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Introduction

Let K be a complete field with a discrete valuation. Let Ok denote the ring of integers
of K, with maximal ideal (7). Let k be the residue field of )k, assumed to be algebraically
closed of characteristic p = 0. We shall call a curve in this article a smooth proper geo-
metrically connected variety X /K of dimension 1. Let 4/K denote the jacobian of X /K.
Let P and Q be two K-rational points of X. The divisor of degree zero P — Q defines a K-
rational point of 4/K. In this article, we study the reduction of the point P — Q in the
Néron model of 4/K in terms of the reductions of the points P and Q in a regular model
%/@K of X/K

Let A/K be any abelian variety of dimension g. Denote by .o/ /(U its Néron model.
Recall that the special fiber % /k of .&//(0k is an extension of a finite abelian group
Dk := Og(A), called the group of components, by a smooth connected group scheme
</, the connected component of zero in .«%. We denote by 7 : A(K) — ./ (k) the canoni-
cal reduction map. We will often abuse notation and also denote by 7z the composition
A(K) — (k) — Dk.

In [Lor3], the author introduced two functorial filtrations of the prime-to-p part CD%”)

of the group ®@. These filtrations are key in the complete description of all possible groups
q>§g’> [Edi]. Filtrations for the full group ®x were later introduced by Bosch and Xarles in
[B-X]. An example of a functorial subgroup of ®g occurring in one of the filtrations is the
group Wk ; described below, where L/K denotes the minimal extension of K such that
A /L has semistable reduction (see [Des|, 5.15). More generally, let F/K be any separable
extension. Let @ denote the group of components of Ax/F. The functoriality property of
the Néron models induces a map y : ®x — ®p, whose kernel is denoted by Wk r.
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Given two points P and Q in X (K), it is natural to wonder whether it is possible to
predict when the reduction of P — Q in ®k belongs to one of the functorial subgroups
mentioned above. This question is not easy since even deciding whether the reduction of
P — Qs trivial is not immediate. We give in this paper a sufficient condition on the special
fiber of a model Z for the image of the point P — Q in Ok to belong to the subgroup ¥k ;.
When this condition is satisfied, we are able to provide a formula for the order of this
image. To explicitly compute this order, we exploit the fact that a natural pairing attached
to @ is non-degenerate. We also discuss cases where the image of the point P — Q belongs
to the subgroup ®[,3] of Wk 1 (notation recalled in 5.6).

1. The main results

v

Let X /K be a curve. Let /O be a regular model of X /K. Let Z; := >_ r;C; denote

i1
the special fiber of 2" and let M := ((C; - (})), ., ;. be the associated intersection matrix.
The dual graph G associated to % is defined as follows. The vertices of G are the curves C;
and, when j = A, the vertex C; is linked in G to the vertex Cj, by exactly (C; - Cp,) edges. The

degree of the vertex C; in G is the integer d; := > (C; - C;).
i+)

Let R:=(r,...,r,), so that MR=0. We assume in this paper that
ged(ry,...,r,) = 1. The triple (G, M, R) is called an arithmetical graph. When the co-
efficients of M are not thought of as intersection numbers, we may denote (C; - C;) simply
by c;. As we will recall in section 5, Raynaud has shown that the group of components
@k (Jac(X)) is isomorphic to Ker('R)/Im(M), where R:Z"—Z and M :27"— Z°
are the linear maps associated with the matrices M and ‘R. We call the group
®(G) := Ker('R)/Im(M) the group of components of the arithmetical graph (G, M, R).

Let (C,r) and (C’,r") be two distinct vertices of G. Let E(C, C’) denote the vector of
7' with null components everywhere except for r’/ged(r,r’) in the C-component, and
—r/ged(r,1') in the C’-component. Clearly, E(C, C') € Ker('R). The image of E(C,C’)
in the quotient Ker(‘R)/Im(M) will be called the element of ®(G) associated to the pair of
vertices (C, C").

