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1. Introduction

Néron models were introduced by André Néron (1922-1985) in his seminar at the IHES
in 1961. He gave a summary of his results in a 1961 Bourbaki seminar [81], and a longer
summary was published in 1962 in Crelle’s journal [82]. Néron’s own full account of his
theory is found in [83]. Unfortunately, this article1 is not completely written in the modern
language of algebraic geometry.

Néron’s initial motivation for studying models of abelian varieties was his study of heights
(see [84], and [56], chapters 5 and 10-12, for a modern account). In [83], Néron mentions
his work on heights2 by referring to a talk that he gave at the International Congress in
Edinburgh in 1958. I have been unable to locate a written version of this talk. A result
attributed to Néron in [54], Corollary 3, written by Serge Lang in 1963, might be a result
that Néron discussed in 1958. See also page 438 of [55].

There is a vast literature on the theory of Néron models. The first mention of Néron
models completely in the language of schemes may be in an article of Jean-Pierre Serre at
the International Congress in Stockholm in 1962 ([94], page 195). Michel Raynaud extended
Néron’s results in [90] and gave a seminar on Néron models at the IHES in 1966-1967. He
published [91] in 1970, which remained for many years the most important reference on the
subject. Several important results on Néron models, including the semi-stable reduction
theorem for abelian varieties, are proved by Alexander Grothendieck in the 1967-69 seminar
SGA7 I [42]. The 1970 Springer Lecture Notes [92] by Raynaud includes a wealth of results on
groups schemes, including over bases of dimension greater than 1. A nice overview on Néron
models is found in the 1986 article [4] by Michael Artin. The 1990 book [14] by Siegfried
Bosch, Werner Lüktebohmert, and Michel Raynaud, remains the most detailed source of

Date: February 6, 2017.
1On February 14, 1963, Grothendieck writes to Artin: First I want to ask you if you feel like refereeing

Néron’s big manuscript on minimal models for abelian varieties (it has over 300 pages). I wrote to Mumford
in this matter, who says he will have no time in the next months, do you think you would? Otherwise I will
publish it as it is, as it seems difficult to find a referee, and the stuff is doubtlessly to be published, even if it
is not completely OK in the details. [79]

2On August 8, 1964, Grothendieck in a letter to Serre, writes: J’ai essayé d’apprendre la théorie des
hauteurs de Néron, et me propose d’essayer de généraliser ses symboles locaux... Les résultats de Néron sont
rupinants, et prendront, je crois une grande importance [95]. (I tried to learn Néron’s theory of heights, and
I plan to try to generalize his local symbols... Néron’s results are terrific, and will become, I think, of great
importance.)
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information. More recent results are exposited by Lars Halvard Halle and Johannes Nicaise
in [43]. This article is a brief survey of this very useful theory.

2. Models

Let R be a noetherian normal integral domain with field of fractions K, and set S :=
SpecR. When R is a discrete valuation ring (otherwise known as a local principal ideal
domain), we let (π) denote its maximal ideal, and k its residue field, of characteristic p ≥ 0.
Examples of such rings include the power series ring k[[t]], and the ring of p-adic numbers
Zp. When k is algebraically closed, it is a very useful geometric analogy to view SpecR as an
open little disk with center at the closed point Spec k. The generic point SpecK of SpecR
is then an analogue of an open unit disc minus the origin. The most subtle care is usually
needed to handle the case where the residue field k is imperfect, such as when R = Z[t](p),
with residue field Fp(t).

Let XK → SpecK be any scheme over K. We say that a scheme X endowed with
a morphism f : X → S is a model 3 of XK over S if there is an isomorphism over SpecK
between the generic fiber X×SSpecK of f and the given K-scheme XK . When the morphism
f need not be specified, we will denote the model simply by X/S or X/R.

If s ∈ S, with residue field k(s), then we denote as usual by Xs := X×S Spec k(s) the fiber
of f over s. Since the field k(s) is likely to be less complicated than the initial field K, so
that a fiber Xs might be easier to study than the generic fiber XK , a possible motivation for
studying models could be as follows: Given a well-chosen surjective model X → S for XK/K,
can we recover interesting information on XK/K from the study of the fibers Xs/k(s), where
s is closed point of S? This is indeed a prominent question in modern arithmetic geometry,
highlighted for instance by the Birch and Swinnerton-Dyer Conjecture (see [44], F.4.1.6).

When first encountering the notion of model, it is natural to ask what kind of interesting
models does a given scheme XK/K have. If XK/K has some nice properties, such as being
smooth, or proper, is it always possible to find a model f : X → S such that f has the same
properties? What about if XK/K is a group scheme: Can we find then a model X/S which
is an S-group scheme?

Example 2.1 Consider the simplest case where XK := SpecL, with L/K a finite extension,
so that XK/K is proper, and smooth if L/K is separable. We can define in this case a
canonical model X/S for XK/K by letting X := SpecRL, where RL is the integral closure
of R in L.

We find that the model f : X → S may not be proper if R is not excellent (since RL

might not be finite over R), and even when XK/K is also smooth, one does not expect the
morphism f : X → S to be smooth everywhere, as primes might ramify in the extension
L/K, or if the ring R is not regular, then f might not be flat.

Example 2.2 The multiplicative group scheme Gm,S/S represents the functor which, to an
R-algebra B, associates the group (B∗, ·). We can take Gm,S = SpecR[x, y]/(xy − 1). The
unit section is ε : S → Gm,S, with ε∗ : SpecR[x, y]/(xy − 1) → R, and x 7→ 1 and y 7→ 1.
The inverse map sends x 7→ y and y 7→ x. The multiplication map sends x 7→ x⊗ x.

We present now a model of Gm,K/K with a special fiber isomorphic to the additive group
Ga,k/k. To do this, let us change coordinates so that the unit element in Gm,K(K) is (0, 0)

3The use of the terminology ‘model’ in this context may predate the invention of schemes. For instance,
in 1956, Masayoshi Nagata publishes [80], entitled A General Theory of Algebraic Geometry Over Dedekind
Domains, I: The Notion of Models. As early as 1939, Oscar Zariski in [111] uses the term ‘model of a function
field F/K’ to refer, as we still do now, to a projective variety over K with function field isomorphic to the
given field F .
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in the new coordinates: we have then Gm,S = SpecR[x, y]/(x+y+xy). For any b ∈ R \{0},
we can construct a new model Gb/S of Gm,K/K as follows:

Gb := SpecR[x, y]/(x+ y + bxy).

When R is a discrete valuation ring and b ∈ (π), the special fiber of Gb is isomorphic to the
additive group Ga,k/k. There is a natural morphism of S-group schemes Gb → Gm,S, which
corresponds to the morphism of rings

R[x, y]/(x+ y + bxy)←− R[X, Y ]/(X + Y +XY )

with X 7→ bx and Y 7→ by. The morphism Gb → Gm,S is an isomorphism when restricted to
the generic fiber, and is an isomorphism when b ∈ R∗. When b ∈ (π), the special fiber of Gb

is sent to the neutral element of the special fiber of Gm,S.

Example 2.3 Let XK/K be smooth and proper. We say that XK/K has (everywhere) good
reduction over S if there exists a smooth and proper model X/S of XK over S. In general,
given a proper model X/S for XK/K, the generic smoothness theorem implies that there
exists a dense open set U ⊆ S such that the morphism XU := X ×S U → U is smooth
and proper. When the generic point η of S is open in S, such as when R is a discrete
valuation ring, then the above theorem is satisfied with U = {η} and does not provide any
new information on the model X/S. But when the base has infinitely many points and is
of dimension 1, such as when S = SpecZ or S = Spec k[t], then the above theorem implies
that all but finitely many fibers Xs/k(s) are smooth and proper.

Given any finite non-trivial extension L/Q, the integral closure OL of Z is such that the
morphism X := SpecOL → S := SpecZ is smooth over a dense open set U of SpecZ
maximal with this property, and a famous theorem of Hermann Minkowski asserts that
this maximal U is never equal to SpecZ. A beautiful generalization to abelian varieties
A/Q, conjectured for Jacobians by Igor Shafarevich in 1962 ([101], section 4), and proven
independently by Victor Abrashkin [1] and Jean-Marc Fontaine [36], shows that there does
not exist any abelian variety of positive dimension A/Q with everywhere good reduction
over S = SpecZ.

Fix an integer g > 1 and a non-empty open set U ⊂ SpecZ. Shafarevich also conjectured in
1962 ([101], section 4) that there exist only a finite number of isomorphism classes of curves
X/Q of genus g possessing everywhere good reduction over U (he proved the analogous
statement in the case g = 1, see e.g., [99], IX.6.1). This conjecture was proved by Gerd
Faltings in 1983, and we refer to the survey [74], page 240, for further information on this
topic.

