
For part &) when p 1 h, we use the bound 3.1:

IX(QE))| <n*—2n—3+ (M —1(p+1).
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(To bound |X(Fp)|, use a projection from a point in X(Fp).). It follows
that u 4+ nv/2 < 2n? — n — 5. Hence, v < 4n — 2 — 10/n — 2u/n. Thus,
v < 4n — 3. Wefind that | X(Q)| = u+ v < n+4n — 3. To prove part @)
when p | h, weuse 3.2,

IX(Q(£n))| < n? —2n — 3+ np.

Thus, u+ nv/2 < 2n? —n — 3. Hence, v < 4n — 3, and | X(Q)| < 5n — 3.
In part b), we do not consider points with z = 0 (since such points are
not primitive integral solutions). To prove part b), we use 3.3:

nN(F, h,Q, p)/2 < N(F,h,Q(&), p) <n*—2n— 3+ (n—1)(p+1).
aswell as 3.5;
nN(F, h, Q, p)/2 < N(F, h, Q(&y), p) < n* —2n — 3+ n?p.

To conclude the proof of the theorem, we only need to prove that, if the
Mordell-WEeil rank of X/Q islessthan (s — 2)/2, then the Chabauty rank
of Jac(X/Q(&,-1)) islessthan g(X). Thisassertion is aconsequence of the
following general fact.

Proposition 3.12. Let X/Q denote the smooth proper model of the affine
curve given by an equation hy" = f(x), with n | deg(f). Write f(x) =
]_[;Szl(x—ai)“i with Hi;&j(ai —aj) # 0, and assume that ged(n, nj) < nfor
all i. Fix &,, a primitive n-th root of unity. Denote by o the automorphism
of X/Q(&,) induced by (X, y) — (X, &yY). Assume that the Chabauty rank
(with respect to any prime) of X/Q(&,) is equal to g(X). Then the factor
An/Q of the jacobian of X introduced below has Mordell-Weil rank over
at least equal to (s — 2)/2.

Proof. Let ®(t) = (t" —1)/(t — 1). Let dq4(t) denote the d-th cyclotomic
polynomial, so that ®(t) = Hddm Dy(t). Let Wy(t) := P(t)/Py(t). Let
#1

d | n, and consider the abelian variety
Ad := Im(W4(0)) C Jac(X)/Q(n)-

(Note that when d < gecd(n, nj) for some i, it may happen that Aq is
trivial.) It is clear that Ay C Ker(®4(0)). If d # d’, then dy(t) and gy (1)
are coprime in Q and, thus, generate in Z[t] a principal ideal gZ[t] for
some q € Z. We conclude that Aq N Ay is a finite set of points, killed
by g. Since the polynomias {Wq(t)}qn are coprime in Q, we can find
{ag(t) € Z[t],d | n,d # 1} such that ) aq(t)W4(t) = z € Z. Hence, given
P e Jac(X),

ZP = Wy(0)(aa(@)P) € ({Ag | d|n,d#1}) S Jac(X)

and, thus, Jac(X) isisogenous to Edem Ag.
#1
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We claim now that A4 is an abelian variety defined over Q. Indeed, let
P = (a, b), wherea, b € Q, beasolutionof y" = f(x).Let u € Gal(Q/Q).
Then w(&n) = &5 for some ¢ € Z with (c,n) = 1. It follows that on
X(Q), we have 6o . = oo for some c € Z. If an element Z of
Jac(X)(Q) is of the form Z = Wy(0)(3 ;& P) with P € X(Q), then
p(Pg(@) (X aP) = Va0 (37 an(P)). Now, since (c,n) = 1,
there is a positive integer ¢ such that c¢ = 1 (mod n). The polynomial
Wy (t) isaproduct of cyclotomic polynomials ®¢(t) with e | n, and for any
root & of (1), itisclear that gg isaroot of ®(t). Since multiplication by
C permutes (Z/€Z)*, it follows that ®¢(t) divides ®¢(t¢) for any e | n, and
that Wq(t) divides Wy(t%). Hence, n(Z) € Aq(Q), for al p € Ga(Q/Q). It
followsthat Aq isdefined over Q. Wedetermine the dimension of Ay below.

Lemma 3.13. Suppose that d | n and that d > gecd(n, n;) for all i =
1,...,s Let ¢(d) denote the Euler ¢-function. Then dim(Aq) = ¢(d)-
(s—2)/2.

Proof. By construction, o, is such that ®4(oja,) = 0. The characteristic
polynomial char(o)(t) of o acting on Hy(X(C), C) is computed in [Lor,
4.1]:
S . -1
chd(n,n,) -1
h t) = o (t)52 - ) .
char (o) (t) = ®(t) U( v )

Hence, rankz (Ker(¢q(o) 1y x@).c)) = (S — 2)¢(d). Using the duality be-
tween Hy(X(C), C) and HY(X(C), C) aswell asthe fact that
0 — HY%X(C), 2x) — HY(X(C),C) - HY(X, 0x) - 0

is exact, with HO(X(C), Qx) and H(X, Ox) related by Serre duality, we
findthat dim Ag = ¢(d)(s— 2)/2. This concludes the proof of Lemma3.13.

When n is prime, rankz(Jac(X/Q(&n))) = rankz(Jac(X/Q))(n— 1), as
shown in Lemma 13.4 of [P-S]. The reader will easily check that the proof
of 13.4 can be used, mutatis mutandis, to show that, for any d | n,

rankz(Aq(Q))p(d) = rankz (Aq¢(Q(&a))).
In particular, if the Chabauty rank of Jac(X)/Q(&n) equas g(X), then

rankz (An(Q(én))) = dim(Ay),
so that rankz (AL (Q)) > (s — 2)/2. This concludes the proof of 3.12.
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