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Jacobians with potentially good #-reduction

By Dino J. Lorenzini') at Cambridge

Introduction

Let K be a complete field with a discrete valuation. Let (¢); denote the ring of integers
of K. Let k be the residue field of (), assumed to be algebraically closed of characteristic
p 2 0. Let A/K be an abelian variety of dimension g. Denote by &7/ 0 the Néron model of
A/K. Recall that the special fiber o7, / k of .o/ O is an extension of the finite abelian group of
components ¢ (4) by a smooth connected group scheme 2/ k, the connected component of
zero in /. By Chevalley’s theorem, the group .2/ can be described by an exact sequence

0> UXT > A2 > B -0,

where 4 is an abelian variety of dimension ag, Z is a torus of dimension ¢, and % is a
unipotent group of dimension ug. We call ay, t5, and u, respectively the abelian, toric, and
unipotent ranks of 4/K.

Let L/K denote the minimal extension of K such that 4, /L has semi-stable reduction
(see for instance [Des], 5.15). For each prime ¢ dividing [L: K], £ #+ p, let K,/ K denote
the unique subfield of L with the property that

[K/: K] — /ordz([L:K]) .

We say that 4/ K has potentially good {-reduction if the abelian variety A,/ K, has toric
rank equal to zero. Clearly, an abelian variety with potentially good reduction has
potentially good /-reduction for all prime £ + p. Note also that if 4/K has potentially good
¢-reduction for some prime 7, then the toric rank of 4/K is equal to zero.

Let X/ K be a smooth proper geometrically irreducible curve having a K-rational point.
Let A/K denote its jacobian. Raynaud [Ray] has described the group of components
@ := ®(A) in terms of the special fiber of a regular model Z'/ 0y of the curve X/K. In the
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first section of this paper, we show how the property of having potentially good /-reduction
implies a “Condition C,” on the special fiber of Z. In the second section, we show how to
compute explicitly the /-part @, of @ when the special fiber of & satisfies Condition C,
(Theorem 2.1). In the third section, we use our explicit computations to prove the theorem
stated below. Other applications to Fermat curves and to modular curves will appear in
forthcoming papers.

Let &, denote the /-part of the group of components ¢. Write

Q=767 X% - X 7|07, with a; >0.

Let
s(£)

ord,(1®)):= ) a;.
i=1

The following theorem sharpens Theorem 2.4 in [Lor2].

Theorem 3.6. Let X/K be a smooth proper geometrically irreducible curve with a K-
rational point. Let A K be the jacobian of X | K, and assume that it has toric rank equal to zero.
Let £ denote the set of primes £ & p such that A/ K has potentially good {-reduction. Then

5 (£ e-n)+ 3 o005 20

tes \i=1 rxs

The bound presented in the above theorem imposes very severe restrictions on the
possible order and group structure of the group of components @. For instance, it follows
from this theorem that |®| < 2%“%, and that, if £ divides |®|, then ¢ < 2u; + 1.

The proof of Theorem 3.6 relies on the fact that a rational function attached in a
natural way to the special fiber of Z is in fact a polynomial of degree at most equal to 2 u,
(Theorem 3.1). We show in [Lor3] that, when K is of equicharacteristic zero, this poly-
nomial divides the characteristic polynomial of a monodromy transformation acting on the
Tate module 7, A. The next theorem shows that our bound for @ (A4) is rather sharp. Recall
that an abelian variety A/K is said to have purely additive reduction if ay = 1y = 0.

Theorem 4.5. Let g be any positive integer. Let ® = [ ®, be any finite abelian
s(4) £+2
group of odd order. Write &, = ). Z[¢*Z. Assume that

i=1

s(¢)
> (Z (f“*—i)) <2g.

%2 \i=1

Then there exists a field K and an abelian variety A|K of dimension g with purely additive
reduction, potentially good reduction, and such that

(A =d.
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Let 4, denote the /-part of the torsion subgroup of 4(K). When ¢ + p and 4/K has
purely additive reduction, the reduction map n:4(K) — @ induces an isomorphism

s(¢)
A, =20,= Y Z/t%2.

i=1

Therefore, we immediately obtain the following corollary, which is a sharpening, for jaco-
bians, of a bound obtained by Lenstra and Oort in [L-O], 1.13.

Corollary. Let X/K be a smooth proper geometrically irreducible curve with a K-
rational point. Let A|K be the jacobian of X|K, and assume that it has purely additive re-

duction. Let ¥ denote the set of primes { + p such that A| K has potentially good ¢-reduction.
Then

s(¢)
Y (Z (/“"—1)>+ Y. ord, (4, D¢-1)<=2g.

te? \i=1 C¢L %D
Remark. Let X/Kbeasmooth proper geometrically irreducible curve of genus g with
a K-rational point. Let 4/ K be the jacobian of X/K and assume that it has purely additive

reduction and potentially good reduction. Let 4 (K)®) denote the prime-to-p part of the
torsion subgroup of 4(K). It follows immediately from the above corollary that:

« If g =1, then A(K){Z, is isomorphic to one of the following groups:
0, zppz, Z/32, (Z)22)*.
« If g = 2, then A (K){?), is isomorphic to a subgroup of one of the following groups:
752, (Z|32)?, (Z22), Z]2Z® Z|4Z, Z2Z® Z/6Z.
We believe that when g = 2, the group A (K){?), cannot contain a point of order 4. We hope

to return to this point in a forthcoming paper.

1. Reduction to linear algebra

In this section, we show that, if the jacobian of a curve X/ K has potentially good /-
reduction, then the graph G associated to a good model of X/K satisfies Condition C,,
stated in 1.5. In the next section, we will show how to compute the group @, when the graph
G satisfies Condition C,.

Let X/K be a smooth proper geometrically irreducible curve. Let Z/ Oy be a regular
model of X/ K. Its special fiber Z, is an effective Cartier divisor and, as such, we write it as
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where r; is the multiplicity of the irreducible component C;. Let
M:=((C;- C))
be the intersection matrix associated to %, and set
Ri=(ry,....1,) -
The vector R is in the kernel of the matrix M, or, in other words, M- R = 0.