Example 2.4 Suppose that R is a discrete valuation ring. When XK/K is projective,
we can obtain a flat projective model X/S of XK/K by choosing a projective embedding
XK → PnK and letting X be the schematic closure of the image of XK in PnS ([14], 2.5). It
is easy to build examples, such as X = Proj R[x, y, z]/(z2 − πxy), where the scheme X is
not regular even though the generic fiber XK/K is smooth, and where the special fiber Xk

is not reduced.
If the scheme XK/K is proper, then the existence of a proper model X/S follows from

Nagata’s Compactification Theorem [25], which states that if f : Y → S is separated and
of finite type, then there exists a proper S-scheme Y and an open immersion j : Y → Y
over S. Let now R be any Dedekind domain. Let XK/K be a separated scheme of finite
type. Then there exists a model f : X → S of XK/K which is separated of finite type and
faithfully flat ([63], 2.5). Moreover, if XK/K is also proper (respectively, projective), then
so is f .
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A given schemeXK/K has many different models over S, which raises the following natural
question. Is it possible, given XK/K, to find an interesting class of models Y/S of XK/K
such that in that class, there is a terminal object Y0/S, that is, there is an object Y0/S in
the class such that given any model Y/S in the class, there exists a morphism of S-schemes
g : Y → Y0 which induces the identity on the generic fiber. As we indicate below, this
question has a positive answer in several important cases.

Remark 2.5 Let us assume that XK/K has a smooth and proper model X/S of XK over
S. When such a model exists, we are certainly happy to work with it! But how unique is
such a model when it exists? Even before schemes were invented in 1956 by Grothendieck4,
one could sometimes recognize some projective objects who might have everywhere good
reduction: those defined by a system of equations with coefficients in R such that for every
maximal ideal M of R, the reduced system of equations still defines a smooth projective
variety over R/M . This condition is not sufficient to insure good reduction in general, so
in the case of curves, one would also add that the (geometric) genus of each special fiber is
equal to the genus of the generic fiber. Thus, equipped with this definition, one could ask
already in 1956 the following question when R is a discrete valuation ring: given two smooth
proper models X/S and X ′/S of a given smooth proper scheme XK/K, what can we say
about the special fibers Xk/k and X ′k/k. Are they always isomorphic for instance?

A positive answer to this question in the case of elliptic curves was given by Max Deuring
in 1955, and soon thereafter, in 1957, by Wei-Liang Chow and Serge Lang for smooth
proper curves and for abelian varieties [23]. In 1963, the general case is treated by Teruhisa
Matsusaka and David Mumford (see [72], Theorem 1, and also [70], Theorem 5.4). In
particular, suppose given two smooth proper models X/S and Y/S of their irreducible generic
fibers XK/K and YK/K, and a K-isomorphism h : XK → YK. Assume that Yk is not ruled
(that is, Yk is not birational over k to the product of P1

k by another scheme). Then Xk and
Yk are birational. In the case of curves of genus g > 0 and of abelian varieties, we conclude
that the smooth special fibers are in fact isomorphic. As we shall see in 3.1 and 3.2, the
smooth and proper models turn out to be unique terminal objects in these two cases. The
situation is already much more delicate for surfaces and we refer to [37] for an introduction
in equicharacteristic 0.

We also mention here an example in [70], 5.2, page 261, of a K3 surface with no smooth
and proper model over a discrete valuation ring, but such that it has a smooth and proper
algebraic space model, indicating that in certain contexts one might profit from working in
a category larger than the category of schemes.

Let us return to 2.2 where models of the multiplicative group Gm,K/K are introduced.
The following 1979 result of William Waterhouse and Boris Weisfeiler (in [109], use 1.4 with
the proof of 2.5) answers in this case the question about the existence of terminal objects
posed in 2.4.

Theorem 2.6. Let R be a discrete valuation ring with maximal ideal (π). Let G/S be a
smooth, separated S-group scheme of finite type, with connected fibers, and which is a model
of Gm,K/K. Then G/S is isomorphic to a group scheme of the form Gπn/S for some n ≥ 0.
In particular, Gm,S/S is a terminal object in the class of such group schemes.

Group schemes G/S might not be separated (see, e.g., [40], Exposé VIB, 5.6.4), but if
G → S is a group scheme over S, flat, locally of finite presentation, with connected fibers,

4On February 16, 1956, Grothendieck in a letter to Serre mentions ‘arithmetic varieties obtained by gluing
the spectrum of noetherian commutative rings’ [95]. These are schemes, except for the name. In a letter to
Serre dated October 17, 1958, Grothendieck uses the name ‘scheme’ and mentions that Jean Dieudonné is
writing the first four chapters of what will become the EGA’s [39].
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then G→ S is necessarily separated and of finite presentation ([40], Exposé VIB, Corollary
5.5). This latter result is attributed to Raynaud by Grothendieck in a letter to Mumford on
January 23, 1965 [79].

Example 2.7 The additive group Ga,K/K represents the functor which associates to a K-
algebra B the additive group (B,+). Let R be a discrete valuation ring with maximal ideal
(π). Choosing an identification Ga,K = SpecK[x], we find that Ga,S = SpecR[x] is a smooth
model of Ga,K/K over S, with Ga,S(S) = (R,+).

It turns out that for any n ∈ Z, given the subgroup Hn := (π−nR,+) of the additive group
(K,+), there exists a smooth model Gn/S of Ga,K/K such that Gn(S) = Hn ⊂ Gn(K) = K.
Indeed, simply consider Gn := SpecR[πnx]. The natural inclusion R[πnx] → R[πn−1x]
induces a morphism of S-group schemes Gn−1 → Gn. This morphism induces the inclusions
of groups Gn−1(S) ( Gn(S) ( Ga,K(K). Thus, if there existed a terminal object G/S in the
class of smooth models of finite type of Ga,K/K, we would have G(S) = G(K). This is not
possible because in this example, G(K) = K is unbounded (see Definition 4.1), while G(S)
is always bounded when G/S is of finite type, as we explain in 4.2.

Let R be a discrete valuation ring. Given a proper model X/S of its generic fiber, and
given a closed subscheme Yk of the special fiber Xk, we can perform the blowing-up of
X ′ → X of Yk on X. By construction, X ′/S is a new proper S-model of XK . The preimage
of Yk is a codimension one closed subscheme of X ′, and thus has the same dimension as Xk.
In particular, X ′k in general is not irreducible and, hence, is not smooth, even when X/S is
smooth.

Definition 2.8 Let R be a discrete valuation ring. Let X/S be an S-scheme of finite type.
Let Yk be a closed subscheme of its special fiber, and let I denote the sheaf of ideal of OX
defining Yk. Let X ′ → X be the blowing-up of Yk on X, and let u : X ′π → X denote
its restriction to the open subscheme of X ′ where IOX′ is generated by π. The morphism
u : X ′π → X is called the dilatation of Yk on X ([14], 3.2, page 64).

When X/S is a group scheme and Yk is a subgroup scheme of Xk, then X ′π/S is a group
scheme, and u : X ′π → X is a homomorphism of S-group schemes ([14], 3.2/2 d)). When
X/S is smooth and Yk/k is a smooth k-subscheme of Xk, then X ′π/S is smooth ([14], 3.2/3,
page 64).

The examples of morphisms of group schemes exhibited in 2.2 and 2.7 are dilatations of
the origin. Additional examples of dilatations are found in the next example.

Example 2.9 Many of us might have started looking at models when working with elliptic
curves. In this setting, one can begin a pretty good theory using only Weierstrass equations.
Suppose that an elliptic curve XK/K is given in the projective plane over K by an equation

y2z + a1xyz + a3yz
2 − (x3 + a2x

2z + a4xz
2 + a6z

3) = 0,

with ai ∈ R and discriminant ∆ 6= 0. This same equation defines a closed subscheme X/S
inside the projective plane P2

S. Thus, X/S is a proper flat model of XK/K.
Consider now the largest open subscheme E ⊂ X such that E/S is smooth. It turns out

that the scheme E/S is in fact a smooth S-group scheme with connected fibers, with a group
scheme structure which extends the given group structure on EK . Without giving details,
let us say that in each fiber, three points on a line add up to zero in the group structure, in
the same way as they do in the generic fiber.

When R is a discrete valuation ring with valuation v, the following notion of minimality
is very useful. Consider all possible models over R of XK/K obtained using only changes
of variables that do not change the form of the Weierstrass equation. For each such model,
we can consider the valuation v(∆) of the discriminant of the defining Weierstrass equation.
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Since this valuation is a non-negative integer, the models where v(∆) is minimal are of
special interest, and might have ‘terminal properties’ in this class of objects.

Let us look at one particular example. Assume that the characteristic of K is not 2 or
3. Then the affine equation y2 = x3 + π6, when homogenized, defines an elliptic curve over
K, and also defines a model X/S of its generic fiber. We let E/S denote its associated
smooth S-group scheme model of its generic fiber. In this case, E is obtained from X by
removing the closed point corresponding to the singular point of the special fiber of X/S.
The special fiber of E is isomorphic to the additive group over k. The discriminant of the
given Weierstrass equation is ∆ = −2433π12. Using the change of variables y = π3Y and
x = π2X, we obtain a new Weierstrass equation Y 2 = X3+1, with discriminant ∆0 = −2433.
When the characteristic of the residue field k is not 2 or 3, then the model E0/S associated
with this new equation is regular, and its special fiber consists of an elliptic curve. The
model is thus smooth, and is an S-group scheme. In this example, the model E0/S with
minimal valuation of the discriminant is ‘nicer’ than the original model E/S.