Let P e X(K). Let P e 2 denote the closure of P in 2. The Cartier divisor P inter-
sects Z in a smooth point of %% (see, for instance, [L-L], 1.3). Hence, there exists a unique
component Cp of %, of multiplicity one, such that P~ 2} € Cp. Let now P and Q be
distinct points of X (K). It follows from Raynaud’s results recalled in section 5 that if
Cp = Cp, then the image of P — Q in @k (Jac(X)) is trivial, and that to determine the
image of P — Q in @ (Jac(X)) when Cp + Cp, it is sufficient to determine the image of
the vector E(Cp, Cp) in Ker('R)/Im(M). Thus, in the remainder of this article, we shall
usually assume that Cp + Cp.

1.1. Let us recall the following terminology. A node of a graph G is a vertex of
degree greater than 2. A terminal vertex is a vertex of degree 1. The topological space
obtained from G by removing all its nodes is the union of connected components. A chain
of G is a connected subgraph of the closure of such a connected component. In particular, a
chain contains at most two nodes of G. If a chain contains a terminal vertex, we call it a
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terminal chain. We define the weight of a chain % to be the integer
w(%) := ged(rj, Cj a vertex on %).

Let (C,r),(Cy,r1), ..., (Cyyra), (C',1") be the vertices on a chain % of an arithmetical
graph, with C and C’ nodes: then (C- C;) = (C;- Ciy1) = (C, - C') = 1. The reader will
check that ged(r, 1) = ged(ry,r2) = - - - = ged(ry, r'). In particular, w(%) = ged(r, ;). When
(C,r),(Cy,r1),...,(Cy,ry) are the vertices of a terminal chain, with C, the terminal vertex,
then ged(r, r1) = r,. Note that if the set of vertices on a chain consists of exactly two nodes
C and C’, it may happen that (C - C’) > 1.

Let (C,r) and (C’,r") be two distinct vertices of G. We say that the pair (C, C’') is
weakly connected if there exists a path 2 in G between C and C’ such that, for each edge
e on 2, the graph G\{e} is disconnected. Note that when a pair (C, C’) is weakly con-
nected, then the path 2 is the unique shortest path between C and C’. If a pair is not
weakly connected, we will say that it is multiply connected. A graph is a tree if and only if
every pair of vertices of G is weakly connected.

Let (C,r) and (C’,r") be a weakly connected pair with associated path . While
walking on 2\{C,C'} from C to C’, label each encountered node consecutively by
(Cy,11),(Ca,12), ..., (Cs, 1g). (There may be no such nodes, in which case the integer s is set
to be 0.) Thus £ is the union of chains: the chain %, from C to Cj, then the chain %, from
Ci to Gy, and so on. The last chain on 2 is the chain %, from C, to C’. If there are no nodes
on 2\{C, C'}, then 2 is a chain from C to C’, and if there are no vertices on 2\{C, C'},
then by definition of weakly connected, (C - C’) = 1. Let / be a prime number. We say that
the weakly connected pair (C,C’) is /-breakable if, for all i =0,...,s, the weight w(%;)
is not divisible by 7. In particular, if the pair (C, C’) is /-breakable, then each chain %;
contains a vertex of multiplicity prime to /. To study the element of ®(G) associated to the
pair (C, C'), we will break the graph G at each such vertex and study each smaller graph so
obtained individually.

Note that there is only one reduction type of curve of genus g = 1 which contains
a weakly connected pair that is not /-breakable: the type I, with / =2 and v > 0. For
examples with g > 1, see 6.6.

1.2. Let (C,C’) be a weakly connected and /-breakable pair. Let 2 denote the as-
sociated path between C and C’, with nodes (Cy,r1),...,(Cyry). If s =0, set A(C, C’) := 1.
If s > 0, define A(C, C') as follows. Remove all edges of 2 from G to obtain a disconnected
graph 4. Let %;, i = 1,...,m, denote the connected components of ¥. Let us number these
connected components in such a way that the node (C;,r;) on the path 2 belongs to the
graph %;. Let

m; := ged(ry, (Dj,r;) a vertex of %;)
and let A(C, C’) denote the power of / such that

ord/(A(C, C")) := max{ord(r;/m;), C; a node on 2}.
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1.3. Recall that a finite abelian group H can be written as a product H =~ [[ H,.