1.1. The integer ged(r,, ..., r,) does fot depend on the choice of a regular model of
X /K. The fact that X has a K-rational point implies that

ged(ry,...,r,)=1.

Raynaud [Ray] (see also [BLR], 9.6) has proven that, under this assumption, the group of
components @ of Jac(X)/K is isomorphic to

Ker (‘R)/Im (M),

where M: 7" - Z" and ‘R: Z" — Z are the linear transformations associated to the
matrices M and ‘R. The group @ can therefore be computed by performing a row and column
reduction of the matrix M (see for instance [Lor1], 1.4). In this paper, we shall always
assume that a curve X/K satisfies the additional hypothesis that ged (r,, ..., r,) = 1.

1.2. We call a regular model Z/0, of X/K a good model if the following additional
properties hold:

+ The components C; are smooth of genus g(C,).
« If i # j, the intersection number (C; - C)) is equal to zero or one.

To the model & we associate a graph G (%) defined as follows: the vertices of G (Z)
are the curves C;s, and C, is linked to C; by (C,, - C;) edges. When we will need to emphasize
that a vertex C; has multiplicity r;, we will denote this vertex by (C;, r;). When no confusion
may arise, we denote G (Z') simply by G. The triple (G, M, R), associated to a good model
of X/ K as above, is an example of what we called a simple arithmetical graphin [Lor1]. Note
that, when & is not regular, it is still possible to associate a graph G (&) to its special fiber.
The vertices of G (%) are the irreducible components of Z}, and two components C;and C;are
linked in G (%) if and only if they intersect in Z.

1.3. Welet f(G) denote the first Betti number of G. Raynaud (see [BLR], Theorem 4

on page 267 and Propositions 9 and 10 on pages 248249, or [Lor2], 1.3) has shown that,
if /0y is a good model of X/K, then:

Z, g(C) = ay,
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and
B(G) = g .

1.4. The degree of a vertex C; of G is the integer

di‘= 2 (Ci' C,)

Jj*i

A node of G is a vertex of degree greater than two. A terminal vertex is a vertex of degree one.
The topological space obtained from G by removing all its nodes is a union of connected
components. A chain of G is the closure in G of such a connected component. If a chain
contains a terminal vertex, we call it a terminal chain. It contains exactly one node. The other
chains are called connecting chains. They contain one or two nodes. We define the weight of a
chain 2 to be the integer

w(2):= ged (r;, C; a vertex on 9).

Note that, if & is a terminal chain and (C}, r;) is the terminal vertex on 2, then w(2) =r;
(see for instance [Lor1], 4.2). Note also that, if (C, r) is a node on a chain 9 and (C,, r;) is a

vertex on & adjacent to C, then w(92) = ged(r, r;). For a node (C, r) of G, we let
w,(C):=min {ord, (w(2))|2 a chain containing C} .

Note that the definitions of w(2) and w,(C) make sense even when Z is only a normal
scheme.

1.5. Condition C,. Let (G, M, R) be a simple arithmetical tree. Pick a node C; of G
with w,(C;) = 0. Such a node always exists because ged (ry, ..., r,) = 1. We say that Con-
dition C, holds for G if, for any node C; of G, the following equality holds:

w,(C)) = ord, (w(2,)) ,

where 9, ; is the unique chain of G containing the node C; and contained in the unique
shortest path on G from C; to C;.

If Condition C, holds with respect to a choice C; of node with w,(C;) = 0, then it holds
with respect to any such choice. Indeed, if C, + C;is a node with w,(C,) = 0, then Condition
C, with respect to C; implies that w,(C,) = 0 for any node C, on the unique shortest path of G
from C, to C,.

Example 1.6. The following graph satisfies both Conditions C, and C;.

3 6 6 6 6 4 2
I3 IZ

Proposition 1.7. Let X/K denote a smooth proper geometrically irreducible curve.
Let A/K denote its jacobian. If A|K has potentially good ¢-reduction for some prime ¢ + p,
then the graph G associated to a good model O of X|K is a tree satisfying Condition C,.
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Proof. The fact that G is a tree follows from a theorem of Raynaud [Ray], recalled
in 1.3, which implies that a jacobian variety has toric rank equal to zero if and only if the
graph associated to a good model is a tree. It also follows from Raynaud’s results that, if
M/ K is any extension with [M : K] = /° for some @ = 1 and if 4/K has potentially good
¢-reduction, then the graph G associated to a good model of X,,/ M must be a tree. We are
going to show that, if Condition C, is not satisfied, then there exists such an extension M /K
and a good model of X,,/ M whose graph is not a tree. We first need to recall a description of a
good model of X,,/M.

1.8. Let Z/0k be a good model of X/K. Fix a prime g # p. Let M,/ K denote the
unique extension of K of degree ¢. Let %/(),, denote the normalization of the scheme
Z Xspec(ox) SPEC(Opr,). Let m: & — I denote the composition of the natural maps

Y - I Xspeciory SPEC(Oy,) — X .
Let
p:Z - %

denote the minimal desingularization of #. To recall the descriptions of the maps p and =,
we need the following definition. Let &/ be any regular model of X/K. Let C,, ..., C
be irreducible components of the special fiber %,. The divisor

c=7Y ¢
i=1

is said to be a Hirzebruch-Young string if:
« g(C)=0 Vi=1,...,m.
s (C;-CH=E -2 VYi=1,....m.
< (C-C)=1 if |i—j]=1.

. (C,

1

LC)=0 if |i—j|>1.

The following facts are well known; we state them without proofs (see for instance
[BPV], Theorem 5.2, when &/C is a surface).

