TOWERS OF CURVES AND RATIONAL DISTANCE SETS

DINO LORENZINI

A rational (resp. integral) distance set is a subset S of the plane R? such that for all
s,t € S, the distance between s and ¢ is a rational number (resp. is an integer). Huff
[4] considered rational distance sets S of the following form: given distinct a,b € Q*, S
contains the four points (0, =a) and (0, £b) on the y-axis, plus points (x,0) on the z-axis,
for some r € Q*. Such a point (z,0) must then satisfy the equations ? + a* = u? and
224+b? = v? with u,v € Q. The system of associated homogeneous equations 2% +a?z? = u?
and 22 + b?2? = v? defines a curve C(a?,b?) of genus 1 in P3. Huff, and later his student
Peeples [12], provided examples where the elliptic curve C(a?,b?) has positive rank over
Q, thus exhibiting examples of infinite rational distance sets that are not contained in a
line or in a circle. These remain to this day the ‘largest’ known such examples.

The curves of higher genus whose rational points are related to rational distance sets
with 2n + 1 distinct points on the y-axis, (0,+aq),...,(0,+a,), and (0,0), plus points
(x,0) on the z-axis, form an interesting class of curves with many rational points and an
often computable Mordell-Weil rank over Q. We make some remarks on these curves and
on two open problems about rational distance sets.

For any field K with char(K) # 2, and for ay,...,q, € K*, pairwise distinct, let
Clay,...,a,)/K denote the curve in P"™! defined by the system of equations

v+ =yl fori=1,...,n.

Since char(K') # 2 and the coefficients ay, . .., a,, are distinct, the curve C(ay, ..., a,)/K
is smooth. This curve has the following 2™ obvious K-rational points

iyt iy iz)=(1:E£l:...0£1:0),

plus the 2" additional K-rational points (0 : +a; : ... : +a, : 1) when a; = a? for all
i=1,...,n. The genus of C,, = C(ay,...,ay,)/K is 2""}(n — 2) + 1. This formula can
be obtained with successive applications of the Riemann-Hurwitz formula on the tower of
curves

Clan,...,an) — Clag,...,ap_1) — ... — C(ay, a).

The morphism C,, — C,,_1 has degree 2 and is branched over 2" points.

Let us call a point (z @y @ ... : y, @ 2) of C,(Q) non-obvious if zz # 0. We shall
call two non-obvious points (z : y; : ...y, : 2) and (z' 1y} : ...y, : Z') equivalent if
(' cyy ...yl 2)isof the form (+x : +y; @ ... : +y, : 2). It is natural to ask how many

non-obvious (pairwise) non-equivalent points can a curve of type C,, = C,(ai,...,a?)

have. The current record is held by Lagrange and Leech [6], p. 758, who found a curve of
type C3 with 4 such points, and a curve of type Cy with 3 such points. It is an unsolved
problem stated in [3], D20, to find a curve of type Cy with 4 non-obvious non-equivalent

points.
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Proposition 1. There exist infinite towers of curves Cy,(a3,...,a2), each curve with two

non-obvious and non-equivalent points, and such that

Ca@) | 12
g(Cp)—1 " n—-2

Proof. Consider any elliptic curve C(a?, b?)/Q with positive rank. Let P = (a3 : by : ¢ : 1)
be a point of infinite order in C(a?, 5?)(Q), and let mP := (a(mP) : b(mP) : ¢(mP) :
1). Note that b(iP)c(iP) # 0 for all i. Since the value a(mP) can appear as the first
coefficient of a point in C(a? 0?)/Q at most 8 times, we can find a subsequence, say
{P, = (an : by : ¢y = 1)}, of the sequence {mP} such that the a?s are all distinct.

Consider the curve C, := C(a?,...,a?). It contains the following 2 - 2" distinct points:
(a:=4by:...:4b,:1)and (£b:+cy i ... £¢, 1 1),
It follows that |C,,(Q)| > 3(2""1), as desired. O

Remark 2 In the tower {C,}2° , presented in the proposition, there are many Q-points
at each level n such that all their preimages in any curve C,, with m > n are all also
Q-rational. We shall say that such a point rationally splits in the tower. Clearly, if
we can find a tower of curves {C),}°°, with unramified morphisms C,, — C,_; and a
rational point which rationally splits completely, then we would have a tower with the
ratio |Cy,(Q)|/(g(Cy) — 1) bounded below by a constant. This problem is discussed in [2],
where such towers are exhibited over certain small number fields, but not over Q.

The asymptotic behaviour of rank(Jac(C,)(Q))/g(C,) is not understood, and it would
be of interest to know whether limsup,,_,  rank(Jac(C,)(Q))/g(C,) < 1.