/ prime
The group H, is called the /-part of H. Let h be an element of H of order m. We call
the /-part of h the following element /i, of H. If / ¥ m, then h, is trivial. Otherwise, write

1= S am/°%" Then set hy := ho™/**""” The reader will check that the element
/ prime

h, does not depend on the choice of the coefficients ¢,. We may now state the main results

of this article.

Theorem 5.5. Let X /K be a curve. Let '/ Ok be a regular model of X /K with asso-
ciated arithmetical graph (G, M, R). Let / + p be a prime. Let P,Q € X (K) with Cp % Cp.
If the pair (Cp, Cp) is weakly connected and /-breakable, then the image of the /-part of
P — Q in ®k(Jac(X)) belongs to Yk, 1, and has order (Cp, Cp).

Theorem 6.3/6.4. Let X /K be a curve. Assume that L/K is tame. Let X /Ux be a
regular model of X /K with associated arithmetical graph (G, M, R). Let P, Q € X(K) with
Cp * Cy. If the pair (Cp, Cp) is weakly connected but not /-breakable for some prime ¢ + p,
then the image of P — Q in ®g (Jac(X)) does not belong to Yk .

Note that Theorem 6.3 is only a partial converse to Theorem 5.5 since 6.3 provides
information only on the image of P — Q and not on the image of the /-part of P — Q.

1.4. Recall that the connected component .7 of the Néron model .« /( is the ex-
tension of an abelian variety of dimension ax by the product of a torus and a unipotent
group of dimension fg and ug respectively. The integers ag, tx, and ug are called the
abelian, toric, and unipotent ranks of A4/K, respectively. For each prime 7 dividing [L : K],

/= p, let K,/K denote the unique subfield of L with the property that [K,: K]=/°d/(L:K]),
An abelian variety has potentially good reduction if t; = 0. It is said to have potentially
good ¢-reduction if tx, = 0. An abelian variety with potentially good reduction has poten-
tially good /-reduction for all primes # + p, but the converse is false, even when p = 0.

We shall say that an element s of a group H is divisible by ¢, or is /-divisible if
there exists g € H such that /g = h. Note that the /-part /1, of /i is /-divisible if and only if
h is /-divisible.

Theorem 7.2. Let X /K be a curve. Let { % p be a prime. Let P, Q € X (K). Assume
that Jac(X)/K has potentially good /-reduction. Then ¥ 1, = ®x(Jac(X)),. If the (-
part of the image of P — Q in Ok (Jac(X)) is not trivial, then P — Q is not divisible by ¢ in
Jac(X)(K).

This article will proceed as follows. In the next three sections, we prove several
propositions on arithmetical graphs needed to compute the order in @k of elements of the
form (P — Q). In particular, we introduce in the third section a very useful pairing on
Ok x Ok that is non-degenerate. These first three sections are linear algebraic in essence
and can be read independently of the rest of the paper. In the fifth section, we prove the first
theorem stated above. In section six, we discuss a partial converse to this theorem. In the
last section, we study the case where the jacobian has potentially good /-reduction and
prove Theorem 7.2.



Lorenzini, Néron model of a jacobian 121
2. Terminal chains

Let (G, M, R) be an arithmetical graph. As the reader may have noted, it is not easy
in general to compute the order of the group ®(G), or the order in ®(G) of a given pair of
vertices of G. There is no easy criterion to determine in terms of G whether, for instance,
|®(G)| =1 (see, however, 6.5 and 3.3). When the arithmetical graph is reduced, that is,
when all its multiplicities are equal to 1, such a criterion exists: ®(G) is trivial if and only if
G is a tree. We provide in this section a sufficient condition on a pair (C, C’) for the image
of E(C,C’) to have order 1 in ®(G). When the arithmetical graph is reduced, a necessary
and sufficient criterion already exists. Indeed, it is shown in [Lor4], 2.3, or [Edi2], 9.2, that:

Proposition 2.1. When G is reduced, the image of E(C,C") has order 1 if and only if
(C, C") is weakly connected.