Facts 1.9. Let /0 be a good model of X/K and g be a prime, g + p.
« The map n: % — % is ramified over the divisor

R= Y C,.

i
ged(g,ri) =1

In particular, R = & has normal crossings. A point P e % is singular if and only if n(P) is
a singular point of R.
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m(P)
« If Pe% is a singular point, then the divisor p~!(P):= ) E, is a Hirzebruch-
i=1
Young string. Let Pe D;n D;, where D; and D; are irreducible components of %,. Write
D, for the strict transform of D, in &. Then:

(P—I(P) ’ ﬁi) =(E, - 5i) =1= (Em(P)’ﬁ') = (p“I(P) ’ 5j)'

J

Moreover,
(p~*(P)- D) =0 if D+ D, D, is an irreducible component of %;.
1.10. Using Facts 1.9, one easily proves that, if /0 is a good model for X/K, then
Z| Oy, 1s a regular model for X,, /M, whose special fiber is a divisor with smooth compo-
nents and normal crossings. After blowing up some singular points in the special fiber of
Z| Oy, 1f necessary, we obtain a good model .4/ Oy, of Xy /M. Itis clear that G(Z,,,q)

is a tree if and only if G(Z) is a tree. It follows immediately from 1.9 that G(Z) is a tree if
and only if G(%) is a tree.

Facts 1.11. Let Z/ 0y be a good model of X/K and let g & p be a prime. The map =
can be described as follows.

« If g ¥, then =1 (C,)=: D; is irreducible and the restricted map
nlp, : D; = C;

14 i

is an isomorphism. The curve D, has multiplicity r; in %,.
« If g|r; and C;n R, + @, then n~'(C;)=: D, is irreducible and the restricted map
nlp,: D; = C;

is a morphism of degree g ramified over | C;~ R | points of C;. The curve D, has multiplicity
r;/q in %,. Its genus is computed using the Riemann-Hurwitz formula.

« If g|r, and C;n R, = 0, then
n:n (C) - C
is an etale map and each irreducible component of =z~ (C;) has multiplicity r;/q in %,. If
7~ 1(C,) is not irreducible, then it is equal to the disjoint union D; i L1 D, of g irredu-

cible curves, and each restricted map

is an isomorphism.

1.12. 'We are now ready to begin the proof of Proposition 1.7. Let G denote the graph
associated to a good model &/ @, of X/ K. Suppose that Condition C, does not hold for G.
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We claim that there exist two nodes C; and C, on G such that, if we let # denote the unique
shortest path between C; and C, on G, and if we let

w(2):= gcd (multiplicities of all vertices on £),
then
ord, (w(2)) = w,(C,), for all nodes C,e 2# with s + j, h,
and

max (W;(Cj), w,(Cy)) < ord, (w(2)) .
We call such a path # a bad path.

To show our claim, we proceed as follows: without loss of generality, we may assume
that the node

C, is such that w,(C,) =0,

and that the node
C, is such that w,(C,) < ord,(w(2, ,)) .

Upon renumbering the nodes (if necessary), we may assume that {C,, C,, ..., C,, C,} is the
ordered set of nodes on the unique shortest path on G from C, to C,. Let je {1, ..., s}
denote the largest integer such that

w, (C;) < ord, (w (9”))
Let h e{j+1,...,n} denote the smallest integer such that

w,(C,) < ord, (W(D,-,,,)) -

h—1
We thenset 2 = [} 2,,.

1=y

1.13. If 2 is a bad path with end nodes C; and C,, we let
a(P)=max (w,(C), w,(Cy) .

Let £ be a bad path in G(Z') with a(#) > 0. Let M/K be an extension of degree
£°®). Let ¥7/0,, be the normalization of

Z Xspeciox) Spec (Oy)
and let ©,, denote the composition of the natural maps

V- g‘xSpec(ﬂx) Spec(@M) - Z.
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Let

W - v

denote the minimal desingularization of ¥". It follows from 1.10 that #" is a regular model
of X,/ M whose special fiber is a divisor with smooth components and normal crossings.
After blowing up some singular points in its special fiber if necessary, we obtain a good
model #,,,,/0), of X,/ M. Consider the sequence of maps:

W,

good

> W > v s,

We claim that the graph G (#,,4) contains a bad path 2" with a(#") = 0. Let D, and D,
denote preimages under n,, of C; and C,. By 1.11, we have ’

w,(D;) = w, (D) =0.

We can certainly choose D; and D, in such a way that there is a path 2’ in G (¥”) between D
and D, mapping bijectively onto £ in G (Z). Note that, since every vertex on 2 other than C;
and C, has multiplicity divisible by ¢*®, it follows from 1.9 that each curve in &
corresponding to a vertex of 2 other than C; and C, does not intersect the branch locus of
m,,. Therefore the preimages in ¥~ of such curves are in the regular locus of ¥". Hence the
path 2’ in G(¥") can be considered as a path in G(#"). It follows from 1.11 that the
multiplicity of any vertex on the path 2’ other than D, and D, is divisible by /%) =@,
Therefore, the path 2’ in G (#"), from D; to D,, is a bad path with a(#?’) = 0. Let now 2"
be the preimage of 2’ in G (#,,4). Our claim is proved.

Without loss of generality, we may assume now that G (Z') contains a bad path 2 with
a(#?) = 0. To conclude the proof of our Proposition, we are going to show that, after an
extension M,/ K of degree 7, there exists a good model of X, /M, whose associated graph is
not a tree. We keep the notations introduced in 1.8:

Fppod > % - Y "> X
We claim that the graph associated to the good model Z,,,4 of X,/ M, is not a tree. Since
the end nodes C; and C, of # are such that

w, (C) = w, (G,) =0 =a(?),

both curves C; and C, intersect the branch locus of n. Let D; and D, denote the preimages
of C; and G, under =. Since

ord,(W(2)) 2 1,

D; and D, are linked in G(%) by at least ¢ distinct paths, the preimages under n of 2.
Indeed, if the preimage of each curve of £ is the disjoint union of £ components of %, then
D; and D, are linked in G (%) by exactly ¢ distinct paths. On the other hand, if the preimage
of some curve of 2 is not the disjoint union of £ components of %, then D; and D, are
linked in G (%) by more than ¢ paths. This shows that G (%) is not a tree. Since the curves
corresponding to the vertices of #\{C;, C,} do not intersect the branch locus of =, their
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preimages under 7 are in the regular locus of #. Hence the preimages in G (%) of the path
& can be considered as paths on G (Z). This implies that G (Z) is not a tree, and hence
G (Zo00) 1s NOt a tree. O

2. Explicit computation of @

We prove in this section the following theorem.

