
TOWERS OF CURVES AND RATIONAL DISTANCE SETS

DINO LORENZINI

A rational (resp. integral) distance set is a subset S of the plane R2 such that for all
s, t ∈ S, the distance between s and t is a rational number (resp. is an integer). Huff
[4] considered rational distance sets S of the following form: given distinct a, b ∈ Q∗, S
contains the four points (0,±a) and (0,±b) on the y-axis, plus points (x, 0) on the x-axis,
for some x ∈ Q∗. Such a point (x, 0) must then satisfy the equations x2 + a2 = u2 and
x2+b2 = v2 with u, v ∈ Q. The system of associated homogeneous equations x2+a2z2 = u2

and x2 + b2z2 = v2 defines a curve C(a2, b2) of genus 1 in P3. Huff, and later his student
Peeples [12], provided examples where the elliptic curve C(a2, b2) has positive rank over
Q, thus exhibiting examples of infinite rational distance sets that are not contained in a
line or in a circle. These remain to this day the ‘largest’ known such examples.

The curves of higher genus whose rational points are related to rational distance sets
with 2n + 1 distinct points on the y-axis, (0,±a1), . . . , (0,±an), and (0, 0), plus points
(x, 0) on the x-axis, form an interesting class of curves with many rational points and an
often computable Mordell-Weil rank over Q. We make some remarks on these curves and
on two open problems about rational distance sets.

For any field K with char(K) 6= 2, and for α1, . . . , αn ∈ K∗, pairwise distinct, let
C(α1, . . . , αn)/K denote the curve in Pn+1 defined by the system of equations

x2 + αiz
2 = y2

i , for i = 1, . . . , n.

Since char(K) 6= 2 and the coefficients α1, . . . , αn are distinct, the curve C(α1, . . . , αn)/K
is smooth. This curve has the following 2n obvious K-rational points

(x : y1 : . . . : yn : z) = (1 : ±1 : . . . : ±1 : 0),

plus the 2n additional K-rational points (0 : ±a1 : . . . : ±an : 1) when αi = a2
i for all

i = 1, . . . , n. The genus of Cn = C(α1, . . . , αn)/K is 2n−1(n − 2) + 1. This formula can
be obtained with successive applications of the Riemann-Hurwitz formula on the tower of
curves

C(α1, . . . , αn) −→ C(α1, . . . , αn−1) −→ . . . −→ C(α1, α2).

The morphism Cn → Cn−1 has degree 2 and is branched over 2n points.
Let us call a point (x : y1 : . . . : yn : z) of Cn(Q) non-obvious if xz 6= 0. We shall

call two non-obvious points (x : y1 : . . . : yn : z) and (x′ : y′1 : . . . : y′n : z′) equivalent if
(x′ : y′1 : . . . : y′n : z′) is of the form (±x : ±y1 : . . . : ±yn : z). It is natural to ask how many
non-obvious (pairwise) non-equivalent points can a curve of type Cn = Cn(a2

1, . . . , a
2
n)

have. The current record is held by Lagrange and Leech [6], p. 758, who found a curve of
type C3 with 4 such points, and a curve of type C4 with 3 such points. It is an unsolved
problem stated in [3], D20, to find a curve of type C4 with 4 non-obvious non-equivalent
points.
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Proposition 1. There exist infinite towers of curves Cn(a2
1, . . . , a

2
n), each curve with two

non-obvious and non-equivalent points, and such that

|Cn(Q)|
g(Cn)− 1

≥ 12

n− 2
.

Proof. Consider any elliptic curve C(a2, b2)/Q with positive rank. Let P = (a1 : b1 : c1 : 1)
be a point of infinite order in C(a2, b2)(Q), and let mP := (a(mP ) : b(mP ) : c(mP ) :
1). Note that b(iP )c(iP ) 6= 0 for all i. Since the value a(mP ) can appear as the first
coefficient of a point in C(a2, b2)/Q at most 8 times, we can find a subsequence, say
{Pn = (an : bn : cn : 1)}∞n=1, of the sequence {mP} such that the a2

i s are all distinct.
Consider the curve Cn := C(a2

1, . . . , a
2
n). It contains the following 2 · 2n+1 distinct points:

(±a : ±b1 : . . . : ±bn : 1) and (±b : ±c1 : . . . : ±cn : 1).