Remark 3 Solymosi notes in [13] that it is not known whether it is possible to find, for
each pair of integers n and m, an integral distance set with m + n points such that a
line contains exactly m of them. In fact, it would follow from a conjecture of Lang that
when n > 5 and m is large enough, such a distance set cannot exist. Indeed, assume that
we have such a distance set S. By translation and rotation, we can assume that the line
containing the m points is the z-axis, and that one of the point of our distance set is the
origin. Let (x;,0), ¢ = 1,...,m denote the points of S on the z-axis, with z,, = 0. Note
that z; € Q. Since n > 5, we can find (aq, by), (az, b2), and (ag, b3) in S that are not on the
r-axis and such that the equations (r — a;2)* + 0?22 = y?, i = 1,2, 3, are pairwise distinct
(three distinct non-zero b?). This system of equations defines a smooth curve C' of genus
5 in P3. Since the coefficients of the points in S need not be in Q (see the construction
in [13] after Cor. 1 for an example) we note that (z; — a;)* + b7 € Q for j = 1,2 imply
that Q(a;,b?) = Q. Thus, our curve C is defined over Q, and |C'(Q)| > m. It is shown
in [1] that a conjecture of Lang implies that the set {|D(Q)|} is bounded as D/Q runs
over all smooth curves of a fixed genus g > 2. It would then follow that the set |C'(Q)]
is bounded by a constant N independent of the equations of the curve C' of genus 5, so
that m is bounded.

Remark 4 Guy asks in [3], D20, conjecture (a), whether there exists an integer ¢ such
that any rational distance set of size |S| is such that at least |S| — ¢ of its points lie on
a line or on a circle. If this question has a positive answer, then it would follow from a
conjecture of Lang that there exists an integer IV such that if |S| > N, then |S| —4 points
of S lie on a line or a circle. Indeed, let us first note that if a rational distance set S
contains m points on a circle C, then we can find a second rational distance set S’ such
that m — 1 points of S’ lie on a line. To prove this fact, we choose a point P of S that
lies on the given circle C, and use it as the origin for our plane. We pick as the z-axis
the line passing through P and the center of C'. Then every point z := (x,y) in the set S
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is at a rational distance from (0,0), that is, |z| € Q, where z is thought of as a complex
number. We let S” := {1/z,z € S}. Clearly, |1/z — 1/w| = |z — w|/|z||w]|, so S" is also a
rational distance set. Since the image of the circle C' under the inversion 1/z is a vertical
line, we find that S” contains m — 1 points on a line (we lost one point since the inversion
sends P to ‘c0’).

Assume now that our set S contains |S| — ¢ points on a line. Suppose that |S| —¢ > N,
where NV is the maximal number of rational points that a curve of genus 5 can have (as
explain in Remark 3, this number N exists if a conjecture of Lang holds). As in Remark
3, we conclude that ¢ < 4, since otherwise we can construct a curve of genus 5 with more
than N rational points.

Assuming that both conjecture (a) and Lang’s conjecture are true, we can answer
affirmatively another question raised by Guy in [3], D20. It is indeed true that ¢ = 4 is
the maximal possible value for ¢ when the rational distance set is infinite.

Let K be any field with char(K') # 2. The jacobian of the curve C,, = C(ay, ..., a,)/K
is isogenous to a product of hyperelliptic jacobians that we now describe explicitly. The
function field K (C,,)/K(x) is isomorphic to K (z)(v/x% + 4,7 = 1,...,n). It contains the
following quadratic subfields: for 2 <r <nand 1 <i; <--- <1, <n,

K(x)(V/(22 + i) - - (2% + ).
Let Dy, ... ;,)/K be the hyperelliptic curve given by the equation
Yi=(2®+ay) (2% 4+ ),

and consider the natural map

Cn — D(i17...,i,«)7
where (z :y; -+ 1y 2 1) — (2,9, ---yi.). Let G denote the group generated by
the involutions y; +— —y; (the other variables remaining fixed), for i« = 1,...,n. The
group G is also the Galois group of the extension K(C,,)/K(z). Each quadratic extension
corresponds to a maximal subgroup H(iy,...,%.) of G, so that the product of two such
maximal subgroups is the whole group G. Clearly, C,, /G has genus 0.