Theorem 2.1. Let (G, M, R) be a simple arithmetical tree satisfying Condition C,. For
each node (C;, r;) of G of degree d,, let

Wit oo Wig,
denote the weights of the chains of G containing C,, ordered in such a way that
ord,(w; ) = ... Z ord,(w; 4) .

Let ®,(G) denote the ¢-part of ®(G). Then

di—2
2@ = I (n Z/t’“d‘"i/w-%f’z).

all nodes C; j=1

Corollary 2.2. Let X/K be a curve and let A/K denote its jacobian. If A/K has
potentially good {-reduction at some prime £ + p, then the {-part of its group of components
can be computed, as in Theorem 2.1, using the arithmetical graph (G, M, R) associated to a
good model of XK.

Proof. The corollary follows immediately from 1.1 and 1.7. O

Remark 2.3. Obviously, if X/K has a good model whose graph satisfies Condition
C,, then the group &, can be computed using Theorem 2.1. Note, however, that even when
A/K has potentially good reduction, it is not true in general that Condition C, holds. For
instance, there are elliptic curves over @5, the maximal unramified extension of @,, hav-
ing potentially good reduction and whose minimal model have graphs of the form:

1 2 2 2 2 1
I1 11

Before proving our theorem, let us first recall the following facts.

Definition / Construction 2.4. We call a connected subgraph T of G a terminal string
of G if it has the following properties:

« There exists a vertex C of G such that T\{C} is equal to a connected component of

G\{C).
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« T contains a terminal vertex of G.
T does not contain any node of G.
Given a pair of integers (r, r,), we can construct a terminal string

(C5 r)’ (C17 rl)’ et (Cm’ rm)

of a simple arithmetical graph, with multiplicities r; and “self-intersection” ¢;:= |(C;- C;)|
defined using Euclid’s algorithm:

@ rzr r=cr,—r, withr,<r,

ry=Cyr, —ry withry <r,,
Fme1 = Cm¥m with r,, = ged (r, r,).

@ r<ry: r=ri—(@—rwith(r, —r)<ry,

and case (i) with ri, (r, —r).

Let (C;, ;) and (C;, r;) be two vertices on a graph G linked by an edge e. By “break
the graph G at e and complete,” we will mean the following construction:

« Remove e from G.

- Construct a terminal string T; using the pair (r;, r;). Construct a terminal string T;
using the pair (7}, ;).

- Attach T; at C, and T; at C;.

One constructs in this way one or two graphs depending on whether G \{e} is connected.
When G \{e} is connected, the new graph obtained by breaking G at e and completing is an
arithmetical graph. When G \{e} is not connected, let G, and G, denote the two new graphs
obtained by the above construction. Let s;, i = 1, 2, denote the greatest common divisor of
the multiplicities of the vertices of G;. It may occur that s; is greater than one. The graph G/
obtained from G; by dividing all its multiplicities by s; is an arithmetical graph.

The following lemma is needed in the proof of Theorem 2.1. Its proof is easy and is
omitted.

Lemma 2.5. Let G be a simple arithmetical graph. Let (C,r), (Cy,ry), ..., (C,s 1)
be consecutive vertices on a terminal string of G, with C,, being the terminal vertex. Let
¢;+=|(C; - C,)|. The intersection matrix M associated to G, written in the form:
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* *
* * 0 *
* 1 r
0 1 —161 1 ry —0
1
1 —c,_y 1 P — 1
1 —c, ¥

can be reduced over Z to:

C o z
* % 0 *

x 1/t r
0 1 —rjr, O T |
0 ) 0 =0. 0O

At

Lemma 2.6. Let G be a simple arithmetical graph and let £ be a prime number.

a) At least one of the chains of G has weight prime to £ and, therefore, there exists a
node (C,r) of G such that w,(C) = 0.

b) Let (C,r) be a node of G. Then there exist at least two distinct chains 9 and 2’ of
G containing C such that

ord, (w(2)) = ord, (w(2")) = w,(C).

c) If G is a tree, then there exist at least two terminal chains of G whose weight is
prime to £.

Proof. a) follows immediately from the fact that ged (r,,...,r,) = 1.

b) Let (C, r) be a node of degree d. Let (Cy, ry), ..., (C,, r,) denote the vertices of G
adjacent to (C, r). The weight of the chain containing C and C, is equal to ged (7, 7;). In
case ord, (r) = w,(C), the equality ord, (w(2)) = ord, (r) holds for all chains & containing
C. When ord, (r) > w,(C), one of the integers r;¢ " is prime to ¢. The equality

(C- Ol r=ri++r,

shows that a second one of the integers r;£ ") is also prime to £. Hence, for two distinct
values of i, we have

ord, (ged(r, ) = w, (C),
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which proves part b).

To prove c), consider the subgraph G’ of G defined as the union of all the connecting
chains of G whose weight is prime to ¢. If G’ is not empty, it is a tree and therefore it has at
least two terminal vertices C and C”. By construction of G’, the vertex C is a node of G and
only one connecting chain of G containing C has weight prime to ¢. Therefore, by b), there
must exist a terminal chain of G containing C whose weight is also prime to 7. The same
argument also applies to C’ and, therefore, c) is proven in the case G’ % @. If G’ is empty,
then by a) there exists one node with w,(C) = 0. Since all connecting chains containing C
have weight divisible by ¢, it follows from b) that at least two terminal chains of G con-
taining C have weight prime to Z. 0O

Proof of Theorem 2.1. The group ¢ may be computed using a row and column
reduction of the intersection matrix M (see 1.1). We prove our theorem by induction on the
number of nodes of G. If G has no nodes, then ¢ = {0}.