We shall see below that even in the general case, it is possible to show that certain
weakly connected pairs have order 1. After a series of preliminary lemmas on chains, we
prove in 2.7 the main result of this section, that E(C, C’) is trivial if C and C’ both belong
to the same terminal chain. The case where C and C’ are consecutive vertices on a chain is
easy and is treated in the following lemma.

Lemma 2.2. Let (C,r) and (C',r") be two vertices of an arithmetical graph (G, M, R)
Jjoined by a single edge e. Assume that G\{e} is disconnected. Let G¢ denote the connected
component of G\{e} that contains C. Let s := ged(d, (D, d) vertex on G¢). Then the image
of E(C,C'") in ®(G) is killed by gcd(r,r")/s. In particular, if C and C' belong to the same
terminal chain, then the image of E(C, C') is trivial.

Proof.  Multiply each column of M corresponding to a vertex (D,d) of G¢ by
d/s. Add all these columns to the C-column multiplied by r/s. The new matrix has the
vector (—ged(r,r)/s)E(C,C’) in the C-column. Hence, (—ged(r,r’)/s)E(C, C’) belongs
to Im(M) and is thus trivial in ®(G). If C and C’ belong to the same terminal chain, we
may without loss of generality assume that G¢ contains the terminal vertex of the chain.
The terminal vertex has then multiplicity s, which equals ged(r, r’).

23. Let n=1. Let (C,r),(Cy,r1),...,(Cyyry), (C',r") be the vertices on a chain
of an arithmetical graph. Letting —c; denote the self-intersection of C;, we obtain an
(n x n) matrix N and a relation:

—c; 1 0 0 r _y
I —c 1 : ) 0
N:=1| o 1 0 and N| =1 :
: ' —Cn_1 1 In—1 0
0 ... 0 1 —¢ i =1
If C, Cy,...,C,is a terminal chain with terminal vertex C,, then

(riy...,1;n)N = (=r,0,...,0).
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It is possible to find a sequence of integers b; = 1, b», ..., b, such that
(by,...,by) - N=1(0,...,0,—b)

for some b € Z. Indeed, set by = 1 and solve for b, in the above equation. Once b; and b,
are known, then it is possible to solve for b3, and so on.

Lemma 2.4. We have br, =r+ b,r'. When the chain (C,r),...,(Cy,r,) is terminal
with terminal vertex C,, then br, = r.

Proof. Compute (by,...,b,) - N -'(r1,...,r,) in two different ways.

Let us note there that the integers by = 1, b,, ..., b,, b are all positive. Indeed, if b < 0,
then br, =r+ b, <0 implies b, <0. If b; <0 for some i, then the equality
biri_y = r—+ b;_ir; implies that b;,_; < 0, which is a contradiction since b; > 0.

2.5. The sequence (Cy,r1),(Ca,12),...,(Cp,1n), (C', ') is also a chain, with asso-
ciated matrix N!!, the principal minor of N obtained by removing the first row and first

column of N. Let d; = 1,d>,...,d,_1, d denote the integers associated to N'! such that

(d,d,...,d_) )N =(0,...,0,—d).