Proposition 5. The jacobian of C,,/ K is isogenous over K to the product of the jacobians
of the hyperelliptic curves D(zj,...,ir)/K-

When r > 2, the jacobian of the hyperelliptic curve Dy, ;y/K is isogenous to the
product of the jacobians of Y2 = (X +ay,) ... (X +a;,), and of Y? = X (X + ) - ... -

Proof. The first part of the proposition follows from Theorem C in [5], once we show that

g(Cp) = Z Z genus(Dg, i)
r=2 i < <iy
It is clear that

En: > genus(Dy,..i,) = (Z) + 2<§> n 3(2) bt (n— 1)(2)'

r=2 i1 <-<ip
This latter sum is also equal to (,",) +2(,",) +3(,",) +- -+ (n—1)(). Adding these
two sums and dividing by 2 gives the value 2"~!(n —2) + 1 for the sums, which is also the
genus of C,, as desired.
To produce the desired isogeny for the jacobian of D;, . ;) /K, we consider the group
H of automorphisms generated by the two involutions z +— —z and Y — —Y. There
are 3 subgroups H, (fixing z), H, (fixing y), and H,, (fixing zy) of order 2 in H. The
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quotient by H, is the curve given by Y? = (X +a;,) -...- (X + a;,), and the quotient by
H,, is the curve given by Y? = X (X + ;) ...+ (X + ;). The quotient by H, - H,, has
genus 0. We find that g(D(i17...,ir)) = g(D(ihm,ir)/Hm) +g<D(i1,m,ir)/Hy) +g<D(i1,m7ir)/HfL“y)>
so the isogeny we want is again a consequence of Theorem C of [5]. 0
Example 6 When n = 4, the curve C; has genus 17, with 15 elliptic curve quotients,
and one quotient of genus 2,

V2= X(X 4+ o) (X 4+ a)(X + a3)(X + ay).

The curve y? = x(x + a)(z + o ')(z + B)(x + 37!) has an additional automorphism®
(z,y) — (1/x,y/x3). This automorphism has only two fixed points, with z = 1, and
the quotient is thus of genus 1, given by v? = (u + 2)(u + a + o ')(u + 3 + $71), with
(z,y) = (z+1/z,y(z + 1)/2?).

It follows that the curve C(a?, a2, b% b2) is a family of curves over Q of genus 17, with
a jacobian isogenous over Q to a product of 17 elliptic curves. The same is true for the
twist Cy = C(1,a?, a*, a®), with additional® quotient v? = (u+2a?)(u+a®+a*)(u+a’+1),
with (z,y) — (z + a®/z,y(z + a®)/2?). Note that some of the elliptic quotients in this
example are isomorphic. Does this latter curve C;/Q ever have a non-obvious Q-rational
point?
Remark 7 A different way to view the curve C,, when n is even is to consider the exten-
sion

K(@?)(V22(22 4+ 1) ... (22 + ay)) € K(Cy).

This extension has degree 2", and defines an unramified morphism of curves C,, — D,, over
K, where D, is the hyperelliptic curve defined by the equation Y2 = X(X +ay) ... (X +
@;,). This morphism is Galois, with Galois group (Z/2Z)". By abelian class field theory,
the morphism C,, — D,, is obtained by pull-back from an isogeny Jac(D,) — Jac(D,).
When n is even, g(D,) = n/2, and the isogeny is the multiplication by 2 on Jac(D,,).
When n is odd, the extension K (z)(y/(22 + a1) ... (22 + a,)) € K(Cy,) is still unramified
of degree 271,

If the curve C,,/Q has a quotient E/Q of genus 1 with rank 0, then we obtain an
explicit bound for |C,(Q)| since |F(Q)| < 16 by the theorem of Mazur [9]. Note that
such a quotient can exist even when C),, has a non-obvious point. Indeed, consider the
curve Cy = C(a% a™2,b% b72) as in Example 6, and choose a and b such that C, has a
non-obvious point (z : y; : ... :ys : 1) with x = 1. Then the image of this point on the
curve Cy = C'(a? a2) always has order 8, and to obtain the desired example, we choose
a so that the rank of C(a? a=?) is zero. This is achieved for instance with a = 3/4 and
b =5/12 (in this example, the Chabauty rank over Q is at most® g(Cy) — 2).

If C',/Q has 2 non-obvious non-equivalent Q-rational points, then its quotients C'(a? , a,)
have positive rank over QQ since the non-obvious points produce more than 16 QQ-rational
points on C(a7 ,a?)). It would be interesting to find examples of curves C,, with two non-
obvious non-equivalent points and whose jacobians have a non-trivial quotient of rank
less than its dimension. Proposition 10 shows that this cannot happen for n < 5 if C,

has good reduction modulo a prime p < 4n + 1.

186 does the curve Cy,, = C(a%,aﬁ,...,afn,a;f) with (z :y1: ... yom : 2) — (2 : yoaq : y1/a1 :
s YomOm y2m—1/am : .’L‘)

When a = 10, all 15 natural elliptic quotients of Cy have positive rank. This additional one has rank
0.