2.7. Let (C,r) denote a node of G of degree d. Let (Cy, ry), ..., (C,, r,) denote the
vertices adjacent to C on G. Let —¢ = (C- C). Since M - R = 0, we find that

cr=r+ - +r.
We may assume that the vertices C; are numbered in such a way that
ord,(ged (r, ry)) = -+ = ord, (ged (r, r,_,)) = ord, (ged (r, r,)) .

The equality on the right follows from Lemma 2.6. b). To ease our notations, we denote
the weight gecd (r, r;) (see 1.4) of the chain containing C and C, by s;.

Assume now that G is a simple arithmetical tree and that (C, r) is the unique node on
G. Condition C, is always satisfied in this case. Applying Lemma 2.5 to all terminal chains of
G, we can reduce the intersection matrix to the following one; we have omitted all of the
“diagonal 1s” in the reduced matrix since they do not contribute to @,. We shall do so in
the future without mentioning it.

—c  r/s ryfsy ot rals r
1 —rls, 0 0 5y
1 0 —r/s, 5, | =0.
. : . 0 .
1 0 0 -—r/s, 5,

This matrix further reduces over Z to:

rsy ot FaoqlSa-y TalSa—crls,
—r/sy 0 talSq

. 0 .

0 A ¢ F P TalSq
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Note that we have omitted a null row and a null column to simplify our notations. We
continue to reduce this matrix over Z,, using the fact that

ord,(r/s) S ord,(r/s,) Vi=1,...,d.

We obtain a new reduced matrix:

rfsy ot Tay/S4-1 O
—rls; O 0
S :=
Lo 0
0 e —=rfs,_, 0

Assume now that ord, (r,_,/s,_;) = 0. The £-adic number u:=r,_,/s,_ is a unit. We can
then further reduce S to:

0 0 u
—rfs, 0 0
0 —r/s;_, 0
u_lrlr/slsd—l umlrd—zr/sd—zsd—l —r/sq—4

Note that we have omitted a null column on the right. Since ord,(r/s;) < ord,(r/s,_,)
foralli=1,...,d— 2, we obtain a diagonal matrix

diag(r/sy, .-  1/S4— 5, ).
This completes the proof of our theorem in this case.
Assume now that ord,(r,_,/s;_,) > 0. Then
0=ord,(r/s;_,) 2 01d,(r/s) =0,

the first equality holding because s,_, = ged (r, r,_,). Hence, all the /-adic numbers r/s; are
units and the matrix S reduces to

diag(r/sy, ..., 1/Sq_2,1/S4_1),
which shows that @, = {0}. Our theorem is therefore proven when G has only one node.

Suppose now that G is a simple arithmetical tree with k nodes, £ = 2. We claim that we
can always pick a node (C, r) of G such that:

« (C, r) is a node of G contained in only one connecting chain 2 of G.

» There exists a node C, of G, with C, #+ C and such that w,(C,) = 0.
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Indeed, let C,, ..., C, be the nodes of G satisfying the first condition stated above. Since G
is a tree, m 2 2. If w,(C;) £ 0 for all i =1, ..., m, then the existence of C, follows from
Lemma 2.6. a). If w,(C;) = 0 for some i, then let C = C; for some j + i and let C;, = C,.

Fix now a node (C, r) and a node C, as above. We keep the notations introduced in
2.7, and in particular we assume that

ord,(s;) = -+ Z ord, (s, ;) = ord,(s,) .
Since Condition C, is satisfied,
ord, (w(2)) = ord, (s, ,) = ord,(s,) .

We may assume without loss of generality that C; € 2. Break the graph G at the edge linking
Cto C, and complete, as in 2.4. Let G’ denote the new graph containing C,. This graph may
not be an arithmetical graph, i.e., the greatest common divisor s of the multiplicities of the
vertices of G’ may not equal 1. We therefore let G” denote the graph obtained from G’
by dividing all its multiplicities by s. Note that the existence of C, € G implies that ¢ is
prime to s.

The graph G” does satisfy Condition C, and hence, by induction, our theorem is true
for G”. Therefore, in order to complete the proof of our theorem, we only need to show that

d—2
8,G) = [1 (Z/£42)x 8,(G").

i=1

Applying Lemma 2.5 to all terminal chains of G containing C, we reduce the intersection
matrix M of G to the matrix:

* % 0 *
* 1 T4
0 1 —c r/sy - Fi_q/S4_q r =0.
1 —r/s 0 5y
1 0 “r/sd—l/ Sa-1

Note that all of the “diagonal 1s” have been omitted in the above matrix. Using operations
on the rows and colums similar to the ones performed in the case where G had only one node,
we can further reduce this matrix to the matrix:
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( x* *
* % 0
*  rls;_,
0 1 —r/sy_, 0 0
0 —r/s,
\ 0 0 e =1y,

Hence we have shown that

d—2
9,G) = [] (Zjer ™ Z)x @',

i=1

where @’ is computed using the matrix

* k- 0
* rls; 4
0 1 —ryfss—y
We use now in an essential way the fact that Condition C, is satisfied:

s4/84_, 1san /-adic unit.

Therefore, we can divide the last column of the above matrix by s,/s,_; without changing
its elementary divisors. Hence, @’ can also be computed using the matrix

*ox :
Nee] * * 0
* rls,

0 1 —rysy

By construction, the graph G” has a terminal string 7T of the form

(Cy 14/, (Cor]8), ..., (Cpry=15,/8),

where C, is the terminal vertex on the chain. Applying Lemma 2.5 to the terminal chain 7,
we see that #(G") can be computed using the matrix N, which shows that &,(G") = @'.
This concludes the proof of Theorem 2.1. O

2.8. We prove now a rather technical proposition that will be used later in the course
of this paper. Fix a prime £. We keep the notations introduced in Theorem 2.1. In particular,
G is a simple arithmetical graph. Let

W,(G):={ord,(w; )| C;anode of G, 15j=<d,—2},

where the weights w; ; have been numbered such that
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ord,(w; ;) = -- = ord, (W;,4,-1) = ord, W;a,) -
Define
e W (G)y - N
as follows:

eq(x):=#{(i,/), C;anode, 1 £j<d,— 2, and ord, (W ;) = x} .