There is a morphism of S-group schemes E → E0 obtained as a composition

E = E3 → E2 → E1 → E0,

where each intermediate morphism corresponds to blowing up the origin in the group law of
the special fiber, and removing the strict transform of the old special fiber. Such a morphism
is a dilatation. Let us explain below how this composition is constructed. Let xi := x/πi and
zi := z/πi. We start by blowing up the ideal (x, z) in the affine chart given by z− (x3 + z3).
Since we remove the old special fiber, we get an S-morphism E1 → E0 given in an affine
chart by

R[x, z]/(z − (x3 + z3)) −→ R[x1, z1]/(z1 − π2(x31 + z31)),with x 7→ πx1, z 7→ πz1.

In this chart for E1, we find that the origin is given by the ideal (π, z1). Blowing it up and
removing the old special fiber gives

R[x1, z1]/(z1 − π2(x31 + z31)) −→ R[x1, z2]/(z2 − (πx31 + π4z32),

and a final blow up of (π, z2) gives

R[x1, z2]/(z2 − (πx31 + π4z32) −→ R[x1, z3]/(z3 − (x31 + π6z33).

We recognize that z3− (x31 + π6z33), when homogenized, defines the plane curve given by the
equation y2z3 − (x31 + π6z33), which provides the model E/S once the singular point of the
special fiber is removed.

3. (Strong) Néron Models

The question in 2.4 regarding the existence of a terminal object in a class of models has
a positive answer in two important cases that we now discuss.

Theorem 3.1. Let R be a Dedekind domain. Let XK/K be a smooth, proper, geometrically
connected, curve of genus g > 0. Consider the class of all models Y → S of XK/K such
that Y is a regular scheme and such that the morphism Y → S is proper and flat. Then this
class of models contains a unique terminal object, called the minimal regular model of the
curve XK/K.

Néron proved this theorem in 1961 when X/K is an elliptic curve and R is a discrete
valuation ring with perfect residue field. Steven Lichtenbaum, in his 1964 Harvard thesis,
and independently Shafarevich, proved the existence of a minimal model given the existence
of a regular model. The existence of a desingularization of a scheme of dimension 2 was
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proved in various settings by Zariski (1939), Sheeram Abhyankar (1956), and Joseph Lipman
(1969). Accounts of these results can be found in [5], [22], and [59], Chapter 9.

Theorem 3.2. Let R be a Dedekind domain. Let AK/K be an abelian variety. Consider
the set of all smooth group schemes Y → S of finite type which are models of AK/K. Then
this class of models contains a unique terminal object A/S, called the Néron model of the
abelian variety AK/K.

This theorem, and the stronger statement 3.8, were proved by Néron in 1961 when R has
perfect residue fields. In both situations 3.1 and 3.2, we can say a lot more:

Theorem 3.3. Let R be a Dedekind domain. Let XK/K be a smooth, proper, geometrically
connected, curve of genus g > 0. Let Y/S and Z/S be two regular models of XK/K, proper
and flat over S. Assume that there exists a morphism of S-schemes g : Y → Z. Then g
is the composition of a sequence of elementary S-morphisms Y = Zn → Zn−1 → · · · →
Z1 → Z0 = Z, where each Zi/S is a regular proper flat model of XK/K, and each morphism
Zi → Zi−1 is the blow-up of a closed point in a closed fiber of Zi−1/S.

Theorem 3.4. Let S be the spectrum of a henselian discrete valuation ring R. Let g : F → G
be an S-morphism of smooth S-group schemes of finite type. Suppose that gK : FK → GK

is an isomorphism. If g is separated, then g is the composition of a sequence of elementary
S-morphisms F = Gn → Gn−1 → · · · → G1 → G0 = G, where each Gi/S is a model of
GK/K and each morphism Gi → Gi−1 is a morphism of S-group schemes obtained as the
dilatation of a smooth center in Gi−1/S.

A proof of Theorem 3.3 can be found in [59], 9.2.2, while a proof of Theorem 3.4 is found
in [61], 2.3. While we have stated the above results in a way that emphasizes the similarities
in the two cases, Néron was in fact able to prove that the Néron model of an abelian variety
satisfied an even stronger property, the Néron mapping property:

Definition 3.5 Let XK/K be a scheme, smooth, separated, and of finite type over K. We
say that a scheme X/S, smooth, separated, and of finite type over S, is a (strong) Néron
model of XK/K if, given any smooth scheme Y/S and any K-morphism gK : YK → XK ,
there exists a unique S-morphism g : Y → X whose pull-back under SpecK → S is the
given morphism gK ; In other words, such that the natural map

HomS-schemes(Y,X) −→ HomK-schemes(YK , XK)

is bijective. We call this universal property Néron’s mapping property.

The (strong) Néron model, if it exists, is then unique up to a unique isomorphism. Néron
was interested in models of abelian varieties for arithmetic reasons, as he was interested in
understanding heights of points. In arithmetic, not only are we interested in models X/S
of XK/K, but we would like to have a reduction map from K-rational points on XK to
k(s)-rational points on Xs, for s ∈ S. We always have the following natural maps of sets
when X/S is separated:

Xs(k(s))←− X(S) ↪−→ XK(K)

Thus a natural reduction map red : XK(K) → Xs(k(s)) can be defined if the natural
inclusion X(S) ↪→ XK(K) is a bijection. If the model X/S is proper, then by the valuative
criterion of properness, the inclusion X(S) ↪→ XK(K) is always a bijection. The next lemma
follows immediately from the universal property of the Néron model. When R is a discrete
valuation ring and L/K is a finite separable extension, a local ring R′ with field of fractions
L defines a smooth morphism SpecR′ → SpecR (in fact, etale morphism) if and only if the
maximal ideal MR of R generates the maximal ideal MR′ of R′ and the residue field extension
R′/MR′ is separable over R/MR.
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Lemma 3.6. Assume that XK → SpecK is smooth, separated, of finite type, and has a
Néron model X/S over S. Then the natural map X(S) ↪→ X(K) is a bijection. Moreover,
for any etale morphism SpecR′ → SpecR as above, the map X(R′) ↪→ X(L) is a bijection.

Instead of considering all etale local algebras over R as we do in the above lemma, one
can use limit arguments and consider instead the strict henselization5 Rsh of R, with field
of fractions Ksh. If X/S is the Néron model of its generic fiber XK/K, then the natural
injection X(Rsh) ↪→ X(Ksh) is a bijection. In fact, we have a useful converse for smooth
group schemes ([14], 7.1, Theorem 1):

Theorem 3.7. Let R be a discrete valuation ring. Let G/S be a smooth separated group
scheme of finite type. If the natural map G(Rsh) ↪→ G(Ksh) is a bijection, then G/S is the
Néron model of its generic fiber.

In particular, if A/S is an abelian scheme, then it is the Néron model of its generic fiber.

Theorem 3.8. Let R be an excellent discrete valuation ring with field of fractions K. Let
Ksh denote the field of fractions of the strict henselization Rsh of the ring R. Let GK/K be
a smooth commutative algebraic group such that GKsh/Ksh does not contain any subgroup
scheme isomorphic either to the multiplicative group Gm,Ksh/Ksh or to the additive group
Ga,Ksh/Ksh. Then GK/K admits a smooth Néron model G/S of finite type over S.

This theorem was proved by Néron in 1961 for abelian varieties when the residue field is
perfect, and by Raynaud in general ([14], 10.2, Theorem 1). Extensions of this result to the
case where R is any excellent Dedekind domain are discussed in [14], 10.3, and two related
open conjectures when K has positive characteristic are discussed on pages 310 and 314.

Let R ⊂ R′ be a local extension of discrete valuation rings with fields of fractions K and
K ′. Assume that R′ has ramification index 1 over R. This is the case for instance if R′ is the
completion of R. Let GK/K be a smooth group scheme of finite type. Then GK/K admits
a Néron model over R if and only if GK′/K ′ admits a Néron model over R′ ([14], 7.2/1).

3.9 Let G/S be a smooth separated group scheme of finite type. Then there exists an open
subgroupscheme G0/S of G/S such that for each s ∈ S, the fiber (G0)s → Spec k(s) is the
connected component of the identity (Gs)

0 of the fiber Gs → Spec k(s) (see [40], VIB, 3.10,
page 344).

Example 3.10 For the terminal model Gm,S/S of Gm,K/K introduced in 2.2, we find that
Gm,S(S) ⊆ Gm,K(K) is simply the inclusion R∗ ⊆ K∗. Hence, this model does not provide a
reduction map red : Gm,K(K)→ Gm,k(k), and Gm,S/S is not the Néron model of Gm,K/K.

Let R be a discrete valuation ring. There exists a smooth separated model G/S of
Gm,K/K, locally of finite type over S, which satisfies the Néron mapping property ([14],
Example 5, page 291). The associated S-morphism of group schemes Gm,S → G is an open
immersion which identifies Gm,S with the subgroup G0/S. The special fiber is an extension
of the constant group scheme Z by Gm,k.

Example 3.11 Assume that the characteristic of K is not 2. Let L := K(
√
d) be a quadratic

extension. Consider the norm torus TK/K given by the affine equation x2 − dy2 = 1. The

5Recall that one way to construct Rsh is as follows. Consider a separable closure Ks of K, and choose a
maximal ideal Ms in the integral closure Rs of R in Ks such that Ms ∩ R = (π). Let G denote the Galois
group of Ks/K. Let I := IMs/(π) denote the inertia subgroup at Ms, that is, the set of σ ∈ G such that
σ(Ms) = Ms and such that the induced morphism on residue fields Rs/Ms → Rs/Ms is the identity. Then
the localization of the fixed subring RIs at the maximal ideal Ms ∩ RIs is the strict henselization Rsh of R
([14], 2.3, Proposition 11). The field of fractions of Rsh is KI

s . The residue field of Rsh is a separable closure
of k.



