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Introduction

Let K be a field with a discrete valuation v. Let Ok denote the ring of integers of K,
with maximal ideal (7). Let k be the residue field of (k, assumed to be algebraically closed
of characteristic p = 0. Let G/K be a semi-abelian variety with Néron model %/(k. Let
%y |k be the special fiber of ¥/, and let g/? /k denote the connected component of 0 in %.
The group of components of % is the finitely generated abelian group ®(G) := % /%;.
When no confusion may occur, we shall denote ®(G) simply by @ or ®x. We shall say that
GOk is split, or that G/K has split reduction, if the extension

(1) 0— % — % = ®(G)—0

is split: in other words, % is split if and only if % (k) is isomorphic as an abelian group
to the product % (k) x ®(G). Thus, when ®(G) is a finite group, ¥ is split if and only if,
for each ¢ € ®(G), there exists ¢ € % (k) with ord(¢) = ord(¢) such that c¢(¢) = ¢. If the
extension (1) is not split, we shall say that % is not split. Since Néron models commute
with completion of K, we will assume in this paper that K is complete.

The core of this article is a detailed study of the case of elliptic curves and of the case
of norm tori and their duals, with applications to abelian varieties with potentially purely
multiplicative reduction. In all cases studied, we find that there exists a constant ¢ depend-
ing only on the dimension of G such that, if G has totally not split reduction (see 1.2), then
the Swan conductor of G/K is positive and bounded by ¢. We also find that there is a
constant d, depending only on the dimension of G, such that G,/ M has split reduction for
any tame extension M /K of degree greater than d. Clearly this suggests the possibility that
similar statements may hold for more general tori and abelian varieties.

This paper is organized as follows. We have collected in the first section several gen-
eral statements regarding the splitting property of Néron models. Section two contains a
detailed study of the case of elliptic curves. Section three provides examples of the behav-
iour of the splitting property under several standard constructions, such as under isogeny,
tame base extension, and Weil restriction of scalars. The cases of norm tori and their duals
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are studied in section four. Section five provides an explicit equation describing the Néron
model of the norm torus R} /kBm.L when [L : K] = p. In section six, the results on tori are
applied to the case of abelian varieties with potentially purely multiplicative reduction. The
article ends with a discussion of possible generalizations of our main theorems to larger
classes of semi-abelian varieties.

1. General facts

Before turning to a detailed study of the case of elliptic curves and of the case of tori
in the next sections, let us make below a few general remarks on the splitting property.
Non-trivial examples of abelian varieties of dimension bigger than 1 that are split are given
in 3.7, and examples that are not split are provided in 6.5. Recall that for any commutative
group H, Hios denotes the torsion subgroup of H, H, denotes the p-part of Hors and H|n]
denotes the subgroup of elements of order dividing n. The next lemma is elementary.

Lemma 1.1. Ler 0 > H° - H SY¥ — 0 be an exact sequence of commutative
groups. Let n =1 be an integer. Let J be a subgroup of H® such that H* = J + nH°. Denote
by ny: H — H the multiplication-by-n map on H. Then ¢(ng'(J)) = ¥[n].

1.2. Let 0 — H° — H 5 W — 0 be an exact sequence of finitely generated com-
mutative groups. We shall say that this exact sequence is totally not split (at a prime p) if
plord(Wiors) and if, for any element ¢ € W of order p, there does not exist ¢ € H of order p
such that ¢(¢) = ¢. Thus, a sequence is totally not split if and only if W[p] + {0} and the
natural map H[p] — W[p] is identically zero. Let G/K be a semi-abelian variety (all semi-
abelian varieties over K are assumed to be connected in this article). Let ¥/ be its Néron
model. Let us say that ¥ is totally not split, or that G has totally not split reduction, if the
exact sequence (1) is totally not split. An example of a torus whose reduction is only not
split, but not totally not split, can be found in 4.13.

Semi-abelian varieties in general admit a Néron Ift-model, where 1ft stands for locally
of finite type ((BLR], 10.2/2). In this article, we drop the Ift-model notation and talk only of
Néron models, the context making it clear whether the model is of finite type. It is shown in
[Xar], 2.18, that the group of components of a torus is a finitely generated abelian group. It
follows then from [B-X], 4.11 (ii), that the group of components of the Néron model of any
semi-abelian variety is a finitely generated abelian group. Another proof of this fact can be
obtained using the proof of 4.11 (i) of loc. cit.

Remark 1.3. The proof of [B-X], 4.11 (ii), uses Lemma 4.2 of loc. cit., which is
incorrect in the case of perfect residue fields. The authors of [B-X] have informed us
that they can provide a different proof of 4.11 (ii) without using 4.2.

Proposition 1.4. Let G/K be a semi-abelian variety. Let 4/Uk be its Néron model.
Then the following properties are true.

(a) Let p € ®(G) be an element of finite order n prime to p. Then ¢ lifts to an element
of 4. of order n.
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(b) The complex
(2) 0—9),— %, — ®G),—0
Is exact.
(c) 9 is split if and only if (2) is split.
(d) @ is totally not split if and only if (2) is totally not split.

(e) Suppose that ®(G) , Is cyclic and that %27 p 18 killed by p. Then G is totally not split
if and only if it is not split.

Proof. (a) Since @k /k is a smooth commutative group scheme and p tn, the
multiplication-by-n map gk — %k is surjective. Now we can apply Lemma 1.1 with J =0
to the sequence (1).

(b) The only non-trivial fact to prove is that 4 , — @(G)p is surjective. The group
%? is extension of a semi-abelian variety by an unipotent group U/k. Since the multi-
plication by n is surjective for any integer n on any semi-abelian variety, we have
49} = U +n%. Lemma 1.1 shows that any element ¢ € ®(G)[p] lifts to an element ¢ € %
such that p"p € U. Hence, ¢ € 9y .

(c) The condition is clearly necessary. Let us show that it is sufficient. The group of
components ®(G) is the direct sum of finitely many cyclic (finite or infinite) groups. Thus,
to show that ¥ is split, it is enough to show that any element ¢ € ®(G) lifts to an element of
% of same order. If the order of ¢ is infinite (resp. a power of p), then the assertion is clear
(resp. follows from the hypothesis). So we can assume that ¢ has order n prime to p. Then
the assertion follows from (a). Assertion (d) follows from the definition.

(e) If 4 is not totally not split, then by (d) there exists an element ¢ € ®(G), of order
p which lifts to an element ¢ € %, , of order p. Let 4 € %, , be a preimage of a generator A
of ®(G),. Then ¢ =p"A for some r = 0. This implies that 4 has order p"!. We have
pA—¢e gk p» S0 by hypothesis p(p ) — @) = 0. Thus, / has order p’*! and ¥ is split by

(c).

Corollary 1.5. If p ¥ |D(G) |, then % is split.

tors

Proof. Follows from 1.4 (c).
Proposition 1.6. Assume that @,? /k is a semi-abelian variety. Then 9 is split.

Proof. According to 1.4 (c), we only need to show that (2) is split. As at the end of
the proof of 1.4 (b), we find that any element ¢ € ®(G)[p'] lifts to an element ¢ € %, such
that p"p € U. Since by hypothesis U = 0, (2) is split.

Let 7/K be a torus of dimension d. Recall that there exists a finite Galois extension
L/K minimal with the property that 7 /L is isomorphic to G,i’ ;- The field L/K is called
the splitting field of 7.
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Corollary 1.7. Let T/K be a torus of dimension d with Néron model 7. If L/K is
tame, then 7 is split. In particular, if p > d + 1, then T /K has split reduction.

Proof. 1t is shown in [Xar], 2.18, that the torsion part of ®(7) is killed by [L : K].
Hence, the assertion follows from Corollary 1.5. Since Gal(L/K) is a subgroup of GL,(Z),
we find that if a prime / divides [L : K], then / < d + 1.

Let A/K be an abelian variety. Recall that there exists a Galois extension L/K min-
imal with the property that 4, /L has semistable reduction. Recall also that the connected
component .7 /k is the extension of an abelian variety by a commutative linear group. The
dimension of the toric part of this linear group, tx, is called the toric rank of /.

Proposition 1.8. Let A/K be an abelian variety whose Néron model </ | Ox has toric
rank equal t0 0. Then ®(A) is killed by [L : K]*.

Proof. Proposition 2.15 in [Lor2] shows that the prime-to-p part of ®(A4) is killed by
[L: K}z . To prove the general case, we proceed as follows. Consider the subgroups
0, < O of ®(A) introduced on page 480 of [B-X]. Since 7x = 0 by hypothesis, we find that
O = ®(4). It follows from [B-X], 5.9, that ©,/0, is killed by [L : K]. Let Wk, denote the
kernel of the natural map ®(4) — ®(A). Then [L: K] kills Wk , (([ELL], Thm. 1). To
conclude the proof of the proposition, it is sufficient to note that the subgroup ®, is con-
tained in Wk ;. Indeed, consider the rigid analytic uniformization of 4/K as in [B-X], §1:

>
Te—— QN
.

with 7/K a torus, B/K an abelian variety with potentially good reduction, and A/K a
lattice. The group @ is defined to be the image under the natural map ®(G) — ®(A4) of the
subgroup ®(G),, ... The change of base L/K induces natural maps

tors*

O(G) —— D(A)

| l

O(G) —— D(Ay).

It follows from [B-X], 4.11 (see 1.3), that the map ®(7.) — ®(G) is an isomorphism
(recall that ®(B.) = (0)). Thus, ®(Gy) is free since (7 ) is. Hence, the image of ®(G)
in ®(Gy) is trivial.

tors

Corollary 1.9. Let A/K be an abelian variety whose Néron model </ |Ox has toric
rank equal to zero. If the extension L/K is tame, then </ is split. In particular, if
p>2dimA + 1, then of is split.
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Proof. If .o/ is not split, then p| |®(A4)| (Corollary 1.5). Then p|[L : K]. It is shown in
[S-T], p. 497, that p > 2dim 4 + 1 does not divide [L : K].

Question 1.10. Let G/K be any semi-abelian variety. Let L/K denote the extension
minimal with the property that G, /L has semistable reduction. If L/K is tame, is it true
that G/K has split reduction? In other words, is it true that the Swan conductor J(G),
recalled in 1.12 below, is positive if G does not have split reduction?

Proposition 1.11. Let G| and G, be semi-abelian varieties over K. Let f: G; — G
be an isogeny of degree n prime to p. Then Gy has split reduction if and only if G, has split
reduction.

Proof- There exists an isogeny g: G, — G such that g o f: Gy — G is the multipli-
cation by n on Gj ([BLR], 7.3/5). The isogeny ¢ has degree a power of n and, hence, prime
to p. Consider the morphisms of the associated Néron Ift-models 4| — %, and ¥, — %,
induced respectively by f and g. Then, by uniqueness of the extension, the composition
% — 9, — %, is the multiplication by n on %;. This implies immediately that ¥, — %,
induces an injection ®(Gy), — ®(G2),. Applying the result to the isogeny g, we see
that ®(G), — ®(G2), is in fact an 1somorphism. Now the proposition follows from

Proposition 1.4, (b) and (c).

Note that the proof above shows that f'induces an isomorphism CI)(G1)<”) ~ (D(Gz)(")
on the prime-to-n parts of the groups of components.

1.12. In this article, we investigate possible relationships between the splitting
properties of the Néron model of a semi-abelian variety G and the size of its Swan con-
ductor 6(G). We recall briefly below the definition of J(G) and list some of its properties
(see [Ser2], §2.1, for more details). Let ['x be the absolute Galois group Gal(K*/K). Recall
that we assume that K is complete with algebraically closed residue field. Thus I'y is equal
to its inertia subgroup. Let / be a prime different from p. Let 7,(G) denote the Tate module
of G, and set V;(G) := T/(G) ®7, Q,. Consider the /-adic representation

p: Tx — Aut(¥,(G))

corresponding to the action of I'y on 7,(G). Let T and B be respectively the toric and

abelian parts of G. There is a finite Galois extension L/K such that I'; acts trivially on

T,(T) and unipotently on T,(B). Since T,(G) is an extension of T,(B) by T,(T) (see

Proposition 6.4 (a)), I'; acts unipotently on V;(G). Let V, denote the set of elements
o0

x € ¥(G) such that (p(c) —1)"x =0 for all o e I'x. Let gr(¥(G)) :== @ Vis1/Vs. Then
n=0

I'x acts on gr(¥;(G)) through the finite group I' := I'y/T";, = Gal(L/K). For o € I'x, the

trace of p(o) on V;(G) depends only on the image of ¢ in I', and we obtain a function

Tr,: T — Q,. The Swan conductor of V;(G) is defined as the scalar product

o(V(G)) = T|' S Tr,(»)br(»),

yell

where br: I' — Z is the Swan character.
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The conductor 5(V/(G)) is always a non-negative integer. It equals 0 if and only if the
p-Sylow subgroup of I'x acts trivially on ¥;(G). The latter is equivalent to saying that G
acquires semi-abelian reduction (i.e. % is semi-abelian over k) after a finite tamely ramified
extension of K.