It is clear that

Y e = ) (d-2.

xeW,(G) nodesC;

Let
d:= Y (d—-2).

node C;

We assume from now on that G is a tree. It is easy to check that in this case
0 = (number of terminal vertices of G) — 2.

By Lemma 2.6.c), we can choose two terminal vertices (C’, r’) and (C", r") such that £ does
not divide r'r”. Let

Loyt
denote the multiplicities of all terminal vertices different from C’ and C”. Set

T,(G)={ord, (), i=1,...,6},
Define
g6 T,(G) - N
as follows:
eg(x) = #{i, ord, (t,) = x} .

Note that the set 7,(G) and the function ¢, are independent of the choice of C’ and C”.

Proposition 2.9. Let G be a simple arithmetical tree. Assume that Condition C, holds
for G. Then the sets W,(G) and T,(G) are equal. Moreover, the functions e and eg are also
equal.

Proof. If G has only one node, our proposition follows immediately from the
definitions. Therefore, we may assume that G has more than one node. Let € denote the
set of node of G that are contained in only one connecting chain of G. Since G is a tree, the
set € contains at least two elements.

Let us assume first that w, (C) = 0 for all nodes Cin %. Since Condition C, holds for G,
we find that ord, (2) = 0 for all connecting chains 2 of G. Therefore, it follows that

W, (G\{0} = T,(O)\{0},
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and that
€6 1w \0) = $61T(6)\(0} -

Since

Y e = Y &),

xeW,(G) xeT;(G)

it follows that e;(0) = &4 (0).
We assume now that there exists a node (C, r) in €, of degree d, with w,(C) > 0.

We proceed by induction on the number k& of nodes of G. As in the proof of the previous
theorem, we let

(Cis11)s s (Cyy 1)
denote the vertices of G adjacent to C. Let
s;:=ged(r, r;)

denote the weight of the chain containing C and C,. Assume that

ord,(s,) = --- 2 ord,(s,_,) = ord,(s;) > 0.
Since G satisfies Condition C,, we may assume that C, is on the unique connecting chain
containing C. Break G between C and C,and complete, asin 2.4. Denote by G’ the new graph
containing C,. This new graph has k — 1 nodes. Note that since w,(C) > 0, the graph G’
contains at least two terminal chains with weight prime to £. Therefore, the greatest common
divisor s of the multiplicities of G’ is prime to £. Let G” denote the arithmetical tree obtained
from G’ by dividing all its multiplicities by s. By induction, we know that

W,(G") is equal to T,(G"), and that e is equal to ¢ .

It is easy to check that

W,(G) = W,(G")u{ord,(s,), ..., ord,(s,_,)} .
One also checks that, since ord,(s,_,) = ord,(s,) ,

T,(G) = (T,(G")\{ord, (s,)}) v {ord, (s,). ..., ord, (s,-,)} -

This shows that W, (G) = T,(G). We leave it to the reader to check that e; =¢;. O

3. Bounds for @

Theorem 3.1. Let G be a simple arithmetical graph. Then the rational function

Jo(x)= ﬁ [ —1)/(x—1)]%4 2
i=1
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is a polynomial.

Proof. When G has no nodes, f;(x) = 1. We first prove this theorem for simple trees
with exactly one node. Then by induction on the number of nodes, we show that our
statement is true for all trees. Finally, by induction on the first Betti number B(G) of G, we
prove our theorem in general.

Assume that G has exactly one node, of multiplicity r and degree d; denote by s, ..., 5,
the terminal multiplicities of G (or, equivalently, the weights of the chains of G). To prove
our theorem, we need to show that the polynomial

dl_—_[2 x =1
Si
=1 X1

is divisible by (x*¢-* — 1) (x** — 1)(x — 1) 2. That this polynomial is thus divisible is trivial
if s, ;=s,=1.Let {¢,,...,4} denote the set of primes occurring in the factorization of
Sy-154

Recall that
=1 =[] e,(),

ulr

where ¢, (x) is the minimal polynomial of a primitive ' root of unity. Let

gl,- (X) = H (pu (X) ’

tiluisa-1
‘s, ..., Ci-1fu
g.= I e.x).
[1,{';"!;1!8‘.11*“
Then
e =1 =(x—1)g,(x) ... &, (x),
and

(=1 =(x—1) 8, (x) ... g, (x).

By construction, the polynomial g, (x) is prime to g; (x) if ¢; + /;. Note now that, if
lip-onty, and £, ..., ¢; are distinct primes not dividing one of the multiplicities

1y ...y S4_ 4, say, not dividing s, then
(x" —1)/(x** — 1) is divisible by g,il(x) SN g,,,m(x) . g;“(x) PR g}jp(x) .
Recall that for each prime ¢ dividing r, at most 4 — 2 terminal multiplicities are
divisible by ¢ (Lemma 2.6.b)). Therefore, for each prime #; dividing s,_,, there exists a

multiplicity s, € {sy, ..., S, ,} such that

CiXS,, -
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Similarly, for each prime ¢, dividing s,, there exists a multiplicity s, € {s,, ..., 5,_,} such that
£iX sy .

If ¢; divides both s, _, and s,, we may and will pick

!
Sy F Sy,

Therefore, forany i=1,...,d—2,

is divisible by ] ¢,(x) - [] £,(».

S(j =S8i S’{j =S8

x%—1
This proves our statement when G is a tree with a unique node.