3Computations were done using the programs mwrank [10] and gp/pari [11]. The rank of the jacobian
of dimension 2 can be computed using Stoll’s program in Magma [8], and is found to be 0. Thanks to
Steve Donnelly for his help with the Magma computations.
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Proposition 8. Let K be a field with a discrete valuation v, valuation ring Ok, and
mazximal ideal (7). Let k := Og/(n). Assume that char(k) # 2. Consider the curve
C, = Cl(a?,...,a?®)/K. After a change of variables if necessary, we may assume that
a; € Ok for alli =1,...,n, and that at least one of the a;s is not divisible by w. Let

A=1],a Hi?ﬁj(az2 — ajz). Then

(1) C,/K has good reduction over Ok if and only if w1 A.

(2) Assume that 7 divides only one of the factors in the product A. Then C, /K
has stable reduction over Ok consisting in the union of two curves of type C,_1
meeting in 2"~ points.

(3) Assume in addition that 7 ezactly divides af — a3. Then the special fiber X, of
the minimal reqular model X /Oy of the curve C,, /K consists in the union of two
curves of type C,,_1 meeting in 2! points.

Proof. (1) If C,, has good reduction, then all its elliptic quotients have good reduction,
including y* = z(x + a7)(x + a3), and we find that 7 { [T a; [[(af — a3). Reciprocally, if
71 [T a;[[(af — a?), then the equations for C,, reduce modulo 7 to a set of equations that
define a smooth space curve over k.

(2) Without loss of generality, we can assume that either 7 | aj, or 7 | a? — a3. Let
22+ a2 =y, i=1,...,n, denote the reduction of the equations for C,, modulo 7. When
7 | a1, the ideal (22 + @2 = y?,i = 1,...,n) is clearly contained in the intersection of the
ideals (z—y;,2°4+a;> = y2,i=2,...,n) and (z+y;,z°+a;> = y?,i = 2,...,n). Similarly,
when 7 | a? — a2, the ideal (22 +@;> = y?,i = 1,...,n) is contained in the intersection of
the ideals (y; —y2, 22+ @2 = y?,i = 2,...,n) and (y; +yo, 2°+a;° = y2,i = 2,...,n). Our
assumptions implies that the four new ideals define smooth curves of type C),_1/k, which
each have genus 2" %(n — 3) + 1. The corresponding pairs of curves intersects in 2"~
points, of the form, when 7 | a? — a2, (x = £v—=1a1: 1 =0: 9o =0:yz: ... 1y, : 1).

Such a configuration of two irreducible components meeting in 2"~! points implies that
the toric rank of the Néron model of the jacobian of Jac(C,,)/K is at least 2"~ — 1. The
abelian contributions from the two irreducible components of genus 2"%(n — 3) + 1 and
the toric rank 2" — 1 add up to g(C,) = 2(2"%(n — 3) + 1) + 2" — 1. Thus, we have
completely determined the stable model over Og.

(3) We keep the notation introduced in (3), and assume now that ord,(a? — a3) = 1.
To prove our statement, we only need to show that each intersection point in the special
fiber is regular in the model. More precisely, consider the affine model /O given
by the spectrum of Ok[z,y1,...,y]/(x? + a? = y?,i = 1,...,n). The intersection points
corresponds to maximal ideals M generated by m and n+1 other linear elements including
y1 and yo (we work here over K*"" whose residue field is algebraically closed, so K"
contains the square roots of any element coprime to ). We need to show that M/M? has
dimension 2 over k. We use our additional hypothesis to obtain that © € (y} — y3) € M?
if ord,(a? — a2) = 1. It follows that M/M? = (y1, ys). O

Lemma 9. Let p be an odd prime. Let C,, := C(a3,...,a2)/F, be smooth.

D) If2n+1<p <4n—1, then C,(F,) consists only in the 2" obvious points.
p Y
(2) If p=4n+ 1, then |C,(F,)| = 27 or 271 4+ 2n,

Proof. Since C,, is smooth, the a?s are all distinct and non-zero, and thus p > 2n+1. The
projective curve D given by the equation X? + Y? = Z? has exactly p + 1 F,-points. If
(x:yp:...:y,: 1) is a non-obvious point of C,,(F,), then (£ : a; : +y;) are 4n distinct
points on D(F,), unless y; = 0 for some (unique) i. In the latter case, x = v/—1a; and we
have only 4(n — 1) + 2 distinct solutions, including the trivial solutions (1 : £+/—1 : 0).
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Thus if there exists a non-obvious point and p = 3 (mod 4), 4n < p—3 implies p > 4n+3.
Similarly, if p =1 (mod 4), 4(n — 1) +2 < p — 3 implies p > 4n + 1. When p = 4n + 1,
we could have 4(n — 1) + 2 = p — 3, in which case a non-obvious point with y; = 0 for
some ¢ could exist. Such a point gives 2" — 1 other equivalent points. 0