It is easy to check from the above definition thatif 0 — V' — V,(G) — V" — 0 is an
exact sequence of @, [I'x]-modules, then 6(¥,(G)) =d(V') +d(V"). It is well-known that
5(V;(B)) and §(¥;(T)) are integers independent of / = p. The Swan conductor §(G) is

defined to be 5(¥;(G)) for any / = p.

2. The case of elliptic curves
Let E/K be an elliptic curve given by a Weierstrass equation
(3) V2 +aixy + a3y = x> + arx* + agx + ag,

with a; € O for i€ {1,2,3,4,6}. Note that when a; € ¢ for all i=1,...,6, then the
reduced equation has a singular point at (0,0). We shall repeatedly use the following fact.
If |O(E)| > 1, then there exist a minimal Weierstrass equation (3) for E/K with v(a;) > 0
for all 7, and a point P = (x,y) in E(K) with v(x) > 0. Indeed, let E°(K) denote the set of
points in E(K) whose reduction in the Weierstrass model modulo 7 is not (0,0). Then
O(E) =~ E(K)/E°(K) (see [Si2], IV.9.2).

Let us record here that under a translation x = z + b, the equation (3) becomes

(4) v+ aizy + (a3 + bay)y = z° + (3b + ay)z> + (3b% + 2a2b + a4)z
+ (b + ayb”® + asb + ag).
Recall the formuli
by = a% + 4aj,
by = 2a4 + ayas,
be = a3 + 4a,
bg = alzaé + darag — ayazas + azag — af,

A = —b3bg — 8b; — 277 + 9bybsbs.

If P = (x,y) € E(K) is not a point of order 2, the point 2P has the following x-coordinate:

x4 — b4x2 — 2b6x — bg
(5) X(ZP) o 4x3 + bzxz + 2b4x + b6 ’

We denote by #(E) the type of special fiber of the regular minimal model of E/K over (,
following Kodaira’s notation:

1(E) e {1, (n = 0),T* (n = 0), 1L, IT*, III, IIT*, TV, TV *}..
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The cases of reduction I, n = 0, are the only cases where the group ® is not cyclic. In this
case the exact sequence (1) may be not split but not totally not split.

Let m denote the number of irreducible components in the special fiber of the mini-
mal regular model of E/K. Let 6(E) denote the Swan conductor of E (called the wild part
of the conductor of E in [Si2]). Recall Ogg’s formula when the reduction of E is additive
([Ogg], Theorem 2, where the proof is incomplete, and [Sai|, Corollary 2):

o(A) =2 +8(E) + (m — 1).

Theorem 2.1. Fix a type t of special fiber of an elliptic curve. Then there exists a
constant ¢ = ¢(t) such that, if K is any discrete valuation field and E /K is any elliptic curve
with reduction of type t over Ux whose Néron model & |k is not split, then 1 < J(E) < c.
More precisely,

(@) if &/ Uk is totally not split, then 1 £ J(E) < 3;
(b) if &/ Uk is not split but not totally not split, then t =15, and 1 < 6(E) < 2n+ 3.

The proof of Theorem 2.1 is a case by case analysis that will occupy the remainder of
this section. The basic idea is the following. Let ¢ be an element of ®. Let P € E(K) be a
rational point whose specialization in & lies in the connected component corresponding to
@. Let d be the order of 9. We can assume that d is divisible by p and that & is additive
(Proposition 1.4 (a) and 1.6). Then d is a power of p. Since & is killed by p, ¢ lifts to an
element of & of order d if and only if the image of P in & has order d. To determine the
order of the image of P, we take advantage of the fact that the multiplication-by-2 map on
an elliptic curve is given by simple and explicit formuli, and that the reduction map
E(K) — & (k) is easy to compute.

We are going to discuss the splitting of & following Tate’s algorithm, as in [Si2],
IV.9.4. The cases where the reduction of E is of type Iy (good reduction), I, (n = 1),
multiplicative reduction, II and IT* (where |®| = 1) are all split cases (see 1.5 and 1.6).
Moreover, when p = 2, IV and IV* (where |®| = 3) are also split cases, and when p = 3, I,

II1, and IIT* are split. When the reduction is not split, the extension L/K is wild (1.9) and,
thus, 6(E) = 1.

2.2. The case p = 2.

2.3. Reduction of type III (® = Z/27Z). Here

5] 75 asz ay deg bz b4 b6 bg
and

In all tables of coefficients in this article, the inequalities in the second line relate
to the valuation over K of the corresponding coefficient appearing on the first line. Let
P=(x,y) € E(K) be such that v(x) = 1. Then v(x(2P)) = v(—bs/bs), using formula
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(5). We find that

& is not split < v(bg) = v(bg) =2
Sv(a) =1<0A)=4

sSo0=1.

2.4. Reduction of type II1* (® = Z/27). Here

ai ay az ay deg b2 b4 b6 bg
and
=1 (=22 =23]3 ]| =5 =2 =24 26| 6

Let P = (x,y) € E(K) be such that v(x) = 1. Then the equation (3) immediately shows
that v(x) > 1, and that if v(x) = 2 then v(asx + a¢) = 6. Thus it is possible to find b € 7>k
such that v(h? + ayh® + asb + ag) = 6. Consider the translation x = z +h. We find that
the new coefficients g; in equation (4) still satisfy all the inequalities for type II1* and that,
in addition, the new coefficient a¢ is divisible by #°. It is easy to check that when such is
the case, a point P = (x,y) with v(x) > 1 satisfies in fact v(x) = 3. Then for such a point,

v(x(2P)) = v(—bs/bs). We conclude that

& is not split < v(be) = v(bs) = 6 < v(a3) = 3.
Note that v(a;) = 1 < v(by) =2, and v(b;) = 2 implies that v(A) = 10. The case v(b;) = 3
requires K = Q)" and v(a,) < 1. Since in our case v(ay) = 2, this case cannot happen. If &
is not split, then v(b,) = 4 implies that v(A) = 12. Since m = § in the case III*, we find that

& is not split =J =1 or 3.

The case 0 = 2 cannot happen when the reduction is III*. Note that an elliptic curve with
reduction III* and v(a;) = 1 and v(a3) > 3 has 0 = 1 but is split. Thus the exponent J does
not characterize the splitting of & (see also Remark 6.7).

2.5. Reduction of type I3, ,,n = 0 (® = Z/4Z). Here

d I bs bg
an
1|1 | n+2 | 22n+2 | 2Z2n+4 =2 | 2n+3 | 2n+4 | 2n+5

45} a) as da de b2

Using the fact that the valuation of a3 is specified, we find that there exists a point
P =(0,y) in E(K). Then

f = x(2P) = —bg/be.

The above table shows that v(—bg/bs) = 1. Hence, 2P reduces to the singular point of the
usual Weierstrass model and, thus, P reduces on a component of degree 4 in the Néron
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model of E. We find that

& — by&? — 2be& — by

x(4P) = .
4P) 483 4 by + 2b4E + by

Thus,
& is not split < v(x(4P)) = 0 < v(hy) = 2.

Note that since ®(E), is cyclic, & not split is equivalent to & totally not split (1.4 (e)). When
& is not split, we have

—b2bs | —8b] | —27b2 | 9bybybe
Mm+9 | 23n+12 | 4n+8 | =3m+9 |

Hence, in the case I, v(A) =8, and in the case I3,,,, n = 1, v(A) = 2n+ 9. In all cases,

v(A) is minimal. In I3, ,, the number of components equals 27 + 6. Thus
v(A)=8«<0=1 (minimal for I),
v(A)=2n+9 < 6=2 (minimal for I;, ,,n =1).
Note that when v(by) = 2, then v(cs) = v(h3 — 24bs) = 4. Hence,

3

v(j)—v(%‘) =12-2n+9<0 ifn=2,3,....

In cases I and I}, E/K has potentially good reduction. In all other cases, the curve has
potentially multiplicative reduction.

2.6. Reduction of type I (& = Z/27 x 7/27). Here

aj ay as dy dg d b2 b4 b6 bg
an .
>1 | =21 =221 =22| =3 >2 | >3 | =24 | =4

The condition to be of type I with the above coeflicients is v(a3a? — 27a2) = 6. More
precisely, the polynomial

P(t) = £ + (a2 /n)t* + (ag/7*)t + ag/7°

must have distinct roots modulo 7. Since we work over a strictly henselian field, we con-
clude that there exist oy, o, and o3 in Ok such that

¥} 4 arx® + agx 4 ag = (x — oy ) (x — 7o) (x — 7oi3).
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Lemma 2.7. Let P; = (n;,0) € E(K), i = 1,2,3. Then the images of Py, P>, and P
in @ are three distinct points of order 2.

Proof- The lemma follows immediately from the description of the minimal regular
model of E/K obtained in Tate’s algorithm, as in [Si2], IV.9.4. The details are left to the
reader.

It is easy to check that by using the translation x =z + 7oz, we obtain a new
Weierstrass equation with a3 =0 and with each new coefficients a; satisfying the same
inequalities listed above for type I;. Moreover, the new coefficients a; = 7(o; + o) and
ay = mo 0 have valuation 1 and 2 respectively. The new coefficient ag is zero. In this
case, v(x(2P3)) = v(—bs/bs). Note that if v(as) =2, then v(bs) =4. It follows that
v(bg) = v(bs) = 4 if and only if the image of P; in ® has a preimage in & of order 4.

Claim 2.8. [f & is not split and v(ay) = 2, then v(A) = 8 and & is totally not split. If &
is not split and v(a)) = 1, then v(A) = 8 or 9. The case v(A) =9 can occur only when & is
totally not split.

Proof- 1If & is not split, then the above discussion implies that we can assume that
E/K has a Weierstrass equation with @ = 0 and

aj ar as ay b2 b4 b6 bg
and
=21 (1122 22| =314 |4

(Indeed, v(bg) =4 implies that v(a3) =2.) We leave it to the reader to verify that if
v(a;) 22, then v(A)=28. Let us assume now that v(a;)=1. If v(A)>8, then

v(—b3bs —27b2) > 8, and thus v(afa? —27a3) > 8. But ajai —27a} is congruent to

atal — a3 modulo 7%, and we find that v(ajas + a?) = 5. The congruences below are

now all modulo 7'

A = —(a} + 8a} + 16a3)bs — 27b2 + 9brb4bs
= —ai‘bg + bé + b2b4b6
_ 4 2 2 4 2 2
= —d\(—a1azas + ara; — ay) + a5 + (aj + 4ax)(2as + ayaz) (a3 + 4ag)
= +afa£ + aé‘ + 015(13614 — afazag + (112((12614 + alag)ag
= 243 + ajazay — alaxai + 2atas + aja3
= af(afa3a4 — a1a2a§ + ag’)
= afag(afa4 —ayaraz + a%)

= 6113613(—611612(14).

Thus, v(A) = 9 and v(A) =9 if v(a;) = 1.
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Consider the numerator N; of x(2P;), i = 1,2. We claim that N; is exactly divisible by
7%, Indeed, if v(x) = 1, then x* — byx? — 2bsx — bg is congruent to (x2 — a4)* modulo 7*.
Thus, v(N;) = 2v(n?e? — n?aj0p). Since o is not congruent to &, modulo 7, our claim fol-

lows. Let us now consider the denominator D; of x(2P;), i = 1,2. By definition,

4x3 4 byx? + 2bux + bg = 4(x3 + arx? + agx + ag) + (a1x + a3)2.

Thus, v(D;) = 2v(a;ma; + a3). Hence, if v(a;) = 2, then & is totally not split and v(A) = 8.
Assume now that v(a;) = 1. Write a; = A1 and a3 = Asn? with 4; and A4; units. Note
now that

(Ayo + A3) (A1 + A3) = (Afogon + A3) + A1 A3 (g + o2)

and that = does not divide o + o. On the other hand, if v(A) =9, then v(afas + a3) = 5.
It follows that if v(A) =9, then v(A4;a; + A3) = 0 and, thus, & is totally not split. This
concludes the proof of 2.8.

The type I; has 5 components, and one easily checks that the case 6 =1 cannot
happen with type I;. We conclude from the above discussion that if & is not split, then
0 =2 or 3. The case 6 = 3 happens only when ¢& is totally not split.

2.9. Reduction of type IS, n =1 (® = Z/27 x Z/27). Here

ay as as dy dg b2 b4 b6 bg
and

>1 |1 | =n+2 | n+2| =2m+3 >0 | >n43 | >m+4|2m+4]

It is easy to check that a point P = (x,y) in E(K) either has v(x) = 1, or has v(x) =2 n+ 1.
Let X := x/n""" and Y := y/n"! and consider the equation

g(X,Y) =Y+ a1 XY + (a3/7"™) Y — [7"7' X3 + @ X* + (ay /7" X + ag/n*" ).
By hypothesis,
(6) a X? + (ag/7" )X + a6 /7" = ar (X — 2)(X — f)

for some o, f € Ok, o — ff ¢ n0k. Thus, a point P = (x,y) in E(K) with v(x) = n+ 1 is such
that either x = an"*! or x = pn"*! modulo n"*2. Let P; := (x;,y;) € E(K) be such that
v(x1) =1, v(xy — an™) = n+ 2 and v(x; — fr") = n+ 2.