NÉRON MODELS 9

multiplication map T (K)×T (K)→ T (K) is given by (x, y) ·(x′, y′) := (xx′+dyy′, xy′+x′y),
with neutral element (1, 0) and inverse (x, y) → (x,−y). It is easy to check that TL/L is
L-isomorphic to Gm,L.

Consider the model T/S of TK/K given as T := SpecR[x, y]/(x2 − dy2 − 1). This is a
separated group scheme of finite type over S, and when the characteristic of k is not 2, it is
smooth. In the specific case where d = π and T/S is smooth, it is not hard to check that
T (Rsh) ↪→ T (Ksh) is a bijection, so that T/S is the Néron model of TK . We find that in
this case the special fiber Tk := Spec k[x, y]/(x2 − 1) is the extension of the constant group
scheme Z/2Z by Ga,k. Further explicit examples of Néron models of norm tori of higher
dimension are found in [60].

In Example 3.11, the Néron model of TK/K is an affine group scheme T/S. It is a general
theorem of Sivaramakrishna Anantharaman (in his thesis under Raynaud) that if R is a
Dedekind domain and G/S is a flat separated group scheme of finite type with generic fiber
GK/K affine, then G itself is affine ([2], 2.3.1, p. 30). This result does not extend to bases
of dimension larger than 1, as Raynaud has given an example over R = Q[X, Y ] of a smooth
model G/S with connected fibers of Gm,K ×Gm,K that is not affine ([92], VII.3, page 115).

Example 3.12 In the case of a Weierstrass equation with coefficients in R, we defined
in 2.9 a proper flat model X/S, and a smooth S-group scheme E/S with E ⊆ X, both
models of their generic fibers XK = EK . By construction, we always have a reduction map
XK(K) → Xs(k(s)) since X/S is proper. But we may fail to have a well-defined reduction
map XK(K)→ Es(k(s)) when E/S is not proper.

For instance, assume now that the characteristic of K is not 2 or 3, and consider the
equation y2 = x3 + π2 defining X/S, with the S-rational point (0, π). Reducing modulo a
maximal ideal that contains π, we obtain a special fiber y2 = x3, and the point (0, π) reduces
to the singular point of the special fiber. (This in particular shows that the singular point of
the special fiber is also singular as a point of X). Thus (0, π) ∈ XK(K) cannot be reduced
in Ek(k) in a natural way. In particular, E/S is not the Néron model of EK/K, as follows
from Lemma 3.6.

The universal property of the Néron model E/S of EK/K implies the existence of a
morphism of S-group schemes E → E . When R is a discrete valuation ring with maximal
ideal (π), the Weierstrass equation defining E/K has discriminant ∆ = −2433π4 and in
particular has minimal valuation when R has residue characteristic different from 2 and 3.
It follows (see 6.5) that the morphism E → E is an open immersion in this case.

Example 3.13 LetR be a henselian discrete local ring, and letRsh denote its strict henseliza-
tion, with field of fractions Ksh. Let XK/K be smooth, separated, and of finite type. When
XK(Ksh) = ∅, then XK viewed as an S-scheme as XK → SpecK → S, is a Néron model of
XK .

Example 3.14 Néron and Raynaud gave necessary and sufficient conditions for the exis-
tence of the Néron model of a K-torsor under a smooth group scheme ([14], 6.5, Corollary
4). In [62], 4.13, Qing Liu and Jilong Tong show that if XK/K is a smooth proper scheme
which admits a proper model X/S over a Dedekind scheme S with X regular and such that
no geometric fiber Xs, s ∈ S, contains a rational curve, then the smooth locus Xsm/S of
X/S is the (strong) Néron model of XK/K. Adrian Vasiu in [106], 4.4, provides classes of
projective varieties over certain fields K which have projective (strong) Néron models and
which often do not admit finite maps into abelian varieties over K. See also [107], section 6.

Example 3.15 To give only one indication of the subtleties that need to be considered when
k is not perfect, let us note that if k is perfect, then any smooth connected group scheme
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Gk/k such that Gk/k is k-isomorphic to Ga,k is already k-isomorphic to Ga,k. In other words,
there are no twisted forms of Ga,k ([108], 17.7, Corollary).

This is no longer the case when k is imperfect. Consider for instance the closed subgroup
scheme Gk/k of Ga,k×Ga,k given by the equation x−xp+typ = 0. When t is not a p-th power
in k, the group Gk/k is smooth connected of dimension 1, but it is not k-isomorphic to Ga,k,
as it can easily be checked that there exists no k-isomorphism k[x, y]/(x− xp + typ)→ k[u].
But over the purely inseparable extension F := k( p

√
t), the group GF/F is F -isomorphic to

Ga,F .
Assume now that K is the field of fractions of a discrete valuation ring R with maximal

ideal (π) and residue field k. When K is of characteristic p > 0, the group scheme H/S
defined by H := SpecR[x, y]/(x − xp + πyp) is smooth, and one can check directly that it
is the (strong) Néron model of its generic fiber by checking that H(Rsh) = HK(Ksh). The
special fiber Hk/k is defined by Spec k[x, y]/(x−xp) and is thus an extension of the constant
group scheme Z/pZ by Ga,k.

4. (Weak) Néron models

Néron’s main theorem on the existence of models is Theorem 4.3 below. Let us start with
the following definition (see [14], 1.1/2).

Definition 4.1 Let R ⊂ R′ be a local extension of discrete valuation rings with field of
fractions K and K ′. The valuations on K and K ′ give rise to absolute values, that we
choose so that | |K′ extends | |K . This compatible absolute value will be denoted by
| | : K ′ → R. Let XK/K be a scheme of finite type. When x ∈ XK(K ′), and g ∈ OXK

(U)
for some neighborhood U of x, we may view g(x) as an element of K ′, so that |g(x)| is
defined. Let E ⊂ XK(K ′). The function g is bounded on E if E is in the domain of g and the
set {|g(x)|, x ∈ E} is bounded. A subset of An

K(K ′) is bounded if each coordinate function
is bounded on the subset.

If XK is affine, we say that E is bounded in XK is there exists a closed K-immersion
XK ↪→ An

K for some n mapping E onto a bounded subset of An
K(K ′). In general, E is

bounded on XK is there exists a covering of XK by finitely many affine open subsets Ui of
XK , i = 1, . . . , d, and a decomposition E = ∪di=1Ei with Ei ⊂ Ui(K

′) and such that, for
each i, the set Ei is bounded in the affine Ui. The definition is independent of the closed
immersion and of the affine cover, and both parts are compatible (see [14], page 9).

Example 4.2 Let S := SpecR with R as above. Let XK/K be a K-scheme separated of
finite type, and let X/S be a separated model of finite type. Let E := X(S), considered
as a subset of XK(K). Then E is bounded in XK . Indeed, cover X with finitely many
affine open sets Ui. Let σ : S → X be a section. There exists an index i such that the
image of σ is contained in Ui, with Ui of the form Ui = SpecR[x1, . . . , xn]/(g1, . . . , gm). The
section σ corresponds to a point of the form (r1, . . . , rn) ∈ Rn. We have a natural embedding
Ui,K → XK . Any affine covering of the image of Ui,K allows us to express the coordinate yj
in that covering as a function in K[x1, . . . , xn]/(g1, . . . , gm), and such function is bounded
when evaluated on R-points (r1, . . . , rn).

We may now state Néron’s main result on models ([14], 3.5, Theorem 2).

Theorem 4.3. Let R be a discrete valuation ring. Let XK/K be a smooth separated K-
scheme of finite type. If XK(Ksh) is bounded, then there exists a smooth separated model
X/S of finite type of XK/K over S such that the natural inclusion X(Rsh) ⊆ XK(Ksh) is a
bijection.
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A smooth separated model X/S of XK/K over S as in Theorem 4.3 is called a weak Néron
model of XK/K. In the case of group schemes, the above theorem can be strengthened ([14],
4.3-4.4, and also 6.5, Corollary 4):

Theorem 4.4. Let R be a discrete valuation ring. Let GK/K be a smooth K-group scheme
of finite type. Then GK/K admits a (strong) Néron model G/S if and only if GK(Ksh) is
bounded in GK.

Suppose that XK/K is a smooth proper K-scheme with a proper model X/S. Recall that
we say that Y → X is a desingularization of X if Y is a regular scheme and Y → X is a
proper surjective birational morphism inducing an isomorphism over the regular locus of X.
It is a very difficult theorem of Hironaka that such desingularization of X exists when R is
of equicharacteristic 0. But when such Y exists, then the smooth locus Y sm → S of Y → S
is a Néron model of XK/K ([14], page 61).

Remark 4.5 A smooth proper K-scheme XK/K has more than one weak Néron model,
and even the most obvious of such models, such as the smooth proper model PnS/S of the
projective space PnK/K, might not satisfy Néron’s universal mapping property 3.5. Indeed,
there are K-automorphisms ϕK : PnK → PnK which do not extend to an S-morphism PnS →
PnS. For instance, let R be a discrete valuation ring with maximal ideal (π), and consider
P1
K = Proj(K[x, y]), with the automorphism ϕK induced by x 7→ x and y 7→ πy. Then ϕK

extends to a morphism ϕ : P1
S \ {P} → P1

S, where P is the point in P1
S = Proj(R[x, y])

corresponding to the homogeneous ideal (x, π). The morphism ϕ cannot be extended to
a morphism ϕ′ : P1

S → P1
S because such morphism would be proper, with closed image,

while the image of this morphism is the open generic fiber union with the closed point
corresponding to the homogeneous ideal (x, π).