Let
-1 0 d d ... d,. 1 0 0 ... 0
0O by by by ... b,
0 1 0 ... 0
A=\ . , and N':= N
: 0 O 1 :
: .0
o o ... ... 0 1

The matrix AN’ is an (n + 1) x n matrix. Using operations involving only the columns of
AN’ it is easy to see that AN’ is equivalent over Z to the following matrix (we shall say
that AN’ is ‘column equivalent’ to):

0 0 0 —d
0o 0 ... 0 —b
1 0 0 ... O

0 S

: 10 0

0 0 1 0

Set dy = 0.
Lemma 2.6. Let (C,r),(Cy,r1),...,(Cy ) be a terminal chain of an arithmetical

graph. Then det(N) = (—1)"r/r,. Moreover, r divides r:b; — b;r;, for all i % j, and
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r Vibj—bﬂ’j . . ..
—=———2 foralli+j, 1<i,j<n.
r Vidjfl _diflrj f / /

In particular, b,ry/r, is congruent to 1 modulo r/r, and gcd(b,,r/r,) = 1.

Proof. Recall that, with the notation introduced above, we have

(riy...,rp)N =(-r,0,...,0),
(bla"'vbn)N: (0>"'707_b)7
(O, dr,....di)N = (d,0,...,0,—d).

Recall also that 51 = d; = 1, and that since the vertices form a terminal chain, Lemma 2.4
shows that b = r/r, and d = r /r,. It is easy to check that r, = ged(r, ) and that r, divides
all rj.

Let N*:=((4)),.; =, denote the comatrix of N: N*N = NN*=det(N)I,.
Multiply both sides of the three equalities above by ((a,])) We find that

det(N)rj = —a;ir foralli=1,...,n,
det(N)b; = —a; ,b foralli=1,...,n,
det(N)d; = aj11 — aip10d foralli=0,...,n—1.
In particular, det(N)r, = —a, 17 = (—1)"r. It follows from the three equalities above that
ribj —1;bi = 1y(ai 1), — a;1a;,),
(ridi—y — ridi_1)r = ry(aiajn — aj1a;n)r1-

From the equality (r;b; — rib;)r1 = (ridi—1 — rjdi—1)r, we find that r|r;b; — r;b;. This con-
cludes the proof of Lemma 2.6.

As a corollary to our study of the properties of the matrix N, we may now prove the
following result.

Proposition 2.7. Let (G, M, R) be an arithmetical graph, and let
(C,I"), (C17r1)7 ) (Cn)rn)
be a terminal chain of G. Then E(C;, ;) is trivial in ®(G), for all i,je {1,...,n}, i * j.

Proof. The matrix M has the form

* Id;

M = . . Let A= A4 |,
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where 4 is as in 2.5 and, if v denotes the number of vertices of G, then s := v — n — 1. Then,
using 2.5 and the facts that d =r;/r, and b =r/r,, the reader will check that A'M is
column equivalent to a matrix of the form

* ok
x |0 ... 0 —ri/r
110 ... 0 —r/n

1 0

0o

1 0

The transpose of the vector A'E(C;, C;) has the form (if i < j):

1
—(0,...,0,&’,‘,1}’]‘ —Cl’l',ll’i,b[}’j —r,-bj,O,...,O,+rj,0,...,0, —r,-,O,...,O)

I'n

(where the first s coefficients are 0). We claim that A’E(C;, C) is in the span of the
last n columns of the matrix A’M. To prove this claim, it is sufficient to show that

1
a(d,-,lrj — dj_yr;, birj — r;b;) is an integer multiple of (—ri/r,, —r/r,), which follows im-

mediately from Lemma 2.6. Since A’ is invertible over Z, A'E(C;, C;) is in the span of 4’ M
if and only if E(C;, C)) is in the span of M. Hence, E(C;, C;) is trivial in ®(G).

We conclude this section with a key lemma used in the next sections.
Lemma 2.8. Let (C,r),(Ci,r1),...,(Cy 1) be a terminal chain. Then

1 1 1 by

cee
rry rir I'n—1rs rry

Proof. We proceed by induction on n. If n =1, Lemma 2.8 holds since b = 1. By
induction hypothesis applied to Cy, ..., C,,

1 1 dy_y

+ -+ .
rr Tn—1tn rry

Lemma 2.6 shows that r/r; = (r1b,—r,b1)/(r1d,—1 —dor,). In other words, d,_ir = r1b,—r,.
Dividing both sides by rr;r, shows that

3. Computations using a pairing attached to ®

3.1. Let us introduce in this section a pairing associated to ®(G). Let (G, M, R) be
any arithmetical graph. Let 7,7’ € ® and let 7, T’ € Ker('R) be vectors whose images in ®
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are 7 and 7/, respectively. Let S, S’ € Z° be such that M'S = nT and MS’ = n'T’. Note that
n and n’ are divisible by the order of 7 and 7/, respectively. Define

Gy dxd—Q/7Z,
(r,7") — ('S/n)M(S'/n’") (modZ).