Lemma 2.10.  The reduction map {0, Py, P>, P3} — @ is surjective.

Sketch of proof. Recall that the Néron model of E/K is obtained from the minimal
regular model Z'/ Uk of E/K by removing the singular points of 2 /k. Thus, to prove our
claim, it is sufficient to show that oo, Py, P», and P reduce to four distinct components of
multiplicity 1 in Z%.

Consider the following model #/Cx of P'/K. Start with % = U u U’, where
U = Spec Uk[x] and U’ = Spec Uk[1/x]. Blow up the origin in (%)), to get #;. Blow up the
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origin in the exceptional fiber of (%), to get %,. Continue in a similar fashion to construct
%; from %;_,. Let % := %,.,. The special fiber of % is a chain of n + 2 smooth rational
P!/k, say Cy, ..., Cy1, with Cy denoting the component corresponding to (%) - Consider
the model & /(k of E/K obtained as the integral closure of % in K(E). Then % is the
union of n + 2 smooth rational curves, say Dy,..., D, 1, each having multiplicity 2 in %
except for the preimage Dy of Cy, which has multiplicity 1. The scheme £ has two singular
points O, and Qg on D, jand a singular point Q; on D;. Each of these points lie on the
smooth locus of & ,ﬁed. The singularity of 2 at Q; (resp. Q,, Op) is resolved by the blow-up
of Q; (resp. the blow-up of Q,, Op). The three exceptional fibers have multiplicity one.

Op 5
0, 2 2 %
Do, D;l ..... Dy
o 5T o

Let v~ — Z denote the blow-up of the three points Qy, Q,, Op, with exceptional fibers
E1, E, and Ep. The normal model ¥~ contains two configurations in ¥} of the form

— 2 ......
3 1 E'
B 1 E

D

such that ¥~ is regular at every closed point of £ and E’. Let # — ¥  denote the
minimal desingularisation of 7". Then (E-E), < —1 and (E’'-E’), < —1. Similarly
(D-D), < —1. Let # — Z denote the contraction to the minimal regular model. It
follows that D, E, and E’ do not contract to points in 2.

The reader can check that a point (x,y) € E(K) reduces in %% to the component

corresponding to E; (resp. E, or Ep) if v(x) =1 (resp. if v(x — an"!) = n+ 2, resp. if
v(x — Br"*!) = n + 2). Indeed, the integral closure of Ok [x/z"*!] in K(E) is the ring

(QK[Xv Y}/g(X7 Y)a

and we let the points O, and Qp correspond to the maximal ideals (7, Y, X —a) and
(n, Y, X — f). This concludes the proof of Lemma 2.10.

Note that in the equicharacterstic zero case, the reduction map in 2.10 is also con-
sidered, using a different method, in [C-Z], 2.25.

Denote by ¢, , ¢,, and ¢, the elements of @ corresponding respectively to the com-
ponents Ej, E,, and Ez. Consider now a point P = (x,y) in E(K) with v(x) =1 (e.g.,
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P = P;). Then the valuation of the numerator N of x(2P) is equal to 4, and the denomi-
nator D of x(2P) is congruent to x> modulo *. Thus v(h,) = 2 if and only if the image of
P in &, has order > 2. This is also equivalent to saying that ¢, does not lift to an element of
&y of order 2. In particular, if v(b;) = 2, then & is not split. Assume now that v(x) = n + 1
(e.g., when P = P, or P3). Then v(N) = v(bg) = 2n + 4, and D is congruent to byx? + bg
modulo 724, Hence, if v(b,) > 2, we find that & is not split if v(bg) = v(bg). In conclusion,
& is not split if and only if v(by) = 2, or v(by) > 2 and v(bs) = v(bs).

Proposition 2.11.  Assume that E/K has reduction of type 15,, n > 0. Then:
(a) &/0x is totally not split if and only if v(A) = 2n + 8 and v(bs + aj) = 2n + 5.
(b) If &/ 0k is not split, then v(A) < 4n+9.

Proof. (a) We saw above that ¢; does not lift to an element of &} of order 2 if and
only if v(hy) = 2. It is easy to check that this equality is equivalent to v(A) = 2n + 8, and
also to v(a;) = 1. Let us now assume that v(by) = 2. We need to show that ¢, or gy lifts
to an element of & of order 2 if and only if v(bg +a3) >2n+5 (use the fact that
v(bs +a}) = 5 in general). Since ¢, or ¢p lifting to an element of & of order 2 is equivalent
to 2P, or 2P; reducing to the identity in &%, we can use the above discussion to find
that 2P; (i = 2,3) reduces to the identity if and only if v(bzx(P,-)2 +be) >2n+4. It is
easily checked that the latter is equivalent to v(a;x(P;) + a3) > n+ 2. Substituing —a3/a
for x(P;) in equation (6), we see that either ¢, or ¢ lifts to an element of order 2 if and only
if v(as (a3a7")? + ag(aza;’) + ag) > 2n+ 3 or, equivalently,

(7) v(azag + ajazas + a%a6) >2n+ 5.

Looking at the formula for bg, we find that this last inequality is equivalent to
v(bs +aj) > 2n+ 5.

Let us now prove statement (b) of the proposition only in the case char(K) = 0. The
case where char(K) = 2 is similar and is left to the reader. Let e := v(2) and v := v(a;).
Consider first the case where e < v. In this case v(by) =2e+1 and v(bs) =e+n+2.
Moreover, since & is not split and v(by) > 2, we have v(bs) = v(bs) = 2n+ 4. Thus,
v(az) = n+ 2. We find that

—bzzbg —8b2 —271)5 9b,b4b¢
de+2n+6 | 6e+3n+6 | 4n+8 | 3e+3n+7

Clearly, v(8b3) > v(bhababs). Thus v(A) < 4n + 8 unless two of the numbers 4e + 21 + 6,
4n + 8, and 3e + 3n + 7 are equal and not bigger than 4n + 8.

The equality 4e+2n+6=3e+3n+7 occurs if e=n+1, but in this case
de +2n+ 6 > 4n+ 8 and v(A) = 4n + 8.

The equality 3e+3n+7=4n+8 occurs if 3e=n+1, but in this case
d4e +2n+ 6 < 4n+ 8§, so that v(A) < 4n + 8.
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The equality 4e+2n+6=4n+8 occurs if 2e=n+1. In this case,
3e+3n+7>4n+8, and we may not conclude that v(A) <4n+8. Let us thus

assume that n is odd and e = (n+1)/2. Let us consider first the case where n = 3,
so ¢ = 2. Then v(bybsbg) = 4n + 10. We claim that

v(A) = v(—b3bg — 27b%) = 4n + 8 or 4n +9.

All congruences below are modulo 7#+19:

—b3bg — 27b% = —b3bs + b
= —(4ay + a?)’bg + (a2 + 4ag)’
= —16a3bs + a3
= —16a3(—aj + wa3) + a3

= aj — 16a3a; — 16a5a3.

v(A) > 4n+8, then v(aj — 16a3a3) > 4n+ 8, which implies that v(a3 — 4aras) and
(a3 + 4ayay) are both larger than 2n + 4. Thus

—b3bg — 27b% = —16a3a; mod 7*"F10
and in this case v(A) =4n+9.

Consider now the case n = 1, so that e = 1. In this case, v(b2bsbs) =4n+9, and a
slight change needs to be made in the above proof. We claim that

0(A) = v(—b3bg — 27b% + 9bsbsbg) = 4n + 8 or 4n +9.

We work again with congruences modulo 7*'+10:

—b%bg — 27bé +9bybsbs = — 16a§bg + ai + bybybg

= a; — 16a3a; + 32a3a; — 16a3a3 + 8arasa;.
If v(A) > 4n + 8, then v(a? + 4aras) = 2n + 5. Thus

A = 8aras(dazas + a3) 16a2a3

= —16a3a3.
It follows that v(A) = 4n + 9 = 13 in this case too.

Let us now consider the case where e = v. Then v(b;) = 2v and v(bs) =Z v+ n + 2,
with equality if e > v. It is easy to check that if v = 1, then v(A) = 2n + 8. Thus, we may
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assume that v > 1. We find that

“b2bs —8b; 2762 | Obababs
40+2m+4 | 260+3n+6 | n+8 | 23v+3n+6]

If 4v+2n+4=23v+3n+6, then v =2n+2. If such is the case, 3v+3n+6>4n+ 8
and v(A)=4n+8. If 4n+8=3v+3n+6 then n+2 = 3v. If such is the case, then
4v+2n+4<3v+3n+6 and v(A) =4v+2n+4<4n+8. If dv+2n+4=4n+8, we
find that v = (n + 2)/2. Thus n is even. Then

U(bzb4b6) —4n+8 = I’l/2 +1=2.
We claim that
v(A) = v(—b3bg — 27b%) = 4n + 8 or 4n + 9.

We work again with congruences modulo 7*"+10:

= —b3bs — 27b; = —b3bs + bg

_ 4 4
= —albg +a3
_ 4 2 2 4
= —a|(—a; + amaz) + a5

_ 42 4 4 2
= aja; — a; — a;axa;.

If v(A) > 4n + 8, then v(a?ay + a3) = 2n+ 5. Thus

A = —a}ayai mod n* 10

and v(A) = 4n+ 9. This concludes the proof of Proposition 2.11.

Assume that &/ is not split and that £/K has reduction of type I; , n > 0. Then the

2n>

number of components is m = 2n+ 5. Thus, 6(E) < 2n+ 3. If /0 is totally not split,
then 0(E) = 2. This concludes the proof of Theorem 2.1 when p = 2.

2.12. The case p = 3.

2.13. Reduction of type IV (® = Z/37). Here

3} a) as dg deg d b2 b4 b6 bg
an
>0 | 20| =1 | =11 =2 >1 | =212 |23

Since p = 3, E[2](K) injects in the special fiber & (k). Since ® = Z/37 and &} (k) is addi-
tive, we find that E[2](K) must be trivial. Hence, the equation
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4% + byx® + 2byx + b =0

has no solutions in K. One easily sees that this fact implies that v(b4) = 2. Since p = 3, we

1 . . .
can replace y by 2 (y — a1x — a3) to obtain a new equation for £ with a; = 0 = a3 and

a, | as | as by | by | bs | bg
and
>1 1 =>21| 2 =1 =221 2| =3

Note that now b, = 4ay, by = 2ay4, bg = 4ag and bg = 4arag — af. Knowing that v(bs) = 2
in the initial equation allows us to show that v(bg) = 3 in the second equation for E. Let
P = (0,y(P)) with y(P)* = ag. Such a point reduces in ® to a generator. We now use the
following formuli to analyze the reduction of 3P = (x(3P), y(3P)) in the connected com-

ponent of & /k:

2
(8) x(3P) = <J%> —ay — x(2P),
 wx(2P)  a
A TRT)
x(2P) = _b—lzg.

It follows from the above formuli that & is not split if and only if
v(p(2P) = y(P)) Z v(—bs/bs) = v(bs) — 2.

Since

_ —a4x(2P) —4a
Y2P) = ¥(P) = —— 55—

and v(ae) =2, v(as) = 2, and v(x(2P)) = 1, we find that the valuation of y(2P) — y(P)
must be equal to 1. It follows that & is not split if and only if v(ay) =1, since
bg = darae — af. Thus,

éx is not split < v(by) =1 and v(bg) =3
< v(A) =5

<o0=1.

2.14. Reduction of type IV* (® = Z/3Z). Here

ay ar as dy deg b2 b4 b6 bg
and
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in Tate’s algorithm. Since p = 3 and ® = Z/3Z we find that E[2](K) must be trivial. Hence,
the equation 4x3 + hyx? + 2b4x + bs = 0 has no solutions in K. One easily sees that this

N : 1 :
fact implies that v(b,) = 2. Since p = 3, we can replace y by E(y —ajx — ajz) to obtain a

new equation for E with ¢; = 0 = a3 and

a as | ag b, by | bs | bs
and
=21 =314 =21 =234 | =26

(where now bs = 4aras — aj). Let P = (0, y(P)) with y(P) = aZ. Such a point reduces to a
generator in ®. Using the formuli (8), we find again that & is not split if and only if

v(¥(2P) — y(P)) Z v(—bg/bs) = v(bg) —

Since

y(2P) - y(P) =

we find that v(y(2P) — y(P)) = 2. Thus,

6y 1s not split < v(bg) = 6
= v(A) =9 or 10
=0=1or2.

Note that v(A) =9 if and only if v(as) = 3. When v(as) > 3 and & is not split, then
v(ay) = 2 and v(A) = 10. This concludes the proof of Theorem 2.1.