It follows that |Cn(Q)| ≥ 3(2n+1), as desired. �

Remark 2 In the tower {Cn}∞n=3 presented in the proposition, there are many Q-points
at each level n such that all their preimages in any curve Cm with m ≥ n are all also
Q-rational. We shall say that such a point rationally splits in the tower. Clearly, if
we can find a tower of curves {Cn}∞n=1 with unramified morphisms Cn → Cn−1 and a
rational point which rationally splits completely, then we would have a tower with the
ratio |Cn(Q)|/(g(Cn)− 1) bounded below by a constant. This problem is discussed in [2],
where such towers are exhibited over certain small number fields, but not over Q.

The asymptotic behaviour of rank(Jac(Cn)(Q))/g(Cn) is not understood, and it would
be of interest to know whether limsupn→∞rank(Jac(Cn)(Q))/g(Cn) < 1.

Remark 3 Solymosi notes in [13] that it is not known whether it is possible to find, for
each pair of integers n and m, an integral distance set with m + n points such that a
line contains exactly m of them. In fact, it would follow from a conjecture of Lang that
when n ≥ 5 and m is large enough, such a distance set cannot exist. Indeed, assume that
we have such a distance set S. By translation and rotation, we can assume that the line
containing the m points is the x-axis, and that one of the point of our distance set is the
origin. Let (xi, 0), i = 1, . . . ,m denote the points of S on the x-axis, with xm = 0. Note
that xi ∈ Q. Since n ≥ 5, we can find (a1, b1), (a2, b2), and (a3, b3) in S that are not on the
x-axis and such that the equations (x− aiz)2 + b2

i z
2 = y2

i , i = 1, 2, 3, are pairwise distinct
(three distinct non-zero b2

i ). This system of equations defines a smooth curve C of genus
5 in P3. Since the coefficients of the points in S need not be in Q (see the construction
in [13] after Cor. 1 for an example) we note that (xj − ai)

2 + b2
i ∈ Q for j = 1, 2 imply

that Q(ai, b
2
i ) = Q. Thus, our curve C is defined over Q, and |C(Q)| ≥ m. It is shown

in [1] that a conjecture of Lang implies that the set {|D(Q)|} is bounded as D/Q runs
over all smooth curves of a fixed genus g ≥ 2. It would then follow that the set |C(Q)|
is bounded by a constant N independent of the equations of the curve C of genus 5, so
that m is bounded.

Remark 4 Guy asks in [3], D20, conjecture (a), whether there exists an integer c such
that any rational distance set of size |S| is such that at least |S| − c of its points lie on
a line or on a circle. If this question has a positive answer, then it would follow from a
conjecture of Lang that there exists an integer N such that if |S| > N , then |S|−4 points
of S lie on a line or a circle. Indeed, let us first note that if a rational distance set S
contains m points on a circle C, then we can find a second rational distance set S ′ such
that m − 1 points of S ′ lie on a line. To prove this fact, we choose a point P of S that
lies on the given circle C, and use it as the origin for our plane. We pick as the x-axis
the line passing through P and the center of C. Then every point z := (x, y) in the set S
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is at a rational distance from (0, 0), that is, |z| ∈ Q, where z is thought of as a complex
number. We let S ′ := {1/z, z ∈ S}. Clearly, |1/z − 1/w| = |z − w|/|z||w|, so S ′ is also a
rational distance set. Since the image of the circle C under the inversion 1/z is a vertical
line, we find that S ′ contains m− 1 points on a line (we lost one point since the inversion
sends P to ‘∞’).