Remark 4.6 Let XK/K be a smooth separated K-scheme of finite type, and let ϕK :
XK → XK be a finite K-morphism. In arithmetic dynamics, a weak Néron model for
the pair (XK/K, ϕK) is a pair (X/S, ϕ), where X/S is a weak Néron model of XK/K and
ϕ : X → X is a finite morphism which extends ϕK . The existence of such weak Néron model
pair has important applications regarding the properties of the canonical height attached to
the pair (XK/K, ϕK) (see [18], and [46]).

Remark 4.7 Let GK/K be a connected reductive group scheme. When K is the field of
fractions of a discrete valuation ring R, the study of GK/K involves group schemes G/S
which are models of GK/K over S. Much of this theory is found in [17], where what we call
model is called (in French) ‘un prolongement’, that is, an extension (see 1.2.4). We remark
below that the models G/S of a connected reductive group GK/K introduced in the theory
of algebraic groups are rarely Néron models of their generic fiber.

When K is the field of fractions of a henselian discrete valuation ring, the Theorem
of Borel-Tits-Rousseau (see [89]) states that GK(K) is bounded if and only if GK/K is
anisotropic (i.e., does not contain a split multiplicative group). When K is any discrete
valuation field, we can apply this theorem to Ksh, and obtain from 4.4 that GK/K has a
Néron model over S if and only of GKsh/Ksh is anisotropic. It turns out that there are few
anisotropic groups over a strictly henselian field. Indeed, recall that the maximal unramified
extension Ksh of K is C1 if R is complete with a perfect residue field ([53], Theorem 12).
When the field K is C1, a theorem of Steinberg shows that the group GK/K contains a Borel
subgroup defined over K ([93], III, 2.3, Theorem 1’, and [10], 8.6, top of page 484). Over
any field, if the group has a Borel subgroup defined over K, then it contains a non-central
split K-torus ([9], 20.6 (ii)), and thus is not anisotropic.

Recall that when a field is C1, then its Brauer group Br(K) is trivial. When there is a
non-trivial element in Br(K), corresponding to a central division algebra D/K, then one
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finds a K-anisotropic group as follows. For any field K and D a central division over K
of rank n2 with n > 1, the Ksep/K-form of SLn given by the K-group SL1(D) of units of
reduced norm 1 in D (i.e., representing the functor assigning to any K-algebra A the kernel
of the polynomial map Nrd : (D⊗K A)∗ → A∗ given by the reduced norm) is K-anisotropic.

Let R be a discrete valuation ring. Let XK/K be a smooth separated K-scheme of finite
type such that XK(Ksh) is bounded. As we mentioned above, such an object can have more
than one weak Néron model X/S. It is natural to look for invariants attached to a weak
Néron model which do not depend on the choice of a weak Néron model for XK/K. This
is achieved by François Loeser and Julien Sebag in the next theorem (see [64], and also [85]
and [35]) as follows.

Definition 4.8 Let F be any field. We denote by K0(VarF ) the Grothendieck ring of vari-
eties over F . As an abelian group, K0(VarF ) is generated by the isomorphism classes [X]
of separated F -schemes of finite type X, modulo the following relations: if X is a separated
F -scheme of finite type and Y is a closed subscheme of X, then [X] = [Y ] + [X \ Y ], where
X \ Y is endowed with the induced structure of open subscheme. Note that this relation
shows that [∅] is the neutral element for the addition in K0(VarF ), and that [X] = [Xred],
where Xred/F denotes the reduced scheme structure on X/F .

The group K0(VarF ) is endowed with the unique ring structure such that [X]·[X ′] = [X×F
X ′] for all F -schemes X and X ′ of finite type. The identity element for the multiplication
is the class [SpecF ], that we shall denote by 1. We denote by Kmod

0 (VarF ) the quotient
of K0(VarF ) by the ideal generated by the elements of the form [X] − [Y ], where X and
Y are separated F -schemes of finite type such that there exists a finite, surjective, purely
inseparable F -morphism Y → X.

Returning the case of a discrete valuation ring R with residue field k, we set KR
0 (Vark) :=

K0(Vark) if R has equal characteristic, and KR
0 (Vark) := Kmod

0 (Vark) if R has mixed charac-
teristic. Let Lk := [A1

k]. There exists a unique ring homomorphism χ : KR
0 (Vark)/(Lk−1)→

Z which sends the class [Xk] of a separated k-scheme of finite type Xk to the Euler charac-
teristic with proper support χ(Xk).

Theorem 4.9. Assume that R has perfect residue field k. Let XK/K be a separated smooth
scheme of finite type with a weak Néron model X/S. Then the class [Xk] in KR

0 (Vark)/(Lk−
1) is independent of the choice of the weak Néron model.

The proof of this theorem involves rigid analytic geometry, and it would take us too far
afield to attempt to introduce this subject in this survey. But rigid analytic geometry is an
important tool in the study of Néron models and their groups of components, as we shall
indicate in section 7 when we briefly discuss the rigid analytic uniformization of an abelian
variety. Néron models in the rigid analytic context are discussed in [15] and [48].

5. The Néron model of an abelian variety

Let R be a discrete valuation ring with residue field k and characteristic p ≥ 0. Let AK/K
be an abelian variety of dimension g > 0, and denote by A/S its (strong) Néron model. Let
Ak/k denote the special fiber of A/S. It is a smooth commutative k-group scheme, and
as such, it contains a largest connected smooth commutative subgroup scheme A0

k/k, the
connected component of the identity, and the quotient ΦA := Ak/A

0
k is a finite étale k-group

scheme called the group of components. By definition, the following sequence is an exact
sequence of group schemes:

(0) −→ A0
k −→ Ak −→ ΦA −→ (0).
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Assume now that k is perfect. Claude Chevalley proved (see [24]) that every connected
smooth commutative k-group scheme is an extension of an abelian variety B/k by a smooth6

connected linear k-group scheme L/k, so that we have an exact sequence

(0) −→ L −→ A0
k −→ B −→ (0).

Every smooth connected commutative linear k-group scheme is the product of a unipotent
group U/k by a torus T/k when k is perfect (see [14], page 243-244).

We call uK := dim(U) the unipotent rank of AK , tK := dim(T ) the toric rank of AK , and
aK := dim(B) the abelian rank of AK . By construction,

g = uK + tK + aK .

When char(k) > 0 and u > 1, there exist smooth commutative unipotent group schemes
U/k of dimension u which are not isomorphic to Gu

a,k. Results on the unipotent part of the
special fiber of a Néron model are found for instance in [32] (5.4/2), [52], and [86].

Example 5.1 Let AK/K be an elliptic curve, so that g = 1. It follows in this case that
exactly one of the integers uK , tK , and aK is positive, and we say that the elliptic curve has
additive reduction if uK = 1, multiplicative reduction if tK = 1, and good reduction if aK = 1.
The elliptic curve is said to have split multiplicative reduction if the torus T/k is split over
k, that is, if it is k-isomorphic to Gm,k (see 3.11 for an example of a non-split torus).

In general, an abelian variety of dimension g is said to have purely additive reduction if
uK = g, purely multiplicative reduction if tK = g, and good reduction if aK = g. Obviously,
these are not the only possible types of reduction for abelian varieties when g > 1, as is
easily seen by taking products of elliptic curves of various types of reduction.

Let (H,+) be any group and let n be a positive integer. Denote by [n] : H → H the
multiplication-by-n map. When H is commutative, this map is a group homomorphism,
and we denote by H[n] its kernel. Let now G/S be a group scheme, and denote again by
[n] : G→ G the S-morphism which, given T/S, induces the multiplication-by-n on the group
G(T ). When G/S is commutative, we denote by G[n]/S the kernel of [n].

Theorem 5.2. Let G be any smooth commutative S-group scheme of finite type. Let n be a
positive integer invertible in R. Then

(a) The S-group homomorphism [n] : G→ G is étale.
(b) Let R be a discrete valuation ring with field of fractions K and residue field k. Then the

reduction map G[n](S)→ Gk[n](k) is injective.

Part (a) is proved when R is a field in [40] VIIA, 8.4, Proposition, page 472, and [41], XV,
1.3, page 352. It is found in general in [14], 7.3/2. Part (b) is proved in [14], 7.3/3. Note
that in (b), if G/S is the Néron model of its generic fiber, then G[n]/S is the Néron model of
its generic fiber. Indeed, (a) shows that the group scheme G[n]/S is étale, with G[n] closed
in G, and it inherits the Néron mapping property from the one of G/S.

Keep the hypotheses of (b). The kernel of the reduction map red : G(K) −→ Gk(k) is
often denoted by G1(K). Part (b) shows that G1(K) does not contain any point of order n
when n is invertible in R. This theorem can also be obtained as a standard application of
the structure of the multiplication-by-n on a formal group, such as in [44], C.2.