3. Remarks and examples

Example 3.1. Let p =2 and ne N, and let K be such that e :=v(2) < (n+1)/2.
Let o, f € O and consider the curve E/K

y2 + nn+2y —_ x3 + mxe + nn+2ﬁx‘

Its reduction is I,. This curve is such that g(A) =4e+2n+6 <4n+8 and 0 = 4e. Let
= (0,0). Then the reduction of 2P is (ﬂ ,f). Thus the reduction of P has order 4 in &
and E/K is not split.

Theorem 2.1 shows that 6(E) < 2n + 3. Choosing K such that e = n/2 when n is even
and (n — 1)/2 when n is odd produces examples of curves that do not have split reduction
and with 0(E) = 2n when 7 is even and 6(E) = 2n — 2 when 7 is odd. This example shows
that there is no absolute bound, independent of the type of reduction,for the Swan con-
ductor ¢ of elliptic curves with non-split reduction.
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Remark 3.2. Let E/K be an elliptic curve. Let M /K be a finite extension. We show
in this remark that the splitting type of the special fiber of the Néron model of E),/ M is not
easily predictable, even when the extension M /K is tame. In particular, we will show below
that E/K having split reduction and M /K being tame does not always imply that Ey /M has
split reduction. On a more positive note, Proposition 3.3 below implies that if £/K does not
have split reduction, then E,;/M has split reduction if [M : K] is large enough.

Let p = 2. Consider an elliptic curve E/K with reduction of type II* (® = {1}), so
that £/K has split reduction. We are going to show that the Néron model of E);/M may
not be split if [M : K] = 3. With type II*, we have

aj ar az ay dg

Let = = 5>, After dividing the equation (3) by 5> and changing variables Y := y/5® and
X := x/n*, we find an equation of the form

Y2+ ajXY +aiY = X° + a5 X* + a,X +af,

with

=zl | z2 | 23| =z4|=3

The reduction is of type Ij, according to Tate’s Algorithm [Si2], IV.9.4. As we noted after
2.7, we can find xy with vys(x9) = 1 such that the translation X — X + x produces a new
equation

Y2+ a| XY + (ajxo+a) Y =X+ +af
with af = 0. In this case, the discussion after 2.7 implies that E);/M does not have split
reduction if vys(ajxo + a3) = 2. Then Ej;/ M does not have split reduction if vys(aj) = 1 or,

equivalently, if v(a;) = 1.

Proposition 3.3. Let E/K be an elliptic curve. Let M /K be any tamely ramified
extension of degree m = 4. Then Ey;/ M has split reduction.

Proof. Recall that for any tame extension M /K,
O(Ey/M) =M : K|o(E/K).

If 6(E/K) = 0, then 6(Ey /M) = 0. Hence, E) has split reduction (Theorem 2.1). Assume
from now on that 6(E/K) = 1. Then 6(Ey /M) = m = 4. According to Theorem 2.1,
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Eyn/M has split reduction except possibly when p =2 and E), has reduction of type I,
n > 0. Consider this remaining case. Our next lemma implies that £/K has also reduction
of type I, n’ > 0.

Lemma 3.4. Let p=2. Let E/K be an elliptic curve with reduction of type t. Let
M /K be any finite extension of odd degree m. Then the reduction of Ey /M is of type t', as in
the following table:

t t
I, (” = 0) L
L, (nz0) L

II or IT* IT or IT* or I
IIT or IIT* | IIT or IIT* or I
IV or IV* IVorlIV*

Sketch of proof. This lemma is well-known but we have been unable to find a ref-
erence for it in the literature. Let 2'/(x denote the minimal regular model of E/K whose
special fiber has smooth components intersecting with normal crossings. A regular model
% | Oy of Ep/ M can be constructed as the minimal desingularization of the normalization
% of the base change 2 Xgpec() Spec(Uy). The singularities of the normal model % are
well-understood when the extension M /K is tame: each singularity is resolved by a single
chain of rational curves (Hirzebruch-Young singularities). Except for the case ¢ = I,,, the
graph associated to the special fiber of %" is a tree. This tree has a single node of multiplicity
r =6 when ¢ is II or II*, a single node of multiplicity » = 4 when ¢ is III or III*, a single
node of multiplicity » = 3 when ¢ is IV or IV*, and two nodes of multiplicity »r = 2 when ¢ is
I, and n > 0. The key to the proof of the lemma is to note that in each of the cases where
the graph of Z has a single node of multiplicity r, the graph of the special fiber of % must
be a tree with a single node of multiplicity r/ged(r, m).

Let us return to the proof of 3.3. Let #" be the minimal Weierstrass model of E/K.
Then &° is an open subset of % . Consider the equation (3) of #". It follows from Tate’s
algorithm that v(ag) = 3 and, thus, vy(ag) = 12. Moreover, vy(a;) = 4. So (3) is not min-
imal for E);. Denote by &’ the Néron model of Ej,;. Then the canonical map (o“’g — 51/60 is
the zero map, as can be easily checked by noting that a point (x,y) € E(K) that reduces to
a point of & (k) must reduce, under the reduction map of Ey/M, to the point
(0,0) € &(k). Since m kills the kernel of the natural map ®x — @, (see [Lor2], 3.1, (5)
and (10)), we find that ®x — @), is an isomorphism. Let ¢ € ¥, = Ok be an element of
order 2. Let x € & be in the preimage of ¢. Let x’ be the image of x in &/. Since 2x € £}, we
find that 2x’ = 0. Since x’ is in the preimage of ¢, E)//M has split reduction.

Remark 3.5. Let E/K be an elliptic curve, and denote by L/K the extension mini-
mal with the property that E; /L has semistable reduction. Recall that in the case of elliptic
curves, if 3 divides [L : K], then 3 exactly divides [L : K]. It is shown in [ELL] that [L : K]
kills the group ®x when the curve E has potentially good reduction. It is thus natural to
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wonder whether [L : K] also kills &, /k when @ is not trivial. The following example shows
that the answer to this question is negative in general. Take the curve 54B3 in [Cre]:

Y24 xy+y=x>—x?—14x+29,

which has reduction of type IV when p = 3. The point P = (3, 1) has order 9 in E(Q), with
2P = (—3,7) and 3P = (1,—5). We find that (0, 1) is the singular point in the special fiber.
Since 3P does not reduce to oo, we find that P has order 9 in the special fiber and, thus, &
is not split and [L : K] does not kill &.

Remark 3.6. The following examples show that the possible relationships between
the splitting types of the special fibers of the Néron models of two isogenous curves are not
easily predictable. Consider the four curves of conductor 40 in the tables [Cre|. These four
curves are all isogenous, with the curves A1, A2, and A3 not split, and the curve A4 split.
Note that the curves A2 and A4 both have reduction of type IIT* (while Al is of type I} and
A3 is of type III).

Remark 3.7. One strategy for determining whether a Néron model %/K is split is to
find a torsion point in G(K) (and not in %(k)) with the appropriate order and reduction.
However, since there is no relationship in general between G[p](K) and the p-part of ®g
when char(k) = p, this method has a very limited scope of application. We shall only use
this method below to exhibit an example of a jacobian of dimension g with additive and
split reduction when p* = 2g + 1. Note however that this method may possibly be used to
discuss the splitting property of the Néron model of the jacobian of the modular curve
Xo(mp")/Q," when p = 5. Indeed, it is proven in [Lor4], 2.3, that the p-part of the group of
components is in the image, under the reduction map, of the cuspidal torsion subgroup.

Let p = 3 be prime and let g = 1. Consider the proper smooth completion X /K of the
affine plane curve given by the equation

p2 = 241 g2,

The curve X /K has genus g. Let A/K be its Jacobian. Let P := (0,#) and Q := (0, —n).
The point P — Q belongs to 4(K) and has order 2g + 1. We claim that the group of com-
ponents @ of the Néron model .o/ /0k of A/K is cyclic of order 2¢g + 1 and that P — Q
reduces to a generator of ®x. Thus A/K has split reduction. To prove our claim, we shall
exhibit a regular model 2'/0k of X /K.

Consider the following model %/ 0k of X /K. The scheme % is the plane projective
curve in P2/ given by the equation y?z29~! = x29+! 4 72729t1 We shall now describe
pictorially the sequence of blow-ups

o1 - — A

that leads to a regular scheme Z,/0x. More precisely, we describe below the special fibers
of the schemes %;:
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CP CQ CP

The triple point 7" in the model Z, is seen in the chart

Spec G, 25 Z | f/a)? = (x4 (a2,

All irreducible components appearing in the pictures above are smooth P!'. We leave the
details of this computation to the reader. The blow-up Z'/ Uk of the point 7 is a model with
normal crossings whose associated graph is a tree. Thus 4/K has purely additive reduction
((BLR], Thm. 4 on p. 267, and 9.2/9, 9.2/10). The tree is represented below:

One checks easily that P and Q reduce to two distinct components of multiplicity 1, say Cp
and Cp. Indeed, consider the following chart of Z7:

U = Spec O 53,2 2] /(0 = (Go/m 21 4 1),

The special fiber of U consists of two affine curves, and P reduces into the component
y/m =1 while Q reduces into the component y/n = —1. It is shown in [BLR], 9.6/6, that
®x ~7/(2g + 1)Z. That P — Q reduces to a generator is shown in [Lor3], 4.4.

Let p¢ be the largest power of p that divides the order of an element of ®. The fol-
lowing examples show that in general, as expected, the fact that the special fiber &} is not
split does not provide any indication as to whether the group E(K) contains a point of
order p<tl,

Example 3.8. Let p =2. Let E/K be an elliptic curve with reduction of type III.
Assume that & /k is not split, so that & (k) contains a point of order 4. We exhibit below
such an elliptic curve with no 4-torsion points in £(K). Suppose that P = (x, y) is a point of
order 4 in E(K). Let u := x(2P). Then v(u) = 0 since &x/k is not split. The coordinate
x := x(P) is solution of the equations
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(x4 — byx? — bgx — bg)(4x3 + byx? + 2bsx + b6)71 =u,
u? + byu® /4 + bau/2 + bg /4 = 0.

It follows that

{ v(—bs + ubg) = 4,
3

v(az + ua3)

[\

so that v(a$ + alaiag + 22af) = 9. It is easy to exhibit examples where this last congruence
cannot be satisfied, such as in

Y2 4 2xy +2y = x> 4+ 2x + 4.

Example 3.9. Consider the curve 24A4 in [Cre]: y> = x3 — x? + x. Its reduction is
of type III when p = 2. The singular point is (1, 1) in reduction. Let P = (1, 1). This point
has order 4 and 2P = (0,0). Thus the extension & is not split.

Remark 3.10. Let F/K be a finite extension and let A/F be any abelian variety. It is
natural to wonder what are the possible relationships between the splitting type of A/F and
that of its Weil restriction Resp/x(4)/K. Let us note first that @k (Respx(4)/K) is iso-
morphic to ®p(A4) ([ELL], proof of Theorem 1), so that if p does not divide |®p(A)|, then
A/F has split reduction, and Resy/x(4)/K has split reduction for any extension F'/K. The
following example shows that the hypothesis that A/F has split reduction does not imply,
in general, that Resy/x(4)/K has split reduction, even when F'/K is a tame extension.

Let p =3 and let F/K be a quadratic extension. Let E/K be an elliptic curve with
reduction of type IV* (|@k| = 3) with v(bg) = 6 and 6(E) = 2. Then E/K does not have
split reduction (see 2.14). Moreover, Er/F has split reduction: Indeed, since o(Er) = 4,
Theorem 2.1 shows that to prove our claim, it suffices to show that the reduction of Er is
not of type I, for n = 0. Since the kernel of the map ®x(E) — ®r(EF) is killed by [F : K]
([ELL], Theorem 1), we find that 3 divides |®p(EF)| and, thus, Er cannot have reduction
of type 1;, for n = 0. It is shown in [Mil], Proposition 7 and following example, that
Resy/x(Er)/K is isogenous over K to the product of E/K by its quadratic twist E;/K, and
that the isogeny can be chosen to have degree 4. Thus, since £ x E; does not have split
reduction, Proposition 1.11 implies that Resz/x(Er)/K cannot have split reduction either.

4. Norm tori and their duals

Let T/K be an algebraic torus. Such a group scheme has a Néron model 7/,
locally of finite type ([BLR], 10.1/6). When the special fiber .7 is a unipotent group, the
group scheme 7 is of finite type over (x ([BLR], 10.2/1). In this section, we study the
splitting properties of .7 when T is a norm torus or its dual. Our main result is Theorem
4.6 below.

Let F/K be any finite separable extension, and denote by L/K its Galois
closure over K. Let I' = Gal(L/K) and A = Gal(L/F). Let ¢g1,...,9, € ' be such that
/A ={gA,...,g.A}. Let {61,...,0,} be the basis of the permutation module Z[I'/A]
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defined by the ¢;A’s. Consider the exact sequence of Gal(K*/K)-modules
(9) 0— Z 5 Z[l'/A] — Coker(g) — 0

n

where &(1) := > d;. By definition, this exact sequence of Gal(K*/K)-modules induces an
i=1

exact sequence of tori over K

0— R;‘/KGm,F - RF/KGm,F - Gm,K — 0,

where the torus Rr/x Gy, r is the Weil restriction of G, r, and the map Rr/x Gy r — Gp
is the norm map. Denote by 7 := R}F / x Gm the associated norm torus. Then

RF/KGin,F(K) :F*, and T(K) = {ZGF*lNF/K(Z) = 1}
The universal property of the Weil restriction implies the existence of a canonical
closed immersion G, k — Rr/xGp . Let S/K be the quotient torus defined by the exact
sequence

(10) 0— Gm,K - RF/KGm,F -85 —0.