Assume now that our set S contains |S|− c points on a line. Suppose that |S|− c > N ,
where N is the maximal number of rational points that a curve of genus 5 can have (as
explain in Remark 3, this number N exists if a conjecture of Lang holds). As in Remark
3, we conclude that c ≤ 4, since otherwise we can construct a curve of genus 5 with more
than N rational points.

Assuming that both conjecture (a) and Lang’s conjecture are true, we can answer
affirmatively another question raised by Guy in [3], D20. It is indeed true that c = 4 is
the maximal possible value for c when the rational distance set is infinite.

Let K be any field with char(K) 6= 2. The jacobian of the curve Cn = C(α1, . . . , αn)/K
is isogenous to a product of hyperelliptic jacobians that we now describe explicitly. The
function field K(Cn)/K(x) is isomorphic to K(x)(

√
x2 + αi, i = 1, . . . , n). It contains the

following quadratic subfields: for 2 ≤ r ≤ n and 1 ≤ i1 < · · · < ir ≤ n,

K(x)(
√

(x2 + αi1) · · · · · (x2 + αir)).

Let D(i1,...,ir)/K be the hyperelliptic curve given by the equation

Y 2 = (x2 + αi1) · · · · · (x2 + αir),

and consider the natural map
Cn −→ D(i1,...,ir),

where (x : y1 : · · · : yn : 1) 7→ (x, yi1 · · · yir). Let G denote the group generated by
the involutions yi 7→ −yi (the other variables remaining fixed), for i = 1, . . . , n. The
group G is also the Galois group of the extension K(Cn)/K(x). Each quadratic extension
corresponds to a maximal subgroup H(i1, . . . , ir) of G, so that the product of two such
maximal subgroups is the whole group G. Clearly, Cn/G has genus 0.

Proposition 5. The jacobian of Cn/K is isogenous over K to the product of the jacobians
of the hyperelliptic curves D(i1,...,ir)/K.

When r > 2, the jacobian of the hyperelliptic curve D(i1,...,ir)/K is isogenous to the
product of the jacobians of Y 2 = (X + αi1) · . . . · (X + αir), and of Y 2 = X(X + αi1) · . . . ·
(X + αir).

Proof. The first part of the proposition follows from Theorem C in [5], once we show that

g(Cn) =
n∑

r=2

∑
i1<···<ir

genus(D(i1,...,ir)).

It is clear that
n∑

r=2

∑
i1<···<ir

genus(D(i1,...,ir)) =

(
n

2

)
+ 2

(
n

3

)
+ 3

(
n

4

)
+ · · ·+ (n− 1)

(
n

n

)
.

This latter sum is also equal to
(

n
n−2

)
+ 2

(
n

n−3

)
+ 3

(
n

n−4

)
+ · · ·+ (n− 1)

(
n
0

)
. Adding these

two sums and dividing by 2 gives the value 2n−1(n− 2)+1 for the sums, which is also the
genus of Cn, as desired.

To produce the desired isogeny for the jacobian of D(i1,...,ir)/K, we consider the group
H of automorphisms generated by the two involutions x 7→ −x and Y 7→ −Y . There
are 3 subgroups Hx (fixing x), Hy (fixing y), and Hxy (fixing xy) of order 2 in H. The
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quotient by Hx is the curve given by Y 2 = (X + αi1) · . . . · (X + αir), and the quotient by
Hxy is the curve given by Y 2 = X(X + αi1) · . . . · (X + αir). The quotient by Hx ·Hxy has
genus 0. We find that g(D(i1,...,ir)) = g(D(i1,...,ir)/Hx)+g(D(i1,...,ir)/Hy)+g(D(i1,...,ir)/Hxy),
so the isogeny we want is again a consequence of Theorem C of [5]. �

Example 6 When n = 4, the curve C4 has genus 17, with 15 elliptic curve quotients,
and one quotient of genus 2,

Y 2 = X(X + α1)(X + α2)(X + α3)(X + α4).