Example 5.3 Let n be an integer coprime to a prime p. Choose a primitive n-th root of
unity ζn ∈ Q and choose a prime ideal p of the ring Z[ζn] that contains p. Let R := Z[ζn]p
and k := R/p. Then the kernel of [n] : Gm,R → Gm,R is given by SpecR[x]/(xn − 1), and it

6When k is not assumed to be perfect, every connected smooth commutative k-group scheme is an
extension of an abelian variety by a possibly non-smooth affine k-group scheme L/k. See [14], page 243, and
[24]. See also [105] for recent work on a possible substitute to Chevalley’s theorem when k is imperfect.
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is a standard fact about cyclotomic fields that the reduction homomorphism Gm,R[n](R)→
Gm,k[n](k) is injective: since the polynomial xn−1 + · · ·+ x+ 1 =

∏n−1
a=1(x− ζan) evaluated at

1 is not zero modulo p, the class of each element 1− ζan is not zero in R/p.

Let us return to our study of the special fiber of the Néron model A/R of an abelian
variety AK/K. Assume that n is invertible in R. Let k denote an algebraic closure of k.
Then

U(k)[n] = (0), T (k)[n] ∼= (Z/nZ)tK , and B(k)[n] ∼= (Z/nZ)2aK

(see, e.g., [78], Application 3 on page 62). If n is prime with n > 2g + 1, then ΦA(k)[n] can
be generated by tK elements. This latter statement follows from [68], Theorem 2.15.

To introduce the next major result, let us consider the following natural question. It may
be that a smooth proper K-scheme XK might not have good reduction over S. It is natural
to wonder whether it could be possible to ‘improve the reduction type’ if we increased the
field of coefficients of our equations. Indeed, more possibilities for the coefficients means more
possible changes of variables, and thus could lead to better integral equations for models,
equations which would not be available when working only over K. In other words, let K ′/K
be a finite extension, and denote by R′ the integral closure of R in K ′, with S ′ = SpecR′.
Is it possible to find an extension K ′/K such that X ′K has a model X ′/S ′ over S ′ which is
‘better’ than the model already available over K?

It is easy to produce examples of such improvements in the reduction type of the model
after base change. For instance, the elliptic curve y2 = x3 + π has additive reduction over R
when p 6= 2, 3, but when K ′ := K( 6

√
π), we can make the change of variables X 7→ x/ 6

√
π
2

and Y 7→ y/ 6
√
π
3

and obtain a model with equation Y 2 = X3 + 1, giving good reduction
modulo a maximal ideal containing 6

√
π. The phenomenon observed in this example is in

fact quite general for abelian varieties:

Theorem 5.4. Let R be a Dedekind domain with field of fractions K. Let AK/K be an
abelian variety with Néron model A/R. Then there exists a finite Galois extension L/K
such that the Néron model of AL/L over SpecRL has no unipotent subgroup in its closed
fibers, where RL is the integral closure of R in L. When R is strictly henselian, then there
exists a unique Galois extension L/K, minimal with the property that the Néron model of
AL/L over SpecRL has no unipotent subgroup in its special fiber.

Theorem 5.4 is called the Semi-Stable Reduction Theorem. It was stated as a question
by Serre in a letter to Andrew Ogg dated August 8, 1964, and also at the end of a letter
to Grothendieck on August 13, 1964 [95]. Néron’s view on the question is given in the
endnote 176.1 in [95]. Grothendieck, in a 12-page letter to Serre dated October 3 and 5,
1964 ([95], page 208), refers to the question as ‘your [Serre’s] conjecture’ and sketches ideas
for a proof. The theorem is proved by Grothendieck in [42], Exposé IX, 3.6 (see [30], 5.15,
for the uniqueness). The theorem was also proved by Mumford in characteristic different
from 2 ([28], Introduction, and [79], 38, letter, 1967 undated).

We say that AK/K has semi-stable reduction over R if g = aK + tK . Let R ⊂ R′ be
any local extension of discrete valuation rings with fields of fractions K and K ′. Let AK/K
be an abelian variety with semi-stable reduction over R. Let A/R denote its Néron model
and let A′/R′ denote the Néron model of AK′/K ′ over R′. The terminology semi-stable is
justified by the fact that the natural R′-morphism A ×R R′ → A′ induces an isomorphism
(A×R R′)0 → (A′)0 on the identity components ([14], 7.4/4).

Suppose that R is henselian. We say that the abelian variety AK/K of dimension g has
potentially good reduction (resp., potentially purely multiplicative reduction) if there exists a
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finite extension F/K such that AF/F has good reduction over the integral closure RF of R
in F (resp., has toric rank equal to g).

Raynaud gave the following explicit choice of an extension that leads to semi-stable reduc-
tion (see [42], Exposé IX, 4.7, and [97] for refinements). Let Ks denote a separable closure
of the field K. Let ` be prime and invertible in R. Let K`/K be a finite separable extension
such that A(K`)[`] = A(Ks)[`] = A(K)[`] ∼= (Z/`Z)2g. Let R` denote the integral closure of
R in K`.

Theorem 5.5. Let R be a discrete valuation ring. Let AK/K be an abelian variety of positive
dimension. Let ` ≥ 3 be prime, and invertible in R. Then the Néron model of AK`

/K` over
SpecR` has no unipotent subgroup in its special fibers.

Let Gal(Ks/K) denote the Galois group of Ks/K. Let ` be any prime number. Consider
the Tate module T`(AK) := lim←−AK [`n](Ks), where the inverse limit is taken over the system

of multiplication-by-` maps AK [`n](Ks)→ AK [`n−1](Ks). This module is naturally equipped
with an action of Gal(Ks/K), and this representation ρ` : Gal(Ks/K) → Aut(T`(AK)) is
the main `-adic representation attached to the abelian variety AK/K. When ` is coprime to
char(K), the Tate module is a free Z`-module of rank 2g.

Assume now that K is the field of fractions of a discrete valuation ring R with valuation
v. Let v denote an extension of v to Ks and denote by I(v) and D(v) the associated inertia
and decomposition subgroups of Gal(Ks/K). Grothendieck gave a (co)homological criterion
for semi-stability: he showed in [42], IX, 3.5, that the abelian variety AK/K has semi-stable
reduction over R if and only if there exists a prime ` invertible in R and a submodule T0 of
the Tate module T`(AK) stable under the action of the inertia group I(v) such that I(v) acts
trivially on both T0 and T`(AK)/T0. In particular, every element of I(v) acts unipotently on
T`(AK). He further showed that given a continuous linear representation such as ρ` (with
a mild hypothesis C` on k), there exists an open subgroup H of I(v) such that ρ`(s) is
unipotent for all s ∈ H ([96], page 515, or [42], I, 1.1). Using the semi-stable reduction
theorem, Grothendieck was able to answer positively, for abelian varieties, questions of Serre
and John Tate in [96], Appendix, Problem 2, regarding the characteristic polynomial of the
image under ρ` of a Frobenius element Fv ∈ D(v) when k is finite (see [42], IX, 4.3). We
refer to the survey [47] for more information on these questions.

6. The Néron model of a Jacobian

Let R be a discrete valuation ring with field of fractions K and residue field k. Let
XK/K be a proper smooth geometrically connected K-scheme. Associated with XK/K is
the Picard scheme PicXK/K , whose tangent space at the identity is H1(XK ,OXK

) ([49], 5.11).
This group scheme may not be reduced when K is of characteristic p > 0. Its connected
component of the identity Pic0XK/K

is a proper scheme ([14], 8.4/3) and is smooth if and

only if it has dimension dimK(H1(XK ,OXK
)). Assume now that Pic0XK/K

/K is smooth.

Associated to the Picard variety Pic0XK/K
is its dual abelian variety (that is, the connected

component of the identity of the Picard scheme of Pic0XK/K
), called the Albanese variety of

XK/K.
When XK/K is a proper smooth geometrically connected curve over K of genus g > 0,

the Picard variety is called the Jacobian JK/K of XK/K, has dimension g, and is principally
polarized (so that in particular, it is isomorphic over K to its dual abelian variety). Since
XK/K has a minimal regular model X/S, and the Jacobian JK/K has a (strong) Néron
model J/S, it is natural to wonder what are the relationships between these two canonical
objects. The main reference for this type of questions is the article [91] by Raynaud, and
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chapters 8 and 9 in [14]. An account of results in the case where XK/K is an elliptic curve is
found in [59], 10.2, or [100], Chapter IV. When XK/K has genus 1 with no K-rational point,
the models of XK and of its Jacobian are compared in [61]. When XK/K has dimension
greater than one, the relationship between a semi-factorial model of XK/K and properties
of the Néron model of the Picard variety of XK/K are explored in articles of Cédric Pépin
([87] and [88]).

Assume now that k is algebraically closed. Fix a smooth proper geometrically connected
curve XK/K of genus g > 0, and let X/S be a proper flat model of XK such that X is regular.
Then the special fiber Xk/k is the union of irreducible components Ci/k, i = 1, . . . , n, proper
over k, of multiplicity ri in Xk, and of geometric genus g(Ci). The intersection matrix M
associated with the model X is the symmetric matrix ((Ci ·Cj)1≤i,j≤n), where (Ci ·Cj) is the
intersection number of the curves Ci and Cj on the regular scheme X. Let R ∈ Zn denote
the transpose of the vector (r1, . . . , rn). Let r := gcd(r1, . . . , rn). Then MR = (0, . . . , 0)t,
and R/r generates the kernel of the linear map M : Zn → Zn.