The associated exact sequence of groups of characters

(11) 0—>X(S)—>Z[F/A]L>Z—>0
is defined by the augmentation map r( > mi; | == >, m;. For any I'-module N, let
1<izn 1<i<n

us denote by N* := Homy(N, Z) its dual. Recall that the I'-module structure on N” is as
follows: For any f € N*, g e, and x € N, set (gf)(x) := f (g~ 'x). Recall that if 7/K is the
torus corresponding to N, then the torus corresponding to N” is called the dual of 7. The
next lemma is well-known.

Lemma 4.1. Let F /K be a finite separable extension. Let S := (Rp kG r)/ Gy x be
the quotient torus. Then:

(a) The torus S is isomorphic to the dual of T.

(b) If F/K is a cyclic extension, then S and T are isomorphic. (See 4.17 for the
converse.)

Proof. (a) Let {0}, be the dual basis of {J;};. There is a (non-canonical) iso-

morphism of I'-modules Z[I'/A] ~ Z[I'/A]" defined by J; — 6. We then have a commu-
tative diagram of homomorphisms of I'-modules

0 — X(S) —— Z[I'/A] L7 —— 0

|

0 — X(IN" —— Z[T/A" —*— Z —— 0.
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Thus X(S) is isomorphic to X(7')" which, by definition, is the character module of the
dual of T.

(b) By assumption, F = L and A =0. Let ¢ be a generator of I'. Then one easily
checks that the complex of I'-modules

0 VA

is exact. Hence X (7") = coker(¢) is isomorphic to X (S) = ker(r).

Proposition 4.2. Let 0 — Ty — Tr, — T3 — 0 be an exact sequence of tori over K
with T1/K split. Let 7;/0x be the Néron model of T;, i =1,2,3. Then the following
sequences of groups are exact:

(@) 0 = O(T)) — D(T,) — ©(T3) — 0,
(b) 0 — 7% (k) — T (k) — T3 (k) — 0, and
(©) 0= Fx(k) = Trk(k) = T3x(k) — 0.

Proof. (a) Let us first show that the map ®(7) — ®(73) is injective. Let L/K
denote an extension such that (73), /L has semistable reduction. Since both (77), and
(T»), are split tori, we find that the map ®((T3),) — ®((7»),) is injective. Since T;/K
is a split torus, the map ®(7}) — ®((7}),) is also injective. It follows that the map
®(T)) — ®(T?) is injective. Since O(7}) — O(T2) — D(73) — 0 is exact because 7 /K is
split (|[B-X], 4.2 and 4.9), we get the exactness of (a).

(b) follows easily from (a) and (c). So it remains to prove (c). Let
Jj: Spec K — Spec x be the canonical map. Then j.7;, as sheaf on the smooth site
Spec(Uk),.,, is represented by the Néron model 7;. Since T is a split torus, R, 71 =0
on the smooth site (see [Mil2], beginning of the proof of III.C.10) and we have an exact
sequence

(12) 0—-9 — 9 —T3—0

of sheaves on the smooth site Spec(Ck),,,. To prove (c), it is enough to show that (12) is
exact as complex of group schemes (recall that k is algebraically closed). What follows is
inspired by conversations with C.-L. Chai.

Lemma 4.3. Let & be any scheme. Let 7,/9 and F3/ be two group schemes
over &, each flat (and, thus, faithfully flat) and locally of finite presentation over &. Let
¢: Ty — T3 be a morphism of group schemes over &, and let 7 denote the kernel of ¢ (as
group scheme). Then:

(@) If ¢: T2 — T3 induces a surjective map of sheaves on Srypr, then 7 /S is flat.

(b) If ¢: 7, — T3 induces a surjective map of sheaves on S, and both 7,/ and
T3/ are smooth over S, then T | is smooth.
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Proof. The surjectivity of the map of sheaves on Y4, implies the existence of a
faithfully flat morphism f: #" — 73 and a commutative diagram

N
N

—

N

S
R

]

When the map is surjective on %, and .73 is smooth, we may assume in addition that [
is smooth. The existence of the section s and the fact that 7> and 73 are group schemes
imply the existence of an isomorphism of schemes over #~ between 7, x5 #  and
T xg W The scheme 7, x4 # is flat over ¥ since 7,/.% is flat. This scheme is smooth
over & if 7,/ is smooth and f'is smooth. Thus, 7 x ¢ ¥ is flat over &, and smooth over
& under the hypotheses of Part (b). Since 7 x4 #" is faithfully flat over .7, we conclude
that 7 /.% is flat, and Part (a) is proved. When 7 x ¢ #~ — % is smooth, each fiber of this
map is smooth. Recall that a product of varieties is smooth if and only if each factor is
smooth. It follows that the fibers of 7 /% are smooth. Since 7 /. is flat, it is then smooth,
and our lemma is proved.

Let % = Spec(Ck). Both 7 /% and 7,/% are smooth over . and represent the
kernel of the morphism of sheaves on %, associated with the morphism .7, — 3. Hence,
7 is isomorphic to ;. Proposition 4.2 follows since .7, — 73 is obviously surjective as
morphism of schemes when it is surjective as map of sheaves for the smooth topology.

Let R:= Rp/xGp r. Let %, /0k, #/0k, and ¥ /Ux denote respectively the Néron
models of G, x, R, and S.

Corollary 4.4. Let F/K be a finite separable extension of degree n. Let
S := (Rp/kGm,F)/Gm k be the quotient torus. Then:

(a) Let A := O @, k. Then the following complex of groups is exact:
(13) 0— Gp (k) = RyjGu a(k) — S (k) — 0.
(b) ©(S) ~ Z/nZ.

Proof.  Note that 40, = Gy, ¢, and 2° = Ry, ¢ (Gum.¢,) ((N-X], 3.1). Proposition 4.2
applied to the exact sequence (10) shows that both the sequence (13) and the sequence

(14) 0— P(G,y) = PR) —D(S)—0
are exact. The exact sequence (14) is canonically isomorphic to
(15) 0—K*/Og — F*/Op — ®(S) — 0,

where the first map is induced by the natural inclusion K < F. Since F/K is totally rami-
fied, we find that ®(S) ~ F*/K* ~ Z/nZ.
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Let F/K be a finite separable extension of degree n. A uniformizing element ¢ of F
satisfies an Eisenstein equation

(16) "at" " fart" 4 a, =0
with a; € 0k and v(a,) = 1. Set ay := 1. The different of the extension F/K is given by

vr(ZF/x) = min l{n(v(ai) +o(n—1i)) +n—1-i}.

0<isn—

Let S be any torus over K. Let 7,(.S) denote the Tate module of S. Recall that when /
is a prime different from p, the Galois module 7,(S) has rank dim(S) over Z,, and the
evaluation of characters S x X (S) — G,, induces Galois isomorphisms between S[/"](K*)
and Hom (X (S)/¢"X (S), G,[¢/"](K*)). It follows, under our assumption on K, that 7,(S)
is isomorphic, as Galois module, to the dual of X (S) ®7 Z,. Thus the Swan conductor (see
1.12) 6(S) is that of the representation I' — Aut(X (S) ®; Q).

Lemma 4.5. Let S be the quotient torus (Rp/x Gy, )/ G k. Then the Swan conductor
0(S) of S is given by 6(S) = vr(Zr/x) — (n—1).

Proof.  Since the Swan conductor is an additive function on exact sequences, and
since the Swan conductor of the trivial representation is zero, we conclude from the
exact sequence (11) that 6(S) is the Swan conductor of the permutation representation
p: T — Aut(Q,[I"/A]). By definition,

(p) = f(p) — dimo, Q/[T/A]/Q/T/A]" =f(p) — (n—1)

where f'(p) is the Artin conductor of p (see [Ser|, VI, §2 for the definition of /). On the other
hand, p = ind} (14) with 1o: A — Aut(Q,) being the unit representation of A. Hence,

S (p) = vr(Zr/k) deg(1a) + [ (1a) = vr(Zp/x)
([Ser], VI, §2, Corollary of Proposition 4) and the lemma is proved.
We may now state and prove the main theorem of this section.

Theorem 4.6. Let F/K be a finite separable extension of degree n. Let S be the quo-
tient torus (Rp/x Gy, r)/ G k. Let 6(S) be the Swan conductor of S.

(a) The torus S has totally not split reduction if and only if 1 <0(S) < dim S.

(b) The torus S/K has split reduction if and only if v(a;) = 2 for every coefficient a; in
equation (16) such that v(i) < v(n) — 1.

(¢) Ifo(S) = (dim S + 1) ord,(dim S + 1)vg (p), then S/K has split reduction.
Proof. Fix uniformizing elements ¢ and = of F and K, respectively. We have an

explicit description of the reduction map S(K) — (k). Let z € S(K). Let y € R(K) = F*
be a preimage of z. Using the exact sequence (15), we see that the image of z in ®(S) has
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order, say m, equal to the order of vr(y) in Z/nZ. Now consider mz € S(K), which reduces
to a point of %", Recall that 2°(0x) = O;, %°(Uk) = O}, and that the kernel of the map
R°(Ox) — R (k), that is, the kernel of O — (U ®g, k)", is 1 4+ n0r. Using these facts
and the exact sequence (13), we see that mz reduces to 0 € ¥ if and only if there exists
x € K* such that y”"x~! e 1 + n0.

Claim 4.7. Let uy :=t"n"! € 0. Let me N be a divisor of n. We claim that there
exists a point in S of order m whose image in ®(S) also has order m if and only if uy is a
m-th power in Op |n0F.

According to the above discussion, the existence of the desired point in % is equiva-
lent to the existence of x € K*, y € F* such that

vrp(y) = n/mmod n,
y"x el 4 n0p.

Suppose that such x and y exist. Multiplying x and y by suitable powers of 7, we are
reduced to the case where vr(y) = n/m. Thus, v(x) = 1. Write y = t"/"u~!, with u € 0.
Then

up = y"u"n e u’"(xn_l)(l + n0f) < O + n0f

because Ox = O + n0k. Conversely, if uy = v mod r, then we can take y = "/"p=1 and
X=T.

Recall that if  is prime to p, then %% is split (4.4 (b) and 1.5) and 6(S) = 0. Assume
now that p divides n. Then % is totally not split if and only if "z~ is not a p-th power in
Op /n0F. The latter is equivalent to the following property in equation (16): There exists
1 <i<n-—1 with ged(p,i) =1 and v(a;) = 1. In terms of the different, this means that
vr(ZF/k) < 2n — 2. Thus, part (a) follows from Lemma 4.5. The proof of (b) is similar and
the details are left to the reader.

To prove part (c), we note that vp(nt"')=nord,(n)vk(p)+n—1. If
6(S) =z nord,(n)vk(p), then

vr(Zrjx) = 6(S) +n— 1= vp(n").

It follows immediately from this inequality that the criterion given in (b) is satisfied and
that S/K has split reduction.

Corollary 4.8. Let F/K be a cyclic extension. Let T = Rll;/K(GJm’F) be the norm
torus. Then T has totally not split reduction if and only if 1 £6(T) < dim 7.

Proof. Follows from Theorem 4.6 (a) and Lemma 4.1 (b).

Let us now extend the results of 4.6 to a slightly larger class of tori, the tori of the
form Sy, /M, where M /K is a finite extension.



206 Liu and Lorenzini, Fibers of Néron models

Proposition 4.9. Fix an algebraic closure K of K. Let M < K be a finite exten-
sion of K. Denote by F' the compositum FM in K. Let S/K be the quotient torus
(Rr/kGm,r)/Gmk. Let V := (Rpi /G, ')/ Gmm- Let &' |Oy and 9| Op be the Néron
models of Syr and V.

(a) Assume that either F /K or M /K is Galois. Let r := [F : K|[M : K]/[F' : K]. There
is a natural exact sequence of group schemes

O—>G,:;,1V,—>SM—>Vr—>O.

(b) The map Sy — V' in the above exact sequence induces a homomorphism
DO(Syr)ops — ©(V)" which, when composed with any projection to ®(V), is an isomorphism

tors

O(Sy)yre ~ D(V) = Z/[F' : M]Z.

tors

(c) Let q be a divisor of [F' : M]. An element ¢ of ®(V') of order q lifts to an element
of Vi of order q if and only if a preimage of order q of ¢ in ®(Sy) lifts to an element of &,
of order q.

(d) Assume that F /K is tamely ramified. Then Sy;/ M has split reduction.

(e) Assume that M /K is tamely ramified. If either [M : K| = [F : K] or S has split
reduction, then Sy /M has split reduction.