The curve y2 = x(x + α)(x + α−1)(x + β)(x + β−1) has an additional automorphism1

(x, y) 7→ (1/x, y/x3). This automorphism has only two fixed points, with x = 1, and
the quotient is thus of genus 1, given by v2 = (u + 2)(u + α + α−1)(u + β + β−1), with
(x, y) 7→ (x + 1/x, y(x + 1)/x2).

It follows that the curve C(a2, a−2, b2, b−2) is a family of curves over Q of genus 17, with
a jacobian isogenous over Q to a product of 17 elliptic curves. The same is true for the
twist C4 = C(1, a2, a4, a6), with additional2 quotient v2 = (u+2a3)(u+a2+a4)(u+a6+1),
with (x, y) 7→ (x + a6/x, y(x + a3)/x2). Note that some of the elliptic quotients in this
example are isomorphic. Does this latter curve C4/Q ever have a non-obvious Q-rational
point?

Remark 7 A different way to view the curve Cn when n is even is to consider the exten-
sion

K(x2)(
√

x2(x2 + α1) . . . (x2 + αn)) ⊆ K(Cn).

This extension has degree 2n, and defines an unramified morphism of curves Cn → Dn over
K, where Dn is the hyperelliptic curve defined by the equation Y 2 = X(X + α1) . . . (X +
αn). This morphism is Galois, with Galois group (Z/2Z)n. By abelian class field theory,
the morphism Cn → Dn is obtained by pull-back from an isogeny Jac(Dn) → Jac(Dn).
When n is even, g(Dn) = n/2, and the isogeny is the multiplication by 2 on Jac(Dn).

When n is odd, the extension K(x)(
√

(x2 + α1) . . . (x2 + αn)) ⊆ K(Cn) is still unramified
of degree 2n−1.

If the curve Cn/Q has a quotient E/Q of genus 1 with rank 0, then we obtain an
explicit bound for |Cn(Q)| since |E(Q)| ≤ 16 by the theorem of Mazur [9]. Note that
such a quotient can exist even when Cn has a non-obvious point. Indeed, consider the
curve C4 = C(a2, a−2, b2, b−2) as in Example 6, and choose a and b such that Cn has a
non-obvious point (x : y1 : . . . : y4 : 1) with x = 1. Then the image of this point on the
curve C2 = C(a2, a−2) always has order 8, and to obtain the desired example, we choose
a so that the rank of C(a2, a−2) is zero. This is achieved for instance with a = 3/4 and
b = 5/12 (in this example, the Chabauty rank over Q is at most3 g(C4)− 2).

If Cn/Q has 2 non-obvious non-equivalent Q-rational points, then its quotients C(a2
i1
, a2

i2
)

have positive rank over Q since the non-obvious points produce more than 16 Q-rational
points on C(a2

i1
, a2

i2
). It would be interesting to find examples of curves Cn with two non-

obvious non-equivalent points and whose jacobians have a non-trivial quotient of rank
less than its dimension. Proposition 10 shows that this cannot happen for n ≤ 5 if Cn

has good reduction modulo a prime p ≤ 4n + 1.

1So does the curve C2m = C(a2
1, a

−2
1 , . . . , a2

m, a−2
m ) with (x : y1 : . . . : y2m : z) 7−→ (z : y2a1 : y1/a1 :

. . . : y2mam : y2m−1/am : x).
2When a = 10, all 15 natural elliptic quotients of C4 have positive rank. This additional one has rank

0.
3Computations were done using the programs mwrank [10] and gp/pari [11]. The rank of the jacobian

of dimension 2 can be computed using Stoll’s program in Magma [8], and is found to be 0. Thanks to
Steve Donnelly for his help with the Magma computations.