It is shown in [B-L], 2.1, that this pairing is well-defined and perfect (i.e., that if {z; u)> =0
for all 4 € @, then 7 = 0).

Let (C,r) and (C',r") be a weakly connected pair with associated path #. While
walking on 2\{C,C’} from C to C’, label each encountered vertex consecutively by
(C1,11),(Cay12),...,(Cy,1,). The following proposition is proved in [B-L], 2.4.

Proposition 3.2.  Keep the notation introduced above. Assume that (C, C') is a weakly
connected pair of G. Let y denote the image of the element E(C,C") in ®(G). If (D, s) and
(D', s") are any two distinct vertices on G, then let & denote the image of E(D,D’) in ®(G).
Let C, denote the vertex of 2 closest to D in G, and let Cg denote the vertex of 2 closest to
D'. Assume that o. < . (Note that we may have o = [, and we may have D = C, or D' = Cg.)
Then

;0 = lem(r, ') lem(s, 8") (1 /royrosr + 1/ Fapitasa + -+ 1/rp_11p).
In particular, if C, = Cg, then {y;0) = 0. Moreover,
yy = lem(r, r) (1 iy + 1/rrs + -+ k).

The existence of this explicit perfect pairing has the following interesting
consequences.

Proposition 3.3. Let (G, M, R) be any arithmetical graph. Let ¢ be any prime. Let
(C, C') be a weakly connected pair such that ¢ ¥ rr'. Let Tt denote the image in ® of E(C,C").
Then the order of the /-part of T is greater than or equal to the maximum of the /-parts of
the weights w(%), where € is a chain on the path from C to C'. In particular, if (C, C') is not
(-breakable, then the {-part of T is not trivial in ©.

Proof.  Let % be any chain on the path # in G linking C and C’ (see 1.1). Let (D, d)
and (D', d") be two consecutive vertices on €. Recall that w(%) = ged(d,d’). Let 7’ denote
the image in ® of E(D, D’). Then Proposition 3.2 implies that

(ryt'y = lem(r,¥') lem(d,d")(1/dd").

Since 7 yrr’, {t;7’) has order ged(d,d’) in Q,/Z,. Thus, the /-parts of r and ¢’ have
orders at least equal to the /-part of ged(d,d’).

By definition, when (C,C’) is weakly connected and not /-breakable, the path 2
contains a chain % with consecutive vertices (D,d) and (D’,d’) such that ged(d,d’) is
divisible by 7. Thus, in this case, the /-parts of 7 and 7’ are not trivial in ®. Note that
it follows from Lemma 2.2 that ord,(z') = ord,(ged(d,d")).
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The arithmetical graph I;,, occurring as a type of reduction of elliptic curves, pro-
vides an example of a pair (C, C’) where the /-part of 7 is equal to the maximum of the /-
parts of the weights w(%).

Proposition 3.4. Let (G, M, R) be any arithmetical graph. Let
(C7 I"), (C17r1)7 tey (Cnvrn)

be a terminal chain T of G, with node C and terminal vertex C,. Then the image t of
E(C,C)) in ®(G) is trivial for allj = 1,. .. n.