Proof.  Consider first the following general argument. Let D = € F; be a direct

I<i<r
sum of finite separable M-algebras with F; a domain for all i. Let U be the quotient torus
Rp/y(Gm,p)/ G, m- The scheme Spec D is the disjoint union of the Spec F;’s. Thus

RD/M(Gm,D): H RE/M(GI”'l,E)‘

1<i<r

Let S; = (Rp/pGm,r;)/Gm,m- We have a canonical commutative diagram

(17) 0 — Guu —— Rpm(Gup) — u — 0

)| | |

0 — G3’;’,M B— RD/M(GM,D> — I Si — 0,
1<i<r

where A is the diagonal morphism. This leads to an exact sequence

(18) 0—=Gy—U— [I Si—0,

1<i<r

where the first term of the sequence is identified with Coker(A). To prove (a),
let D:=F®xM. Then Sy, = U. Our hypothesis on F/K and M /K insures that
r=[F:K|[M:K]/[F': K] and that F; ~ F' for all i < r. So S; ~ V and part (a) is proved.

To prove (b), we first note that it follows from Proposition 4.2 that the complexes
of component groups associated to both horizontal lines in (17) and to (18) are exact.
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Let n; := [F;: M], so that ®(S;) can be identified with Z/n;Z. Let us also identify

d)(RD/M(Gm D)) with Z". Then the exact sequence of groups of components associated
with the second line in (17) becomes

0 — (G}, ) — PRpm(Gmp) — I ®S) — 0

1<i<r

0 —— 7" -, Z7" L I Z2/miz — 0,
1<i<r
where o is defined by a(ay, ...,a,) := (a\ny,...,an,) and f is the canonical surjection. Let

no := ged{n;}, <, <, One checks easily that the map ®(U),,; — [[DP(S;) can be identified
i
with the canonical map Z/ngZ — [] Z/n;Z. Now take again D := F ® ¢ M and we get

1<i<r

part (b).
(c) Let %,,/ Oy be the Néron model of G, »r/ M. Consider the commutative diagram

@) —— (L) —— )

| L]

Gk —— K —— W
(G m)' ™ —— B(Sy) —— O(V)".

The three columns in the diagram are exact. Proposition 4.2 shows that the three rows are
also exact. Part (c) is then easily derived from the fact that (gfjh L) Vs [F' . M]-divisible.

(d) Assume that F/K is tame and, hence, Galois. Then [F': M| divides [F : K]. It
follows from (b) that the p-part of ®(Sy,) is trivial and, thus, Sj; has split reduction (4.4
and 1.5).

(e) Assume that M /K is tame and, hence, Galois. Let n:= [F : K] and m := [M : K].
Using (d), we may assume that p|n. To prove (e), it is sufficient, according to (c), to show
that 7/ M has split reduction.

Recall that ¢ denotes an uniformizing element of F. Let m; := [F’ : F], which divides
m and let n; := [F': M], so that nm; = mym. Then tp := t'/"™ and 7y, := n'/™ are uni-
formizing elements of F’ and M, respectively. Using 4.7, we find that V7" has split reduction
if and only if 77,7} is an n-th power in Op /7y Or. Clearly, tyim;} = (t"n_l)l/ ™ Since the
formal group 1+ 5/ O is g-divisible for any integer ¢ prime to p, we find that so is the
group (O /mprOp:)”. Tt follows that ¥ has split reduction if and only if "z is an n-th
power in (Op/ /7y Op:)" or, equivalently, if

e O+ myOp) = O2(1 + 1505,
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Note now that "z~ ! € O (1 + tOr) = OF'(1 + tOF). If m = n, then m; = n; and
t"n e OF (1 + tOF) < OFH (14 3! Op)) € OFF(1 + L Op).

Hence, V has split reduction. Assume now that S has split reduction. Then 4.7 implies that
t"n~1 e O (1 + nOp). Thus "z~ € O (1 + 17" O:) and V also has split reduction.

Corollary 4.10. Let M /K be a finite Galois extension. Then Sy has totally not split
reduction if and only if 1 < 6(Sy) < dim Sy,.

Proof.  Proposition 4.9 (a) implies that 6(Sy,) = ré(V) and
dim Sy =rdim V + (r —1).

So 1 £0(Sy) = dim Sy, is equivalent to 1 < (V) < dim V. Theorem 4.6 applied to V
implies that 1 <J(}) < dim V is equivalent to J having totally not split reduction. We
conclude the proof using Proposition 4.9 (c).

Corollary 4.11.  Let S be the quotient torus (Rp/xGm,r)/Gm k. Then Sy /M has split
reduction over any tame extension M /K such that [M : K| = dim S + 1.

Proof.  Follows from 4.9 (e).

Remark 4.12. Let S/K be as in 4.6. The identity component Vko of Y can be
explicitly described. Let W, /k denote the Witt group of dimension r. The main argument
in the proof of Théoréme 2.1 in [K-S] shows that

ka = H Wriv

1<ign—1,(i,p)=1

where r; := min{r|p” = n/i}. It is interesting to note that the structure of %, depends only
on [F : K], while that of %, depends strongly on the extension F/K itself.

Remark 4.13. Consider the torus S as in Theorem 4.6, with F/K defined by
the equation P 4+ aP +7=0. By construction, the group ®(S) is cyclic of order p2.
The reduction of S is not totally not split but it is not split either. Note that
0(S) = vr(p) +p> +p— 1 when vp(p) is large. Thus J(S) is not bounded by a constant
depending only on the dimension of S, even though the reduction of S is not split.

Remark 4.14. The class of tori for which a statement such as Theorem 4.6 holds can
be slightly enlarged as follows. Indeed, there are situations where the quotient torus S/K of
4.6 is isogenous, but not isomorphic, to other tori S’/K. Hence, it is natural to ask about
the splitting property of such tori S’. It turns out that in some situations, it is always pos-
sible to find an isogeny between S and S’ of degree prime to p. Thus, Proposition 1.11 can
be applied and S/K has split reduction if and only if S’/K has split reduction. We thank
Bas Edixhoven for the proof of the following lemma.

Lemma 4.15. Let T/K be a torus with Gal(K/K) acting on X(T) through a finite
cyclic group {a). Assume that the minimal polynomial f (x) of the image of ¢ in Aut(X(T))
is irreducible and equal to the characteristic polynomial. Let T'/K be any torus isogenous
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over K to T. Then there exists an isogeny (defined over K) between T and T' of degree prime
to p.

Proof.  Let R denote the ring Z[x]|/(f). Since f'is a cyclotomic polynomial, we find
that R is a Dedekind domain. The Galois action endows X (7') with the structure of a
locally free R-module of rank 1. The set of isomorphism classes of such modules is in
bijection with the ideal class group @ (R) of R ([New], II1.13). The group %(R) is generated
by finitely many maximal ideals M}, ..., M, of R. Let (/;) :== M; n Z. The set of generators
can always be chosen such that /; + p, for all i =1,...,r. Two tori T and T’ isogenous
over K correspond to two ideal classes of R. Two such ideal classes become equal in the
class group of R[1//;---/]. Hence, there exists an isogeny over K between 7 and 7" of
degree /" - - -/, for some a; € N.

The above lemma applies for instance to the case where L/K is a Galois extension
of degree p and the class group of the cyclotomic field Q(&,) is not trivial. Then there
exists a torus 7'/K, not isomorphic to 7 := R} /xk©m, and such that 7} = (G271, and
®O(T') =~ Z/pZ. Two such tori are isogenous through an isogeny of degree prime to p
and have thus the same splitting properties.

Remark 4.16. Let 7/K be a torus. It is natural to ask whether there is a relationship
between the type of splitting of the Néron model of T and the type of splitting of the Néron
model of the dual of T. We give an example below of a torus 7 whose Néron model 7 is
split and whose dual S has a non-split Néron model <. Let p = 3. Consider the norm torus
T := R}/KGm,p, defined by a non-Galois cubic extension F'/K with 3 < vp(ZF/g) < 4. Let
S := T". Then % is not split (4.1 and 4.6) while 7 is split because ®(7") = 0, as shown in
our next proposition.

Proposition 4.17.  Let F/K be a finite separable extension with Galois closure L/K,
and F £ K. Let A := Gal(L/F) and I" := Gal(L/K). Let T := R};/KGM,F be the norm torus
with Néron model 7 | Og. Then:

(1) 70 is unipotent and ®(T) is a finite group killed by [L : K|, canonically isomorphic
to the cokernel of the map A™® — T (where T*® := T'/[[", T]).

(2) If T is abelian, then ®(T) =~ T.

(3) Assume that T is not abelian and is the semi-direct product of A and a normal cyclic
subgroup H of prime order. Assume that A is abelian, and that gcd(|A|,|H|) = 1. Then
d(T) = {0}.

(4) Let S denote the dual torus of T. Then S is isomorphic to T if and only if F/K is a
cyclic extension.

Proof: Denote N = X(T). Let us consider the long exact cohomology sequence
associated to (9):

D We thank the referee and X. Xarles for providing us with sharpened versions of the original statement of
this proposition.
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0— 7 — (Z[F/A)" — NT = H\(T,2)
— H'(I, Z[T/A)) — H'(T,N) — H*(T",.Z) > H*(T', Z[T/A)).

Recall that since Z is endowed with the trivial action, H'(T',Z) = Hom(T', Z) = {0}. On
the other hand, one checks that (Z[['/A])" = (220:)Z. Thus we find that N I'= {0}. It fol-

lows from [N-X], Theorem 1.3, that 7, is unipotent. It follows then from [Xar], Corollary
2.19, that ®(T) is finite and isomorphic to Homz (H'(I', N), @/Z). Then |I'| = [L : K] kills
H'(T', N) ([Ser], VI, §7, Prop. 6).

Eckmann-Shapiro’s lemma provides a canonical isomorphism
H(T,Z[T/A]) ~ H'(A, Z)

foralli > 1.So HY(T',Z[T'/A]) ~ H'(A,Z) = 0. Thus H'(T", N) is isomorphic to the kernel
of h. By the same lemma, H'(T", N) is isomorphic to the kernel of H?(T, Z) Res H*(A, 7).
Recall that when i > 0, H(T', Q) = {0} since multiplication by |['| is an isomorphism on Q@
and H'(T, Q) is killed by |T'| ([Ser], loc.cit.). Thus the exact sequence

0-7Z-0—-0Q/Z2—0

induces an isomorphism H'(I", Q/Z) — H*(T', Z) for any finite group I'. Hence, H'(T', N)
is isomorphic to the kernel of H!(I",Q/Z7) R g '(A,@/Z). Or equivalently to the kernel
of Hom(I', @/Z) — Hom(A, Q/Z). Dualizing this last map finishes the proof of Part (1).

To prove (2), observe that when I' is abelian, then A is trivial since /K is already Galois.

To prove (3), note that since I'/H ~ A is commutative, |H| is prime and I' is not
commutative, we have [I',I'] = H. Thus Hom(I'/H,Q/Z) — Hom(I", Q/Z) is an isomor-
phism. By assumption, the composition A — I' — I'/H is an isomorphism. This implies
that Hom(I", @/Z) — Hom(A, Q/Z) is an isomorphism, so that A* — I'® has trivial
cokernel.

To prove (4), we need only to show, in view of 4.1 (b), that if S and 7 are isomorphic,
then F/K is cyclic. From 4.4 (b) and part (1), we know that

|D(S)| = [F : K] = [T|/|A] = [T*°|/|A™].

Thus, [I',I'] = [A, A], which implies that A is a normal subgroup. Hence, A is trivial, and I’
must be cyclic of order 7.

Remark 4.18. Consider a finite separable extension F/K. The torsion subgroup of
S(K), where S = Rp/k (G, r)/ G k, is easy to compute. Indeed, a point in S(K) has order
m > 1 if and only if there exists y € F*\K* such that y” € K* and y? ¢ K* for all proper
divisors d of m. The reduction of such a torsion point can also be determined. For instance,
when [F : K] = p, we find that S(K),,,, is trivial or is generated by an element Q of order
p- When S(K),, is not trivial, Q reduces to a generator of ®(S) if F = K(«) with o € Uk
and v(a”) prime to p, and reduces to the identity in ®(S) if F = K(a) with o” € O¢. In the
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latter case, Q may reduce to the identity element of #;. This is the case when o? = 1 4 7y,
with d large enough and u € (.

5. Explicit Néron models

Let L/K be a cyclic extension of degree p. Let T = Ri / x Gm be the norm torus. Since
the torus 7 can be given by an explicit equation, one may hope that its Néron model may
also be described in some explicit way. We show below in Proposition 5.6 that, indeed, the
Néron model 7 /(Uk of T /K can be described by a single equation, and that, surprisingly,
this equation can be written down in a simple way. Using this equation, we give a direct
proof that ﬂ'ko =~ Gg_l (4.12), and that J} is not split if and only if the Swan conductor
o(T) of Tis equal to p — 1 (4.8).

To construct the Néron model .7 /O, we first construct explicitly a smooth model %
of T (not necessarily a group scheme) having the properties of Proposition 5.1 below. It
follows then from 5.1 that % is the Néron model of T.