TOWERS OF CURVES AND RATIONAL DISTANCE SETS 5

Proposition 8. Let K be a field with a discrete valuation v, valuation ring OK, and
maximal ideal (π). Let k := OK/(π). Assume that char(k) 6= 2. Consider the curve
Cn = C(a2

1, . . . , a
2
n)/K. After a change of variables if necessary, we may assume that

ai ∈ OK for all i = 1, . . . , n, and that at least one of the ais is not divisible by π. Let
∆ :=

∏
i ai

∏
i6=j(a

2
i − a2

j). Then

(1) Cn/K has good reduction over OK if and only if π - ∆.
(2) Assume that π divides only one of the factors in the product ∆. Then Cn/K

has stable reduction over OK consisting in the union of two curves of type Cn−1

meeting in 2n−1 points.
(3) Assume in addition that π exactly divides a2

i − a2
j . Then the special fiber Xk of

the minimal regular model X/OK of the curve Cn/K consists in the union of two
curves of type Cn−1 meeting in 2n−1 points.

Proof. (1) If Cn has good reduction, then all its elliptic quotients have good reduction,
including y2 = x(x + a2

i )(x + a2
j), and we find that π -

∏
ai

∏
(a2

i − a2
j). Reciprocally, if

π -
∏

ai

∏
(a2

i − a2
j), then the equations for Cn reduce modulo π to a set of equations that

define a smooth space curve over k.
(2) Without loss of generality, we can assume that either π | a1, or π | a2

1 − a2
2. Let

x2 + ai
2 = yi, i = 1, . . . , n, denote the reduction of the equations for Cn modulo π. When

π | a1, the ideal (x2 + ai
2 = y2

i , i = 1, . . . , n) is clearly contained in the intersection of the
ideals (x−y1, x

2+ai
2 = y2

i , i = 2, . . . , n) and (x+y1, x
2+ai

2 = y2
i , i = 2, . . . , n). Similarly,

when π | a2
1 − a2

2, the ideal (x2 + ai
2 = y2

i , i = 1, . . . , n) is contained in the intersection of
the ideals (y1−y2, x

2+ai
2 = y2

i , i = 2, . . . , n) and (y1+y2, x
2+ai

2 = y2
i , i = 2, . . . , n). Our

assumptions implies that the four new ideals define smooth curves of type Cn−1/k, which
each have genus 2n−2(n − 3) + 1. The corresponding pairs of curves intersects in 2n−1

points, of the form, when π | a2
1 − a2

2, (x = ±
√
−1a1 : y1 = 0 : y2 = 0 : y3 : . . . : yn : 1).

Such a configuration of two irreducible components meeting in 2n−1 points implies that
the toric rank of the Néron model of the jacobian of Jac(Cn)/K is at least 2n−1 − 1. The
abelian contributions from the two irreducible components of genus 2n−2(n− 3) + 1 and
the toric rank 2n − 1 add up to g(Cn) = 2(2n−2(n − 3) + 1) + 2n−1 − 1. Thus, we have
completely determined the stable model over OK .

(3) We keep the notation introduced in (3), and assume now that ordπ(a2
1 − a2

2) = 1.
To prove our statement, we only need to show that each intersection point in the special
fiber is regular in the model. More precisely, consider the affine model Y/OK given
by the spectrum of OK [x, y1, . . . , yn]/(x2 + a2

i = y2
i , i = 1, . . . , n). The intersection points

corresponds to maximal ideals M generated by π and n+1 other linear elements including
y1 and y2 (we work here over Kunr, whose residue field is algebraically closed, so Kunr

contains the square roots of any element coprime to π). We need to show that M/M2 has
dimension 2 over k. We use our additional hypothesis to obtain that π ∈ (y2

1 − y2
2) ∈ M2

if ordπ(a2
1 − a2

2) = 1. It follows that M/M2 = (y1, y2). �

Lemma 9. Let p be an odd prime. Let Cn := C(a2
1, . . . , a

2
n)/Fp be smooth.