It is always possible to perform a sequence of blowups of closed points on X to obtain a
new regular model with the following properties:

(1) Each reduced irreducible component Ci of the special fiber is smooth of (geometric)
genus g(Ci) ≥ 0.

(2) Each intersection number (Ci · Cj) equals either 0 or 1 when i 6= j.
We associate to the special fiber Xk/k a connected graph G whose vertices are the compo-

nents Ci, i = 1, . . . , n, and we link in G two distinct components Ci and Cj by exactly (Ci ·Cj)
edges. The main topological invariant of the graph G is its Betti number β(G) := m−n+ 1,
where m is the total number of edges of G. Recall that the degree of a vertex in a graph is
the number of edges attached to the vertex. Letting di :=

∑
j 6=i(Ci ·Cj) denote the degree of

Ci in G, we find that 2β(G)− 2 =
∑n

i=1 di− 2. The adjunction formula ([59], 9.1.37) implies
that:

2g = 2β(G) + 2
n∑
i=1

g(Ci) +
n∑
i=1

(ri − 1)(di − 2 + 2g(Ci)).

Theorem 6.1. Let R be a discrete valuation ring with algebraically closed residue field k.
Let XK/K be a smooth proper geometrically connected curve of genus g > 0. Assume that
XK/K has a regular model X/S with the above properties (1) and (2), and with r = 1. Let
J/S denote the Néron model of the Jacobian of XK. Then

(a) The abelian rank of JK is aK :=
∑n

i=1 g(Ci).
(b) The toric rank of JK is tK := β(G).
(c) The group of components ΦJ(k) is isomorphic to the torsion subgroup of the group

Zn/Im(M). More precisely, let D = diag(f1, . . . , fn−1, 0) denote the Smith normal form
of M , with fi | fi+1 for i = 1, . . . , n− 2. Then ΦJ(k) is isomorphic to

∏n−1
i=1 Z/fiZ.

Parts (a) and (b) follow from a very deep theorem of Raynaud where he first shows that
the connected component of the identity Pic0X/S of the Picard functor PicX/S is represented
by a smooth separated scheme over S, and then identifies it with the connected component
of the identity of the Néron model of the Jacobian JK ([14], 9.5, Theorem 4, and see also [61],
7.1, for remarks when k is only separably closed). It follows that to compute the invariants
aK and tK , it suffices to understand the structure of group scheme of the special fiber of
Pic0X/S, which is nothing but Pic0Xk/k

([14], 9.2). Part (c) is another theorem of Raynaud
([14], 9.6, Theorem 1).

Remark 6.2 Given a field K and an abelian variety AK/K, there exists a curve XK/K
with Jacobian JK/K endowed with a surjective K-morphism JK → AK . This theorem was
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originally proved when K is algebraically closed by Matsusaka [71]. See [77], 10.1, for a proof
when K is infinite, and [38], 2.5, in general. When K is the field of fractions of a discrete
valuation ring R, the morphism JK → AK induces a natural homomorphism J → A between
the Néron models of JK and AK . One can show that if J has semi-stable reduction, then
so does A ([14], 7.4/2). It follows that the proof of the semi-stable reduction theorem for a
general abelian variety AK/K can be reduced to proving it for Jacobians.

The natural homomorphism J → A induces a group homomorphism ΦJ → ΦA. Unfortu-
nately, this group homomorphism need not be surjective (see, e.g., [14], 7.5/7), and thus in
general one cannot expect to be able to infer properties of ΦA from properties of ΦJ .

Remark 6.3 We remark here that to prove the Semi-Stable Reduction Theorem 5.4 for an
abelian variety AK/K, it suffices to prove the following fact: For some ` invertible in R, the
group ΦA(k)[`] can be generated by tK elements. Indeed, let Ks and K denote the separable
closure and the algebraic closure of the field K. Let ` be a prime invertible in R. The
multiplication-by-` morphism [`] : AK → AK is finite étale of degree 2g. Thus, there exists
a finite separable extension K`/K such that

A(K)[`] ⊆ A(K`)[`] = A(Ks)[`] = A(K)[`] ∼= (Z/`Z)2g.

It follows from Theorem 5.2 (b) and the above fact that

dimZ/`Z(A(K)[`]) ≤ 2tK + 2aK

and, more importantly since g = uK`
+ tK`

+ aK`
,

dimZ/`Z(A(K`)[`]) = 2g ≤ 2tK`
+ 2aK`

.

An immediate consequence is that uK`
= 0, and thus we have shown the existence of a finite

separable extension over which AK/K acquires semi-stable extension.

Remark 6.4 Artin and Winters used 6.2 and 6.3 to give a proof of the semi-stable reduction
theorem in [3], as we now explain. Let XK/K be a smooth proper geometrically connected
curve with a K-rational point and with a regular model X satisfying (1) and (2) above. Let
J/S denote the Néron model of the Jacobian of XK/K. Raynaud’s Theorem 6.1 (c) gives
a completely combinatorial description of the group of components of a Jacobian in term
only of the intersection matrix M (the existence of a K-rational point implies that r = 1).
Artin and Winters prove the following fact in [3]: As before, write Xk =

∑n
i=1 riCi. Write

as in Theorem 6.1 that ΦJ(k) =
∏n−1

i=1 Z/fiZ with fi | fi+1 for i = 1, . . . , n − 2. When
0 ≤ β(G) < n− 1, define Υ such that

n−1∏
i=1

Z/fiZ = Υ×
n−1∏

i=n−β(G)

Z/fiZ.

When β(G) ≥ n− 1, set Υ = (0). Then Artin and Winters show that there exists a constant
c = c(g) depending on g only such that |Υ| ≤ c. Hence, it follows immediately that there
exists a prime ` invertible in R such that ΦJ(k)[`] can be generated by tK elements. The
constant c was later made explicit in [69], 1.5, and [68], 4.21. A functorial variant of this
result applicable to any abelian variety is suggested in 7.3.

Explicit regular models of curves have been computed in many important cases. When
XK/K is an elliptic curve, Tate’s algorithm [104] (when k is perfect) and Szydlo’s algorithm
[103] (when k is imperfect), take as input a Weierstrass equation for XK with coefficients
in R, and output an equation with discriminant having minimal valuation among all pos-
sible R-integral Weierstrass equations for XK/K. The algorithms also produce an explicit
description of the minimal regular model X/S of XK/K. When k is algebraically closed, the
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combinatorics of the possible special fibers of X/S is encoded in what is called a Kodaira
type (see e.g., [100] page 365, or [59], pp. 486-489, when k is perfect). When k is separably
closed but imperfect, several new types of reduction can occur in addition to the classical
Kodaira types. These new types are described for instance in [61], Appendix A. There are
also new reduction types for curves of genus 1 listed in [61], and it would be interesting to
show that these new combinatorial types all arise as reduction types of curves of genus 1.

Assume now that k is algebraically closed with char(k) 6= 2. When XK/K is a curve of
genus 2 given by an explicit hyperelliptic equation, Liu’s algorithm [58] produces an explicit
description of the minimal regular model X/S of XK/K. Note that in this case, there are
over 100 possible different types of reduction. The description of a regular model of the
modular curve X0(N)/Qp for p ≥ 5 dividing N , of X1(p)/Qp, and of the Fermat curve
Fp/Qp and Fp/Qp(ζp), can be found in [29], [31], [26], [21], and [75], respectively.

Once the minimal regular model of an elliptic curve is computed explicitly using Tate’s
algorithm, the following theorem provides a description of the Néron model of the elliptic
curve ([14], 1.5, Proposition 1, or [59], 10.2.14):

Theorem 6.5. Let R be a discrete valuation ring. Let XK/K be an elliptic curve. Consider
a Weierstrass equation for XK with coefficients in R and whose discriminant has minimal
valuation among all such equations. Let X0/S denote the closed subscheme of P2

S/S defined
by the Weierstrass equation. Then X0 has at most one singular point. Let E0 denote the
largest open subscheme of X0 such that E0/S is smooth.

(a) If X0 is regular, then E0/S is the Néron model of XK over S.
(b) If X0 has a singular point, let X → X0 denote the desingularization of X0, obtained for

instance using Tate’s algorithm when k is perfect. Let E denote the largest open set of X
such that E/S is smooth. Then E/S is the Néron model of XK over S, and the scheme
E0/S can be identified with an open subscheme of E, namely the scheme E0/S defined
in 3.9.

We can view the projective scheme X/S in the above theorem as a natural regular com-
pactification of the Néron model E/S. In higher dimension, the existence of a semi-factorial
projective compactification of a Néron model is proved in [88], 6.4. Compactifications of
Néron models of Jacobians of stable curves are considered in [19]. The question regarding
the existence of a good compactification of the Néron model on page 318 of [56] is still open.

Example 6.6 The theory of models of curves or of group schemes over bases S of dimension
greater than 1 is quite subtle. We refer to [27], [45], or [107], for such questions, and we
mention here only an example of Raynaud.