Proposition 5.1. Let Ok be a strictly Henselian discrete valuation ring. Let G be a
smooth algebraic variety over K admitting a Néron model of finite type 4 over Ug. Let 4’ be
a smooth model of G over Uk such that:

(@) The canonical map 4'(Ug) — G(K) is surjective.

(b) The number of connected components of 9, is less than or equal to the number of
components of Y.

Then %' is isomorphic to 4.

Proof. By the universal property of the Néron model, the isomorphism %; — %k
extends to a birational morphism f: %' — %. Since %(0k) — % (k) is surjective, property
(a) implies that fi: 9 — % is surjective. For any generic point ¢ of %, there exists
n €f~1(&). Since % is normal, f'is an isomorphism at 5. So property (b) and the surjectivity
of fimply that f'is an isomorphism at any one-codimensional point of %’. According to the
Theorem of van der Waerden (¥ is regular), the exceptional locus of the birational mor-
phism f'if either empty or pure of codimension 1 (see, e.g., [Mum], II11.9, Proposition 1).
In our case, it must be empty. Hence, fis an isomorphism.

5.2. Let L/K be any extension of degree p. A uniformizing element 7 of L satisfies
an Eisenstein equation

(19) = sitP ! pst? e (<), =0
with 5; € 0k and v(s,) = 1. Set 5o = p so that the different of the extension L/K is given by

0u(P1yx) = | min_ {pols) +p— 1~}

(see, e.g., [Ser], p. 67). Note that when L/K is Galois, then v, (2 /x) = (p — Vv (o(t) — 1),

where ¢ is any generator of Gal(L/K) ([Ser|, p. 72). Therefore, v (Zr/k) is
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divisible by p—1 in this case. Let 0 <m <p—1 be the unique integer such that
ve(Z1/k) = po(sm) +p — 1 —m. Let

ri= (v(sm) —m)/(p—1).
Recall that (4.5) the Swan conductor 6(7) of T'is
HT) =vr(Zrix) = (p=1) = (p = D(pr+m).
Let 7 be the norm torus R} Gy, 1. Since {1,7,...,#”~'} is a basis of L/K, T'is given by

K[X(),...’Xpil]
NL/K(l +x0+x1t+"'+xp,1ﬂ’—1) 1

T = Spec

Lemma 5.3. Let A=17Z]si,...,8,)0,-..,Vp-1] be the ring of polynomials in 2p vari-
ables. Let

B=Alul/(u’ — s + -+ (=1)"s,).

Let t be the image of u in B, and denote by N € A the norm Ng;4(yo + y1t + - -- + yprtP7h).
Then the following properties hold.

(a) N is homogeneous of degree p in the variables yy, ..., y,—1.

(b) Let 0 <j < p— 1. Then the coefficient ofy]’.J in N is s[{ and, if j % 0, the coefficient
ofygflyj is TrB/A(t-i).

(c) The coefficient ofyé‘0 . -y;”_’ll in N belongs to the ideal (psy,si,...,S,—1) if at least
two of the A;’s are not zero.

Proof. (a) is clear because N, 4(ab) = a’Ng, 4(b) for any a € A and for any b € B.
(b) It is enough to compute Ng, 4(yo + t/y;). Let
[(Z) =20 5.2+ 4 (1),
be the irreducible polynomial of #/ over 4 (p — 1 =j = 1). Then
Nia(o +ty;) = ' Nga(wo/yj + 1)
=y (=1 (=»0/3;)
=)} +sj71yg_1yj + . +sj7,,yf.
Since s;,1 = Trp/4(t) and s, = Np 4(t) = s}, (b) follows.

(c) Let p be the ideal of A4 generated by (p,si,...,s,—1). Then the image of
N in B/pB is the norm of yo+yit+---+y,.1P"" in the inseparable extension
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A/p — B/pB = A/p[u]/(u” —s,). Recall that in an inseparable extension of degree p,
Norm (z) = z? for all z. Thus

N =y 4500+ + s~ lyp ymod(p,s1,...,8-1).

We also have N =yl mod(si,...,s,-1,s,). Since in Z[s,], (s,) N (p) = (ps,), the two con-
gruence relations above imply (c).

Lemma 5.4. Keep the notation introduced in 5.2. Let
b=(1 +ao)+a1t+~~+a,,,1z”’l el, a,ekK
be such that Ny g (b) = 1. Then

(@) = r+1 ifm>0and 0 <j<m—1,
v(a;) =
’ r fm<j<p-1

Proof.  Since 0 = vy (N k(b)) = pvr(b), we have be 0. Hence, a; € Ok for all j.
According to Lemma 5.3, we have Ny k(b) = 1, with

Nk (b) = (1 +ao)” + spaf + -+ s5~'al_, + an expression in 1/,
where I = (psp,si,...,5,—1) and J := (ay,...,a,_1). Thus
(20) o((1+a0)’ =1+ spal +---+ 0~ ! 1’,’ 1)

> i .
= | min {v(s),0o(p) + 1} + min {o(a)}.
Assume that m # 0. Then, since v(s;) = v(s,,) forall0 < i < p — 1, we get

o((1+ao)’ =1+ spaf +---+s7! ay ) Zv(sy) + min {o(a)}.
1=j=p-1

If m =0, then v(s;) = v(so) + 1 for all i = 1, and we have a stronger inequality
n —1 .
2D o((1+ap)” =1+ spaf +---+s0~a) ) = v(so) + 1+ lér}lélg_l{v(aj)}.
Let 1 <jo <p—1 be such that v(a;) = mm {v(aj)} Let ¢/ :=v(p)/(p — 1). Assume
<js
first that v(ag) < €’. Then v((1 4 ao)” — ) pv(ao) and the inequality (20) becomes

(22) min {po(a) +7} 2 v(sm) + v(a)

0<]<

(recall that v(s,) = 1). In particular, pv(aj,) +jo = v(sm) + v(aj,) and, thus,

m— Jo
v(aj,) gr+p_1 .
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Substituing this inequality in (22) and using the fact that j, < p — 1 implies that, for all

pm—(p—l)(jJrl).

ey 274

This last inequality implies the statement of the lemma except when m =0 and j =p — 1.
In this case, we remark that one can substitute v(s,,) by v(s,,) + 1 in inequality (22) because
of (21), thus v(a,—1) > r—1 and v(a,_1) = r.

Now assume that v(ap) = ¢’. Then the lemma is already true for j =0 because
e’ 2 r+ m/p. The inequality (20) implies that

 min_ {po(a)) +7} 2 o(s) + vl,).
sjsp-1

If v(sy) + v(aj,) < pe’, then the proof of the lemma is the same as in the case v(ay) < e'.
Assume now v(s,,) + v(aj,) = pe’. Let 1 <j < p — 1. Then pv(a;) +j = pe’ = pr + m. Thus
p(v(aj) —r) =2m—j. So v(a;) >r if j<m and v(a) =r if m<j<p—1. Hence, the
lemma is proved.

Let 7 :=s,. The element 7 is a uniformizing element of K. Make the change of
variables

v 7YX, ifm>0and0<j<m-—1,
T, iftm<jsp-1

We have a new equation F (X, ..., X,_1) = 0 for the torus 7, with
F(X07-~-7Xpl):NL/K<1+ z n_r+1t.l"X}+ Z ni’r/%) _1
<js =jsp-1

Lemma 5.5. With the above notation, F(Xy, ..., X,_1) € n"""Ox[Xo, ..., X,—1] and
F(Xo, ..., X,_)n~ ™ = XP 4+ uX,, mod []
Sfor some u e 0.

Proof. Recall that for any i<p—1, one has ov(s;) = v(sy) = (p— Dr+m,
and v(ps,) =v(so) +1>(p—1)r+m. Let 1<j<p—1. Let 7 :=Tr (/). Then
m — s =0, and

m+ (=)= > (D) "sm,

(see for instance [BA], IV, §6, formula (26)). Thus, we see by induction that v(7;) = v(s),
and that equality holds if and only if v(s;) = v(s,). We assume from now on that m = 1.
The case where m =0 is similar and is left to the reader. Apply Lemma 5.3 with
yo=1+7n"Xy, and y; = x;, j > 0. It follows from Lemma 5.3 and from the computa-
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tion of the valuations of the coefficients of (1 + z"*!'Xy)” — 1, that the coefficients of
F(Xy,...,X,-1) all have valuation at least pr +m, and those that can possibly reach the
minimum are the coefficients of the monomials in s}’,"(n’Xm)” and njyjygfl, 1<j=sp-1
But note now that if j 4 m and v(7;) = v(su), then v(s;) = v(s,) and, thus, by definition of
m, we must have j < m. Hence, for such a j, x; = n’*1X,. It follows that the only mono-
mials of F with coefficients of valuation pr +m are s,'z" X} and Trz x(¢"")n" X,, (appearing
as a monomial of Try /x(")n" mygfl). Since 5, = 7 by hypothesis, the lemma is proved.

Proposition 5.6. Let L/K be a cyclic extension of degree p. Let T = Ri y xGm, 1 be the
norm torus. Let G(Xo, ..., X,_1) := F(Xo, ..., X,_1)n (7" Let

U = Spec Ok [ Xy, ..., X,_1]/(G).
Then U | Ok is the Néron model of T'/K.

Proof. Since Néron models commute with étale base change, we may assume that K
is strictly henselian. Keep the notation of Lemmas 5.4 and 5.5. It is easy to check that % is
a smooth model of T over ¢k and that % has p connected components. Lemma 5.4 implies
that the canonical map % ((0x) — %k (K) is surjective. Thus, Proposition 5.1 shows that %
is isomorphic to 7.

Corollary 5.7. Let L/K be a cyclic extension of degree p. Let T = Ri/KGm,L be the
norm torus. Let 7 be the Néron model of T over Ox. Then 7;° =~ GI™', and 7y is (totally)
not split if and only if the conductor 6(T') of T is equal to p — 1.

Proof- A proof of this statement without the use of an explicit equation is found in
4.12 and 4.8. Let us now give a proof based on the explicit description of the Néron model
of T. Let % := Spec Ug[Xy, ..., X,—1]/(G). Our previous proposition shows that % is iso-
morphic to 7. The identity element of T'is Xo = --- = X,_; = 0. Using Lemma 5.5, we see
that the identity component 7;° of 7 is the closed subset ¥ (z, X,,). Let Q € T(K). Let
0 € F}, be its specialization in ;. The point Q can be represented by an element

g=14+ S oW+ Y a'thelL

0=<j<m-1 m<j<p—1
with b; € Ok and Ny x(q) = 1. Write
wi=q—1=n"t"(b,+ta), forsomeoe (.

Note that the condition v(b,,) = 0 is equivalent to Q ¢ 7. The point pQ is represented by
q”. Write

=1+ X o+ S a'te

0<j<m-1 m<j=p-1

S oaMe+ Y a'te =wP +pw(l +wp), forsome fe (.
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Since the coefficients ¢; belong to ()x, we find that the v;-valuation of the left hand side is
the minimum of the v;-valuations of each summand. Recall that the conditions » = 0 and
m =1 are equivalent to 6(7") = p — 1. Comparing the v,-valuations of both sides in the
above equation, we easily see that, if r =0, m =1, and v(b,,) =0, then v(¢p) = 0. So
pOe 9',(0 is not the identity element. Thus, .7} is not split in this case. The reader will check
that, if either 6(7) >p —1 or v(b,) = 1, then v(c;) >0 for all 0 = < p— 1. Hence,
pQ = 0. In particular, in the case v(b,,) = 1, this shows that p7 =0, so that 7° ~ GZ‘I
for any (7). When 6(7") > p — 1, this shows that p.7; = 0, and thus 7 is split.

6. Abelian varieties with rigid analytic uniformization
Let A/K be an abelian variety over K. Then 4 can be uniformized as follows. There
exist a semi-abelian variety G and a lattice A in G such that the following sequence of rigid
analytic groups is exact ([B-X], Theorem 1.2):
(23) 0-A—-G—-A4—0
and G is an (algebraic) extension

0—-—T—-G—B—0

of an abelian variety B with potentially good reduction by a torus 7. Denote by &, 4, 7,
%, and .o/, the associated Néron models. The exact sequence (23) induces an isomorphism

(24) {4,9 ~ &f,?
([B-X], Theorem 2.3) and an exact sequence
0 — B(A) — B(G) — D(4)

([B-X], Theorem 4.12). Since A is a discrete group, % is locally finite over (k. Thus
A(K) ~ %i(k) ~ D(A). In particular, ®(A) is torsion free. Thus

(25) 0 — ®(G),,. — D(A)

tors

is exact. Putting (24) and (25) together with Proposition 1.4, we obtain a commutative
diagram of exact sequences

(26) 0 — fq,?,p — Yyp — q)(G)p — 0

L

0 — &/27[7 — Ay, — @(A)p —— 0

with injective vertical arrows.
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Proposition 6.1. Let A/K be an abelian variety uniformized as in (23). Then:
(a) If o is split, then so is .
(b) If ©(G), * (0) and </ is totally not split, then so is 4.
Proof. Follows from the diagram (26) and Proposition 1.4.
Let I'x := Gal(K*/K). Consider A(K*) as a ['x-module.