(1) If 2n + 1 ≤ p ≤ 4n− 1, then Cn(Fp) consists only in the 2n+1 obvious points.
(2) If p = 4n + 1, then |Cn(Fp)| = 2n+1 or 2n+1 + 2n.

Proof. Since Cn is smooth, the a2
i s are all distinct and non-zero, and thus p ≥ 2n+1. The

projective curve D given by the equation X2 + Y 2 = Z2 has exactly p + 1 Fp-points. If
(x : y1 : . . . : yn : 1) is a non-obvious point of Cn(Fp), then (±x : ai : ±yi) are 4n distinct
points on D(Fp), unless yi = 0 for some (unique) i. In the latter case, x =

√
−1ai and we

have only 4(n − 1) + 2 distinct solutions, including the trivial solutions (1 : ±
√
−1 : 0).
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Thus if there exists a non-obvious point and p ≡ 3 (mod 4), 4n ≤ p−3 implies p ≥ 4n+3.
Similarly, if p ≡ 1 (mod 4), 4(n− 1) + 2 ≤ p− 3 implies p ≥ 4n + 1. When p = 4n + 1,
we could have 4(n − 1) + 2 = p − 3, in which case a non-obvious point with yi = 0 for
some i could exist. Such a point gives 2n − 1 other equivalent points. �

Proposition 10. Consider the curve Cn := C(a2
1, . . . , a

2
n)/Q,and let Jn/Q denote its

jacobian. Assume that either n ∈ {3, 4, 5}, p ∈ [2n+1, 4n+1], and Cn has good reduction
modulo p, or that n ∈ {4, 5}, p ∈ [2(n − 1) + 1, 4(n − 1) + 1], and Cn has semi-stable
reduction modulo p as in type (3) of Proposition 8. If there exists a quotient of Jn whose
rank over Q is less than its dimension, then |Cn(Q)| ≤ 2 ·2n+1, so that Cn(Q) has at most
one (class of) non-obvious point.

Proof. Assume that there is an abelian variety A/Q quotient of Jn over Q, of rank strictly
less than dim(A). Suppose that there exists a prime p and an integer d < p such that
pd > 2g(Cn)− 1 + d. Let X/OK denote a regular model of Cn/K. Then Theorem 1.1 of
[7] (the method of Chabauty-Coleman) shows that

(s + 1)2n+1 ≤ |Cn(Q)| ≤ |XFp(Fp)|+
p− 1

p− d
(2g(Cn)− 2).

With our choice of primes, we use d = 2. When Cn has good reduction, we have
|XFp(Fp)| = |Cn(Fp)|. Using Lemma 9, we obtain that the bound on the right is less
than 3 ·2n+1. Since a non-obvious rational point always has 2n+1−1 other rational points
equivalent to it, the result follows. When Cn has semi-stable reduction of type (3), we
use |XFp(Fp)| ≤ 2|Cn−1(Fp)| and proceed similarly. �

To produce the next examples, let us introduce a different set of equations for the curve
C(a2

1, . . . , a
2
n)/K. Consider the curve D(a1, . . . , an)/K in Pn defined as the closure in Pn

of the affine curve given by the n− 1 equations

a1X(Y 2
i − 1) = aiYi(X

2 − 1), for i = 2, . . . , n.

(As the reader will easily verify, when n > 2, the homogenous system of equations as-
sociated with the above system does not define a curve in Pn, but contains also a linear
subspace.) A birational map over K between D(a1, . . . , an) and C(a2

1, . . . , a
2
n) is given as

follows:

(X, Y2, . . . , Yn) 7−→ (
2a1X

X2 − 1
: a1

X2 + 1

X2 − 1
: a2

Y 2
2 + 1

Y 2
2 − 1

: . . . : an
Y 2

n + 1

Y 2
n − 1

: 1).

Example 11 Let p be an odd prime. For each 2 ≤ n ≤ (p − 1)/2, we exhibit a curve
Cn/Q with good reduction modulo p, and with a non-obvious rational point. Choose a
positive integer g which is a primitive root modulo p. Then let a1 := gn−1(p2 − 1), and
for i = 2, . . . , n, let

ai := gi−2(p2g2n+2−2i − 1).