Assume that S = SpecR is normal, so that each point s ∈ S of codimension 1 is such
that the local ring OS,s is a discrete valuation ring. Let EK/K be an elliptic curve. For
each SpecOS,s with s of codimension 1, we can construct E0(s)/ SpecOS,s, the connected
component of the identity of the Néron model E(s)/ SpecOS,s of EK/K over SpecOS,s. It
is then natural to ask whether there exists a smooth group scheme E0/S such that for each
s ∈ S of codimension 1, the base change E0 ×S SpecOS,s is isomorphic over SpecOS,s to
the group scheme E0(s)/ SpecOS,s. It turns out that the answer to this question can be
negative. Indeed, Raynaud exhibits a normal scheme S of dimension 3 and an elliptic curve
EK/K where no such group scheme E0/S exists ([92], Remarque XI 1.17 (2), page 174-175.
Page 175 is missing in the book [92]. A copy of the correct page 175 is available on the
website [65]).
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7. The group of components

Let R be a discrete valuation ring. Let AK be an abelian variety over K with dual A′K .
Denote by A and A′ the corresponding (strong) Néron models and by ΦA and ΦA′ their
groups of components. In [42], Exp. VII-IX, Grothendieck used the notion of biextension
invented by Mumford to investigate how the duality between AK and A′K is reflected on the
level of Néron models. In fact, the essence of the relationship between A and A′ is captured
by a bilinear pairing

〈 , 〉 : ΦA × ΦA′ −→ Q/Z,
introduced in [42], Exp. IX, 1.2, and which represents the obstruction to extending the
Poincaré bundle PK on AK × A′K to a biextension of A× A′ by Gm,R.

Grothendieck conjectured in [42], Exp. IX, 1.3, that the pairing 〈 , 〉 is perfect. The
conjecture has been established in various cases, notably:

(a) by Grothendieck for `-parts with ` prime and invertible in R, as well as in the semi-stable
reduction case; see [42], Exp. IX, 11.3 and 11.4. See also [7] and [110].

(b) by Lucile Bégueri [6] for valuation rings R of mixed characteristic with perfect residue
fields,

(c) by William McCallum [76] for finite residue fields,
(d) by Siegfried Bosch [11] for abelian varieties with potentially purely multiplicative reduc-

tion, again for perfect residue fields.
(e) by Bosch and Lorenzini [13] for the Jacobian of a smooth proper geometrically connected

curve X/K having a K-rational point when XK/K has a regular model X/S such that
every irreducible component of the special Xk is geometrically reduced (this condition
is automatic when k is algebraically closed, but may also hold in many cases when k is
separably closed and imperfect). See also [67] and [87].

That the pairing is perfect in general when k is perfect has been announced by Takashi
Suzuki in [102].

Using previous work of Bas Edixhoven [32] on the behavior of component groups under
the process of Weil restriction, Alessandra Bertapelle and Bosch [8] gave the first counter-
examples to Grothendieck’s conjecture when the residue field k of R is not perfect. A
counter-example where AK is a Jacobian is given in [13], and a further counter-example
where AK is an elliptic curve can be found in [67].

Remark 7.1 When the pairing is perfect, we obtain as a consequence that the finite groups
of components ΦA(k) and ΦA′(k) are isomorphic. There is no known proof of this result that
does not rely on the perfectness of the pairing. It would be interesting to know whether it is
always the case that ΦA(k) and ΦA′(k) are isomorphic. Examples of abelian varieties AK/K
that are not isomorphic to their dual are found for instance in [66], Remark 3.16.

Remark 7.2 The perfectness of Grothendieck’s pairing does not imply that the étale group
schemes ΦA/k and ΦA′/k are k-isomorphic. In particular, it does not imply that the groups
ΦA(k) and ΦA′(k) are isomorphic. However, we do not know of any example where |ΦA(k)|
and |ΦA′(k)| are not equal. As shown in [66], 4.3, when k is finite, |ΦA(k)| = |ΦA′(k)|.

In the particular case where k is finite, the integer |ΦA(k)| is called the Tamagawa number
of AK/K at (π). When K is a number field with ring of integers OK , the product of
the Tamagawa numbers at all maximal ideals of OK is a term appearing in the Birch and
Swinnerton-Dyer conjectural formula for the leading term in the L-function of AK/K (see
[44], F.4.1.6). Another term appearing in this formula, the Tate-Shafarevich group, can be
given an integral cohomological interpretation using the Néron model, up to some 2-torsion
([73], Appendix). Further information on ΦA(k) in general can be found in [13].
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Let ` be a prime invertible in R. The possible abelian groups that arise as the `-part of a
group of component are completely understood thanks to the work of Edixhoven [33]. The
p-part of the group ΦA(k) is much less understood and much more difficult to study, as it is
not related in general with the p-torsion in AK(K), contrary to the case of the prime-to-p
part of ΦA(k).

The study of the group ΦA has involved since the very beginning of the theory in [42] the
use of rigid geometry, in the form of the rigid analytic uniformization of an abelian variety,
further refined in the work of Bosch and Xavier Xarles in [16]. We discuss below just enough
of this theory to be able to define a functorial subgroup of ΦA(k) and state the main open
question regarding its size. We follow the notation in [16].

Assume that R is a complete discrete valuation ring with algebraically closed residue field
k. There exist a semi-abelian K-group scheme EK and a lattice MK in EK of maximal rank
such that as rigid K-group, AK is isomorphic to the quotient EK/MK . The semi-abelian
variety EK is the extension of an abelian variety BK with potentially good reduction by a
torus TK . Each of these objects has both a (usual) Néron model, and a formal Néron model
(see [15]), with the property that the group of components of the formal Néron model is
isomorphic to the group of components of the Néron model. Thus we obtain a natural map
of groups of components ΦE → ΦA from the rigid analytic morphism EK → AK .

The torus TK contains a maximal split subtorus T ′K , of dimension tK . The Néron mapping
property induces morphisms of Néron models and homomorphisms of groups of components
ΦT ′ → ΦT → ΦE. Let us define Σ ⊆ ΦA(k) as the image of ΦT ′(k) under the composition
ΦT ′ → ΦT → ΦE → ΦA. (Similarly, ΦT , (ΦT )tors, ΦE, and (ΦE)tors, can be used to define
functorial subgroups of ΦA, and we refer to [16] for a study of these subgroups.)

Since T ′K is a split torus of rank tK , we find that ΦT ′(k) ∼= ZtK . It follows that the
subgroup Σ can be generated by tK elements.

Conjecture 7.3. The order of the quotient ΦA(k)/Σ can be bounded by a constant c de-
pending on uK only.

In particular, when tK = 0, then |ΦA(k)| itself would be bounded by a constant c depending
on uK only. As mentioned in 6.4, this statement is true for the Jacobian of a curve XK/K
having a K-rational point (and tK = 0). Joseph Silverman in [98] proved that the prime-to-p
part of |ΦA(k)| is bounded by a constant depending only on g when AK/K has potentially
good reduction and suggested that the same result would remain true for the full group
ΦA(k) under that assumption. That a subgroup such as Σ exist in general is suggested in
[68], 1.8. It follows from [16], 5.9, that the prime-to-p part of |ΦA(k)/Σ| is bounded by a
constant depending only on uK .

Let L/K be the finite Galois extension minimal with the property that AL/L has semi-
stable reduction over L. It follows for instance from [69], 3.1, that if q is prime and divides
[L : K], then q ≤ 2g + 1. The extension L/K is not easy to determine in practice when it
is wild, that is, when p divides [L : K] (see for instance [50], [51], and [57]). It is shown in
[60], 1.8, that if tK = 0, then [L : K]2 kills the group ΦA(k), so that when tK = 0, the group
ΦA(k) has a non-trivial p-part only when L/K is wild.

This is only a short survey, and much more could be said on the extension L/K and on
the natural morphism A×R RL → Ass, where Ass/RL is the Néron model of AL/L over the
integral closure RL of R in L. Some of these topics were covered by Johannes Nicaise at the
conference in Bordeaux. We refer the reader to the book [43] for a complete exposition, as
well as to the recent papers [20] and [34].
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[15] S. Bosch and K. Schlöter, Néron models in the setting of formal and rigid geometry, Math. Ann. 301
(1995), no. 2, 339-362.

[16] S. Bosch and X. Xarles, Component groups of Néron models via rigid uniformization, Math. Ann.
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[32] B. Edixhoven, Néron models and tame ramification, Compositio Math. 81 (1992), no. 3, 291-306.
[33] B. Edixhoven, On the prime-to-p part of the groups of connected components of Néron models, Special
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[106] A. Vasiu, Projective integral models of Shimura varieties of Hodge type with compact factors, J. reine

angew. Math. 618 (2008), 51–75.
[107] A. Vasiu and T. Zink, Purity results for p-divisible groups and abelian schemes over regular bases of

mixed characteristic, Doc. Math. 15 (2010), 571–599.
[108] W. Waterhouse, Introduction to affine group schemes, Graduate Texts in Mathematics 66, Springer-

Verlag, New York-Berlin, 1979.
[109] W. Waterhouse and B. Weisfeiler, One-dimensional affine group schemes, J. Algebra 66 (1980), no.

2, 550–568.
[110] A. Werner, On Grothendieck’s pairing of component groups in the semistable reduction case, J. reine

angew. Math. 486 (1997), 205–215.
[111] O. Zariski, The reduction of the singularities of an algebraic surface, Ann. of Math. (2) 40 (1939),

639–689.

Department of mathematics, University of Georgia, Athens, GA 30602, USA
E-mail address: lorenzin@uga.edu