Proposition 6.2. Let A/K be an abelian variety uniformized as in (23). Then there
exists a canonical isomorphism

(27) AK)®@,Q0~X(T)" ®;0
of Q[[k]-modules.

Proof. For any semi-abelian variety H/K with Néron model #'/(k, we denote by
H°(K) the subgroup of points of H(K) which reduce to the identity component of ;.
Since K is complete and, hence, henselian, the reduction map induces an isomorphism
H(K)/H"(K) — ®(H). For any finite Galois extension M /K, we endow ®(H ;) with the
structure of Gal(M/K)-module via the isomorphism Hy/(M)/HY, (M) — ®(H,). The
morphisms A — G and 7T — G induce canonical maps of Galois modules

AM) 2 ®(Gy), and  O(Ty) 2% 0(Gyy).

Let L/K be a finite Galois extension such that 7 is a split torus, B; has good
reduction and Ay is constant (e.g., take L/K such that 4; has semi-abelian reduction).
Then I'kx acts on A and X(7') through the quotient I' := Gal(L/K). So it is enough to
exhibit an isomorphism of Q[I']-modules between A(K*) ®, @ and X(T)" ®, Q. The
hypothesis on L implies that «; is injective ([B-X], top of page 462) and that f; is an iso-
morphism ([B-X], bottom of page 461). Thus, we obtain a natural injection

Bl oar: AK*) — O(Ty).

By definition of a lattice, the rank of A(L) = A(K") is equal to dim 7, and, hence, equal
to the rank of ®(7,). So A(L) ®; Q ~ ®(7T.) ®7 Q as Q[I']-modules. Consider now the
evaluation pairing

T (L) x X(T)— Q

defined by (z, ) — [L : K] v, (x(2)) (we divide by [L : K] to make the pairing independent
of L). This pairing is well-defined because the image of T'(L) by y is in L* since y is defined
over L. It is clearly compatible with the action of I'. The morphism y extends to a mor-
phism of Néron models and, thus, the image of 7°(L) is in (. It follows that the pairing
factorises to a pairing

(28) ®(Tp) x X(T) = (Tr(L)/TY(L)) x X(T) — [L: K]|"'Z.
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Now it is easy to check that this pairing is perfect because 77 is a split torus. This implies
that ®(T;) ~ X(T)" ®; [L : K]"'Z. Thus the proposition is proved.

Remark 6.3. Using the injection ;' o a;: A(L) — ®(T7}), the pairing (28) induces a
Galois pairing A x X(T) — Q. This should be a generalization of the pairing in [B-X],
bottom of page 478.

Proposition 6.4. Let / be a prime different from char(K). Let T;(N) denote the Tate
module of any group N. Let A/K be an abelian variety uniformized as in (23).

(a) There are two natural exact sequences of T'g-modules

0—-T/(G)—T/(4A) - A®zZ;, — 0
and

0—T,T)— T/(G) — T,(B) — 0.
(b) Letd(A), d(B), and o(T) be the Swan conductors of A, B, and T, respectively. Then
0(A) =26(T) + o(B).
Proof. (a) The exact sequence (23) gives rise to an exact sequence of ['x-modules
0 — A(K*) = G(K*) — A(K*) — 0.
Since A is torsion free and G is /”-divisible for any n = 1, we have an exact sequence
0— G[/"] — A[/"] — AJ{"A — 0.
Passing to the inverse limit, we get the desired exact sequence (note that 7,(4) — A ®7 Z,
is surjective because G[/" "] — G[¢"] is surjective). The second exact sequence is proved in
a similar manner.
(b) Let / be a prime different from p. From part (a) we find that
0(A) =0(G) +6(A) =0(T) +J(B) +o(A).
According to the previous proposition, 6(A) = d(7T). This proves part (b).

Remark 6.5. Consider the torus S introduced in Theorem 4.6. Proposition 6.1 (a),
shows that any abelian variety 4 uniformized by such a torus does not have split reduction
if S does not have split reduction. Since we have an explicit criterion to determine whether
S is split, we thus can provide non-trivial examples of abelian varieties that are not split.

Corollary 6.6. Let A/K be an abelian variety that has potentially purely multiplic-

ative reduction with uniformization by a torus S/K as in 4.6. If A/K has totally not split
reduction, then 2 < 6(A4) < 2dim(4).
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Proof.  Since S has purely additive reduction over (), so does 4. Let L/K denote
the extension minimal with the property that A;/L has semi-stable reduction. The
extension L/K is wild since p divides |®(A4)| by hypothesis (1.9). Proposition 6.2 shows
that Gal(K*/K) acts on T,(S) and A(K*) through the same finite group. Proposition 6.4
(a) shows that this finite group is Gal(L/K). By hypothesis, S is the canonical quotient of
Rp/k G, r, where F//K is a subextension of L/K. If F' = L, then clearly p divides [F : K]. If
F /K is not Galois, then again p must divide [F : K] since L/K is totally ramified. It follows
that the group ®,(.S) is always not trivial, and we can apply Proposition 6.1 to show that S
has totally not split reduction. It follows from 4.6 (a) and 6.4 that 2 < J(A4) < 2dim(4).

Note that the case where dim(4) = 1 was treated already by direct computations in
the proof of Theorem 2.1 (see 2.5 and 2.9).

Remark 6.7. Let A4 be an abelian variety over K with Tate module 7,(A4). Denote by
p, the natural representation I'yx — Aut(7,(A4)). Let ./ be the Néron model of A over (k.
In the case where 4 is the Jacobian of a proper smooth curve C/K, the combinatorial data
associated with the special fiber (called the type of the special fiber) of a regular model of C
is enough information to completely determine the group ®(4), and most of the structure
of the scheme .. In case dim(4) = 1, the type of the special fiber completely determines
/). In this article, we have been able to exhibit in some cases a relationship between
the group structure of .oZ; and the representation p,. It is thus natural to ask whether the
representation p, plus the type of the special fiber of a regular model of C is enough
information to completely determine the group structure of .o7. In what follows, we give an
example which shows that the answer to this question is negative.

Suppose char(K) =0 and char(k) = 2. Fix an integer n = 3. Let E be an elliptic
curve with reduction type I5,. Let

y2 + (alx + Cl3)y = X3 + a2x2 + asx + ag

be the minimal Weierstrass equation of E given in Tate’s algorithm (2.9). In particular,
v(bgy)) Z2n+3 and v(bs) = 2n+4. We may choose v(a;) =1, so that v(hy) =2. Then
v(c4) =4 and v(A) =2n+ 8 > 3v(cs). Hence, E has potentially multiplicative reduction
and v(j) = —(2n — 4). Moreover, E achieves multiplicative reduction over the quadratic

extension L := K(y/—ca/cq) (see [Si2], V.5.5.3). Since v(hs) = 4 and v(bg) = 6, and since
any element of 1 + 40k is a square in (k, it is easily checked that L = K(v/b;) (see page
443 of [Si2]). Let E’ be the elliptic curve over K defined by

V4 (x4 ah)y = x4+ axx® + agx + ag

with v(aj) =2n+2. Then E’ has exactly the same type of reduction as E, with
by(E') = by(E) and v(j(E’)) = v(j). Thus, E' has multiplicative reduction over L. Lemma
6.8 below shows that the /-adic representations of E and E’ are isomorphic.

Let & and &’ be the Néron models of E and E’ respectively. We can choose a3 and d}
in such a way that the inequality v(bg + a7) > 2n + 5 is satisfied in the case of a3 but not in
the case of a}. Then & is totally not split, but & is not (see Proposition 2.11). Hence, &/ is
not isomorphic to &x.
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The exact sequence of Proposition 6.4 (a) does not determine completely, in
general, the structure of 7,(A4). However, for elliptic curves E with potentially multi-
plicative reduction, the structure of 7,(E) is well known. The proof of the following lemma
is left to the reader.

Lemma 6.8. Let E/K be an elliptic curve with additive and potentially multiplicative
reduction. Let L/K be the quadratic separable extension such that E; has multiplicative
reduction. Let j be the modular invariant of E. Let { % p be a prime, and let y,: Tx — GL(Z,)
be the cyclotomic character obtained from the action of T'x on the Tate module T;(G,,). Then
there exists a basis {&, 0} of T;(E) such that, for any t € 'k, the matrix of t in this basis is

w0 (§ 0,

where ¢(t) = 1 if T € Gal(K*/L) and ¢(t) = —1 otherwise.

In view of the main results of this paper, Theorems 2.1, 4.6, 4.9, and 6.6, it is natural
to ask the following questions. All discrete valuation fields below are of residue character-
istic p > 0.

Question 6.9. Let g > 0 and consider all the abelian varieties 4 of dimension g over
a discrete valuation field, and whose Néron model .«7 has toric rank equal to zero. Is there a
constant ¢, depending on g but not on the field, such that if the special fiber of .o/ is totally
not split, then the Swan conductor d(A) is bounded by ¢? As phrased, this question has an
obvious negative answer in general. Indeed, consider an abelian variety B/K with purely
additive reduction that is totally not split. Consider an elliptic curve E/K with additive
reduction, large conductor §(E) and such that ®(E) = {0} (take for instance y? = x* + =,
whose Swan conductor is 4vk(2)). Then the abelian variety 4 := B x E has purely additive
reduction, is totally not split, but the conductor of such an abelian variety is not bounded
by a constant that depends only on g. Hence, we are lead to ask the above question for
more restricted classes of abelian varieties. For instance, one may ask the same question for
simple abelian varieties whose Néron model is totally not split; or for the more restricted
class of abelian varieties such that the representation of the inertia group I on the Tate
module 7,(A), ¢ % p, is irreducible.

Question 6.10. Let 4/K be an abelian variety. The Swan conductor of A/K is
bounded by a constant f depending on dim(4) and on vg(p) only ([B-K], 6.2). Is there a
bound ¢ depending on dim(A4) and on vk (p) only such that, if 6(4) > ¢, then 4/K has split
reduction? Such a bound was shown to exist for a torus of the form S/K in 4.6 (c). It would
be interesting to check whether, in the known examples where the bound f'is achieved, the
abelian varieties all have split reduction.

For instance, Example 6.5 in [B-K] (see also 3.1 in [LRS]) is the case of the jacobian
A/K of the hyperelliptic curve X /K given by the affine equation y*> = x?’ — g (with p
odd). Consider the model % /(g of X /K given as the normalization of the projective curve
y2z'=2 = xP" — gzl in P?/0k. The point (0:0: 1) is singular in the special fiber, but
regular in 2. Thus the special fiber has arithmetical genus at least (p* — 1)/2, which is the
genus of X. Hence, the model 2/ is regular, with an irreducible special fiber. It follows
that the group of components of .o/ /() is trivial and, thus, 4/K has split reduction. In
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[B-K], 6.6, the first example consists of the Weil restriction R,/ (B), of the jacobian B/ M
of the hyperellipic curve given by the equation y> = x” — my;. As above, this curve has a
regular model over (U, with an irreducible special fiber and, hence, the Néron model of its
jacobian has trivial group of components. Since @k (Ry/x(B)) is isomorphic to @ (B)
([ELL], proof of Thm. 1), we find that Ry;/x(B) has split reduction.

It follows from 6.3 in [B-K] that the jacobian A,/K of the hyperelliptic curve X,/K
given by the affine equation y? = x?" — n, with p odd and coprime to r, also reaches the
bound for the conductor of an abelian variety of genus (p* — 1)/2. We believe that the
group Ok (A,) is trivial if r is odd and cyclic of order p* if r is even. Moreover, in the latter
case, A,(K) contains a torsion point of order p* which reduces to the generator of ®k(A4,).
Thus, the jacobian A4, may have split reduction in all cases. The case r = 1 is proved above,
and the case » = 2 is discussed in 3.7. We leave it to the reader to check our claim for the
remaining cases following the method of 3.7. As in [B-K], we may also consider the Weil
restriction Ry /x(B,) of the jacobian B./M of the hyperellipic curve given by the equation
y? = x? — n},. As we showed in 3.10, the splitting properties of a Weil restriction are not
well understood.

Question 6.11. Let G/K be a semi-abelian variety that does not have split reduction.

(a) Is it always possible to find a tame extension M /K such that Gj;/M has split
reduction?

(b) Does there exist a constant ¢ depending on dim(G) only such that if M /K is any
tame extension of degree at least ¢, then Gy, /M has split reduction?

Both questions have a positive answer when dim(G) = 1 or G is a quotient torus S
(see 3.3 and 4.11). Note that if the condition that M /K is tame is dropped, then the answer
to (a) is obviously positive. Indeed, take M = L, where L/K is such that G, /L has semi-
stable reduction. Then G, /L is split (1.6). Note that our assumption that G does not have
split reduction implies, at least for tori and abelian varieties with toric rank equal to zero,
that L/K is not tame (1.7 and 1.9).
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