Modulo p, we find that a1 ≡ −gn−1 and ai ≡ −gi−2. Since g is chosen to be a primitive
root modulo p, the squares of these residue classes are all distinct in F∗p, so C(a2

1, . . . , a
2
n)

has good reduction modulo p. The coefficients ai are constructed so that the point

(X, Y2, . . . , Yn) = (p, gn−1p, gn−2p, . . . , gp)

is a non-obvious point on the curve D(a1, . . . , an) (here Yi = gn+1−ip). It is easy to verify
that the equations a1p((gn+1−ip)2 − 1) = aig

n+1−ip(p2 − 1) are satisfied.
It is not trivial to construct examples of curves Cn with two or more non-equivalent

non-obvious points and having good reduction at a ‘small’ prime p ≤ 4n + 1. One finds
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in [6], p. 757, a curve C3 with (a1, a2, a3) = (1320, 3780, 11760) with 3 non-obvious non-
equivalent points and good reduction modulo p = 13.

Using examples in [6], p. 758, one finds a curve C4(a
2
1, a

2
2, a

2
3, a

2
4)/Q of rank at least

3g(C4) + 5 and a curve C3 of rank at least 4g(C3). We do not know what is the minimal
possible rank over Q of a curve C4/Q. For (a1, a2, a3, a4) = (1, 2, 3, 4) or (1, 3, 4, 5), the
rank is 7, and the latter curve has Chabauty rank at most 6.

Example 12 The above example lets us exhibit, for each odd prime p, an integral dis-
tance set S with p + 1 elements, not all on a line, and such that the distance between
any two elements of the set is not divisible by p. Simply take the rational distance set
S = {(0,±ai), i = 1, . . . , (p− 1)/2, (± 2a1p

p2−1
, 0)} and clear the denominators.

References

[1] L. Caporaso, J. Harris, and B. Mazur, Uniformity of rational points J. Amer. Math. Soc. 10
(1997), 1–35.

[2] G. Frey, E. Kani, and H. Völklein, Curves with infinite K-rational geometric fundamental group,
Aspects of Galois theory (Gainesville, FL, 1996), 85–118, London Math. Soc. Lecture Note Ser.,
256, Cambridge Univ. Press, Cambridge, 1999.

[3] R. Guy, Unsolved problems in number theory, Third edition. Problem Books in Mathematics.
Springer-Verlag, New York, 2004.

[4] G. Huff, Diophantine problems in geometry and elliptic ternary forms, Duke Math. J. 15 (1948),
443–453.

[5] E. Kani and M. Rosen, Idempotent relations and factors of jacobians, Math. Ann. 284 (1989),
307–327.

[6] J. Lagrange and J. Leech, Two triads of squares, Math. Comp. 46 (1986), 751–758.
[7] D. Lorenzini and T. Tucker, Thue equations and the method of Chabauty-Coleman, Invent. Math.

148 (2002), 47–77.
[8] Magma, version V2.11-7, http://magma.maths.usyd.edu.au/magma/
[9] B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47

(1977), 33–186.
[10] mwrank, http://www.maths.nott.ac.uk/personal/jec/mwrank/index.html
[11] PARI/GP, version 2.1.5, Bordeaux, 2004, http://pari.math.u-bordeaux.fr/.
[12] W. Peeples Jr., Elliptic curves and rational distance sets, Proc. Amer. Math. Soc. 5 (1954),

29–33.
[13] J. Solymosi, Note on integral distances, U.S.-Hungarian Workshops on Discrete Geometry and

Convexity (Budapest, 1999/Auburn, AL, 2000), Discrete Comput. Geom. 30 (2003), 337–342.

Dino Lorenzini
Department of Mathematics
University of Georgia
Athens, GA 30602, USA