Assume now that our theorem is true for trees with k — 1 nodes and consider a tree
G with k nodes. Pick an edge e on a connecting chain; break this connecting chain at e and
complete (as in 2.4) to get two graphs G, and G, whose number of nodes is strictly less than
k. Let s denote the weight of the chosen connecting chain. Let s, and s, denote respectively
the greatest common divisor of the multiplicities of G, and G,. Clearly, both s, and s, divide
s. We get two arithmetical trees G/,i=1, 2, by dividing all the multiplicities of G; by
s, i =1,2.

Since G is a tree, the following equality holds:

Y d—2)=-2.
i=1
It is then easy to check that:

fe ) = [fo, () - (x =12 (x* = 1)72] - [f,(x*) - (x —1)* (x> — 1)7?]
S —1)2(x —1)"2.

By induction, fg; (x) and f;, (x) are polynomials. Since G is an arithmetical graph,
ged (s,, 5,) = 1. Therefore

(=1~ 1) =) 2 (2 = 1) 72
is a polynomial. This concludes the proof of our theorem when G is a tree.
Let G be an arithmetical graph with §(G) > 0. Pick an edge e on a connecting chain of
G such that G\{e} is connected. The new arithmetical graph G’ obtained by breaking this

connecting chain at e and completing (as in 2.4) is such that f(G’) < f(G). Let s denote
the weight of the chosen connecting chain. One checks easily that

fex) =fe(x) - (¢ —1)?(x—1)72.

By induction, f;.(x) is a polynomial and, hence, f;(x) is a polynomial. O
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Corollary 3.2 ([Lor1], 4.6 and 4.7). Let G be a simple arithmetical graph. Then the
rational number

n
ﬂ rfiT? = fe (1)
i=1
is an integer and

deg f(x) = Z (ri—1(d;—2)
i=1
is a nonnegative integer. (l

Corollary 3.3. Let G be a simple arithmetical graph. The rational function
fe.0 ()= H [ — D/(x—1)]%72
i=1

is a polynomial. Moreover, f(x) is divisible by ( ] f5.,(x)) and

¢ prime

fG {(1) = £ c1)

Proof. Recall the factorization over Z of (x" — 1) into cyclotomic polynomials:

=D =[]e.(),

ulr

where ¢, (x) is the minimal polynomial of a primitive 4™ root of unity. This factorization
allows us to write

fe@=CII f6..(x) p(x)/9(),

£ prime

where p(x) and q(x) are integral polynomials whose irreducible factors are cyclotomic
polynomials of the form ¢, (x), with ¥ a composite integer. Moreover, this factorization also
shows that f;(x) is a polynomial if and only if f; ,(x) is a polynomial for all prime ¢
and ¢(x) divides p(x). Hence, Theorem 3.1 implies that f;; , (x) is a polynomial for all primes
¢ and that

Je(x) = ( H fc,z(x)) g(x),

¢ prime
with g(x) a polynomial. Recall that
0,(1) =1 if u is a composite integer,
o,(1)=¢ ifu=¢or9®,

Hence,
fG,((l) = fordelfc(1) o
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Corollary 3.4 ([Lor1], 4.7). Let G be a simple arithmetical graph. Then

Ord,(n réi=2) . (£ —1) < deg (fG,l(x)) )

and hence

Y, ord,(JIrf-)- ¢ =LY (-1, —2).

£ prime

Proof. The polynomial f; ,(x) factors into a product of irreducible cyclotomic
polynomials of the form @, (x), with a = £°°% @ It is well known that for such a polynomial,

(1) =7¢.
Since by 3.3,

fG,((l) = forde(f(1)) R

we conclude that f;; ,(x) factors into a product of ord,(f;(1)) irreducible polynomials.
Since the degree of ¢,(x), with a = £°%@ _ is at least equal to ¢ — 1, we find that

ord, (fG(1)) (£ —1) S deg (fG,l(x)) .
Taking the sums of these inequalities for all prime / proves our corollary. 0O

Corollary 3.5. Let G be a simple arithmetical tree and assume that Condition C, holds
for G. Write

e N.

13

s($)
&, =[] Z/t*Z, aq
i=1

Then
s(¢)

Z (" —1) < deg (fG,{(x)) .

i=1
Proof. We use Theorem 2.1 to write

di—2

(p{ —_ I‘I < n Z//ordz(n/wl',j)z> ,

Cinode \ j=1

where the weights w; ;,j =1, ..., d;, of the chains of G containing C; have been ordered
in such a way that

ord,(w; ;) 2 ... Z ord,(w; 4 ).

Then

di—2 di-2

Z Z (/(’Td[('i/wi,j) _ 1) é Z Z (/ord/(ri) _ /ordz(wl',j))

nodesC; j=1 nodesC; j=1

di—2

— Z (/ord;(ri) _ 1)(61, _ 2) _ Z Z (/ord;(wi,j) _ 1) .

nodes C; nodesC; j=1
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It follows from Proposition 2.9 that

Z <d.-iz ford{(wi,j) _ 1) — i (/ord/(t.-) _ 1) .
i=1

nodesC; j=1

If follows from the definition of the integers ¢,, ..., 5 that

J
z (/ord,(t.-) _ 1) - Z (/ord/(rj) — 1) .
i=1 terminal vertices (Cj,rj)
Since, by definition,
degfo, ()= Y (£ —1)(d,—2)— ) (£ =1y,
nodes C; terminal vertices (Cj,r;)

our corollary is proved. O

Corollary 3.6. Let X/K be a smooth proper geometrically irreducible curve. Let A/ K
be the jacobian of X | K and assume that it has toric rank equal to zero. Let ¥ denote the set

of primes ¢ + p such that A[K has potentially good {-reduction. Write the £-part of the group
s(t)

of components of A|K as ®, = [| Z|¢* Z. Then

i=1

Y (f) (/“i—1)> + Y ord, (1P —1) £ 2ug.
fed i=1 £¢F

Proof. Choose a good regular model /0, of X/K. Under the hypothesis that
tx = 0, we showed in [Lor2], 1.5, that

|@l=[]ri2=fc().