Proposition 10. Consider the curve C, := C(a?,...,a2)/Q,and let J,/Q denote its
jacobian. Assume that either n € {3,4,5}, p € 2n+1,4n+1], and C,, has good reduction
modulo p, or that n € {4,5}, p € [2(n — 1) + 1,4(n — 1) + 1], and C,, has semi-stable
reduction modulo p as in type (3) of Proposition 8. If there ezists a quotient of J,, whose
rank over Q is less than its dimension, then |C,(Q)| < 2-2""! 50 that C,,(Q) has at most
one (class of ) non-obvious point.

Proof. Assume that there is an abelian variety A/Q quotient of J,, over Q, of rank strictly
less than dim(A). Suppose that there exists a prime p and an integer d < p such that
p? > 2¢(C,) —1+d. Let X/Ok denote a regular model of C,,/K. Then Theorem 1.1 of
[7] (the method of Chabauty-Coleman) shows that
(5+ 121 < ICu(Q)] < s, (F)] + 2= (20(C.) — 2.

With our choice of primes, we use d = 2. When C),, has good reduction, we have
| Xe, (Fp)| = |Co(F,)|. Using Lemma 9, we obtain that the bound on the right is less
than 3-2"*!. Since a non-obvious rational point always has 2" — 1 other rational points
equivalent to it, the result follows. When C),, has semi-stable reduction of type (3), we
use | X, (Fp)| < 2|C,—1(F,)| and proceed similarly. O

To produce the next examples, let us introduce a different set of equations for the curve
C(a?,...,a%)/K. Consider the curve D(ay,...,a,)/K in P" defined as the closure in P"

»'n

of the affine curve given by the n — 1 equations
X (Y2 —1)=a;Yi(X? 1), fori=2,...,n.

(As the reader will easily verify, when n > 2, the homogenous system of equations as-
sociated with the above system does not define a curve in P"”, but contains also a linear

subspace.) A birational map over K between D(ay,...,a,) and C(a?,...,a2) is given as
follows:
2a; X X2+1  Yi+1 Y2+1
XY, ....Y,) — : : Sy ——— 1 1).
(XYoo Yo = (G r s =y F ey anyr—7 Y

Example 11 Let p be an odd prime. For each 2 < n < (p — 1)/2, we exhibit a curve
C,,/Q with good reduction modulo p, and with a non-obvious rational point. Choose a
positive integer g which is a primitive root modulo p. Then let a; := ¢" !(p? — 1), and
fori =2,...,n, let

a; = g2 (p2g? Y 1),
Modulo p, we find that a; = —¢" ! and a; = —¢*~2. Since ¢ is chosen to be a primitive
root modulo p, the squares of these residue classes are all distinct in F}, so C(af, ..., a2)

has good reduction modulo p. The coefficients a; are constructed so that the point

(X, Y, ..., Y,) = (p,d" 'p.¢" D, ..., gp)

is a non-obvious point on the curve D(ay,...,a,) (here Y; = ¢g"™1="p). Tt is easy to verify
that the equations a;p((¢"™'7'p)? — 1) = a;¢" ™ ~'p(p* — 1) are satisfied.

It is not trivial to construct examples of curves C),, with two or more non-equivalent
non-obvious points and having good reduction at a ‘small” prime p < 4n + 1. One finds
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in [6], p. 757, a curve C3 with (ay, as,a3) = (1320,3780,11760) with 3 non-obvious non-
equivalent points and good reduction modulo p = 13.

Using examples in [6], p. 758, one finds a curve Cy(a?, a3, a2, a?)/Q of rank at least
39(Cy) + 5 and a curve Cj of rank at least 4g(C3). We do not know what is the minimal
possible rank over Q of a curve Cy/Q. For (ay,as,as,aq) = (1,2,3,4) or (1,3,4,5), the
rank is 7, and the latter curve has Chabauty rank at most 6.

Example 12 The above example lets us exhibit, for each odd prime p, an integral dis-
tance set S with p + 1 elements, not all on a line, and such that the distance between
any two elements of the set is not divisible by p. Simply take the rational distance set
S ={(0,%a;),i=1,...,(p—1)/2,(£242 0)} and clear the denominators.

1]
2]

[13]

p2 -1
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