Therefore, it follows from 2.2, 3.4 and 3.5, that

s(¢)
) (Z (/““—1)>+ Y. ord, (B¢~ 1) = ) deg(fs,,(x)).
¢

e \i=1 ¢ L

We showed in [Lor2], 2.3, that
deg (f5 (x)) < 2u,

which proves our corollary. O

4. Existence of jacobians with given group of components

It is natural to wonder how sharp our bound for @ is. The following proposition
provides a partial answer to this question.
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Proposition 4.1. Let ® be any finite abelian group of odd order. Write & = [] &,,
i=1
with
s(¢3)

o, =[] z/tm2.

j=1

There exists a complete discrete valuation field K of equicharacteristic zero and a curve X/ K
such that:

(1) Thejacobian A/K of X| K has toric rank equal to zero and the group of components
of its Néron model is isomorphic to ®.

(ii) Let uy denote the unipotent rank of A/K. Then

v os)

2ug =Y ¥ (¢i—1).

i=1 j=1
(iti) X/K has a good model whose graph satisfies Condition C,, for all prime ¢.
(iv) The abelian variety A/ K has potentially good reduction.

Proof. Let X/K be a curve and let /0, be a regular model of X. We denote by
(G(&), M(Z), R(X)) the triple consisting of the graph, the intersection matrix, and the
vector of multiplicities associated to the special fiber of . We let

T(Z)=(g(Cy, ..., 8(C,))
denote the vector whose components are the genus of the irreducible components of Z,.

Winters’ Existence Theorem [Win] states that, given a simple arithmetical graph
(G, M, R) and a vector T of nonnegative integers, there exists a complete field K with a
discrete valuation, and a curve X (G)/K with a good regular model &/ such that

(G@), M%), RX), T(X)) = (G, M, R, T).

Our aim is to construct an arithmetical tree G = G (®) depending on @, in such a way that the
properties (i) —(iv) hold for the jacobian of the associated curve X (G).

Definition / Construction 4.2. Let G, and G, be two arithmetical graphs. Let C; € G,,
i =1, 2, denote a terminal vertex of multiplicity s. The joint of G, and G, at C; and C, is
a new arithmetical graph G obtained as follows: as a topological space, it is the disjoint
union of G, and G, with the points C; and C, identified in a single point C,,. The vertex C,
in G has multiplicity s. We give to the other vertices in G a multiplicity equal to their
multiplicity in G, or G,. It is easy to verify that G is an arithmetical graph. In fact, the
“self-intersection” of C, in G is equal to the sum of the “self-intersections” of C, in G, and
G, in G,.

4.3. For any odd integer n, we denote by G(n) the following graph:
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1 n n-2 3 1

4.4. The tree G(P) needed to prove our proposition is obtained by “joining” the
graphs in the set

{GUili=1,...,v; 1ZjZs(4)}.
More precisely, for each ¢;, construct a graph G (¢, s(£;)) obtained as follows: let

G4, 1)=G(£),
and let
G(lu]) :=a joint of G(/n] — 1) with G(fiaij) )

Then let G == G () be the graph G [v] obtained as follows: let

G[1]:= G(/n S(/1)) s
and let
G [i]=a joint of G [i — 1] with G(¢,, s(£)) .

Let m denote the number of vertices of G(&). Let M and R denote the intersection
matrix and vector of multiplicities associated to G(®). Let T be a null vector with m com-
ponents. Recall that the genus g of the curve X (G)/K associated to the type (G, M, R, T')
using Winters’ Theorem can be expressed as follows:

26(X(@) =2 ¥ ng @)+ ¥ (- D=2 +26(G),

(see for instance [Lor2], 2.1). Using this formula, one easily checks that:

v s(é)

26(X(G)== 3 ¥ (¢—1).

i=1 j=1

The fact that G is a tree and that T = (0, ..., 0) insures that the genus g is equal to the
unipotent rank of the jacobian 4/K of X (G) (see 1.3). An easy application of Theorem 2.1
shows that the group of components of A4 is isomorphic to @. It is obvious by construction
that (iii) is true. Part (iv), that is, the fact that 4 has potentially good reduction, follows from
1.9 and 1.11; we leave the details of the proof of (iv) to the reader. O

Corollary 4.5. Let g be any positive integer. Let ® = || ®, be any finite abelian
5() £%2
group of odd order. Write ®, = [| Z/¢* Z. Assume that
i=1

s(¢)
Y (z (/“'-1)>§2g.

2 \i=1
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Then there exists a field K and an abelian variety A|K of dimension g with purely additive
reduction, potentially good reduction, and such that

P(A) .

Proof. Let K be any complete field with a discrete valuation of equicharacteristic
zero. There always exists an elliptic curve E/K with additive reduction, potentially good
reduction and whose group of components is trivial. Given the group &, our previous
theorem shows the existence of such a field K and of an abelian variety B/K such that

2dim(B) = ¥ <(f (4% — 1)).

¢+2 \i=1

Let

s{£)
2f=2¢— Y <2 (f""—l)).

£+2 \i=1
Let A/ K denote the product of B with f copies of an elliptic curve E/K as above. O

Remark 4.6. When p + 2, we found no curve of genus 2 whose jacobian has purely
additive reduction, potentially good reduction, and whose group of components is
isomorphic to

Z|AZ or Z]4ZxZ]2Z.

There are curves of genus 3 whose jacobian has potentially good reduction and group of
components isomorphic to

7|47 ot Z|AZXxZ|AZ.

A good model of such a curve may have a graph of the form:

or

This follows immediately from 2.1. We do not know whether any of the groups
Z|4Z X Z]2Z, Z|4Z x(Z|2Z)* and Z[4Z x(Z]2Z)?

can be realized as the group of components of a jacobian of dimension 3 having purely
additive reduction and potentially good reduction.
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