Proof- Since the pairing {; ) is perfect, it is sufficient, to show that 7 = 0, to show
that {r;0) = 0 for all ¢ € ®(G). Let ¢ denote the image in ® of E(D, D’), where D, D’ are
any vertices of G, of multiplicity rp and rp.. If neither D nor D’ belong to the terminal
chain T, orif D = C and D’ ¢ T, then Proposition 3.2 implies that {z; ) = 0. Assume now
that D = C; and D' % C;, for all s =1,...,n. Let m = min(i, j). Then, using 3.2 and 2.8,
we find that there exist two integers b and ¢ such that

<r;o>zlcm(r,rj)lcm(r,-,rly)< ! +...+L)

Tmlm—1 nr

b c
= lem(r, r;) lem(r;, rp/) (Wn ern) .
Since r,|r;, we have lem(r,r;)lem(r;, rp)b/rr, =0 in Q/Z. If m =i, then we use the fact
that r,|r to find that lem(r,r;) lem(r;, rpr)c/rir, =0 in Q/Z. If m =j, we use again the
fact that r,|r; to find that lem(r,r;)lem(r;,rpr)c/rjr, =0 in Q/Z. Thus, in all cases,
{t;6) = 0. If D= C; and D’ = Cy, Proposition 2.7 shows that ¢ = 0. This concludes the
proof of Proposition 3.4. The reader may use the techniques developed in the above proof
to give a different proof of Proposition 2.7.

Remark 3.5. Let (Cy,r), (Cy,12), and (D,r), be three vertices on an arithmetical
graph (G, M, R). Then

n ng(l", rl)
ng(Vz, I"])

ri ng(V7 V2)

E =
rE(C, ) ged(rp, 1)

E(Cy,D) + E(D,G).

If 7 y rrirp, we find that the order of the /-part of E(Cj, C;) divides the maximum of the
orders of the /-parts of E(Cy, D) and E(D, C,).

If C, and C; belong to the same terminal chain of G and if 7 ¥ ryr,, we find, using 2.7
and 3.4, that the orders of the /-parts of E(C, D) and E(C,, D) are equal.

3.6. If (D,r) is a node and (C,,r,) and (C,,,r,,) are terminal vertices on two ter-
minal chains attached to D, then we shall call (C,, C,,) an elementary pair. In the case of an
elementary pair, both r, and r,, divide r and we find that as vectors in Z*,

r
-  E(C, C')=E(C,D E(D,C’).
lem(r,, 7)) (G, C) (Cn D) + E(D, Cy)
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Using Proposition 3.4, we see that E(C,, C,,) has order dividing r/lem(r,,r,,). We shall
compute below the precise order of such a pair of vertices.

Let (C,C’) be any pair in a graph G, and let 7 denote the image of E(C, C’) in ®.
When the pair (C, C’) is weakly connected, the perfectness of the pairing < ; ) reduces the
sometimes difficult computation of the order of 7 in ® to a series of easier computations.
Indeed, the perfectness of the pairing implies that the order of 7 is equal to the maximum of
the orders of the elements of @Q/Z of the form <z; ), where u ranges over all elements of
®. Since {t;u) is very easy to compute when (C, C’) is weakly connected, the order of 7
can be easily computed. We illustrate this technique in our next proposition.

Consider the following elementary pair (C,, C,,). Let (D, r) be a node of the graph G.
Let (D,r), (Cy,r1),... (Cn,rn) be a terminal chain 7" on G with terminal vertex C,. Let
(D,r), (C{,1}),..., (Cn,, 1)) be a terminal chain 7’ on G with terminal vertex C,,. Let Gp
denote the connected component of D in G\{edges of T u T’}. Let

m := ged(ry, (D;, r;) any vertex of Gp).
Note that m|r. We know from the relation MR = 0 that |D - D|r = r; + r| + z, for some

integer z divisible by m. Let 7 € ®(G) denote the image of E(C,, C,,). It follows from
Proposition 3.2 that

(t;t) = lem(ry, r,’l,)z(l/rnrn_l + e+ U+ U 44 1 ).

Let {by,...,b,} denote the sequence of integers associated in 2.3 to the terminal chain 7.
Lemma 2.8 shows that

(/rarp—y + V/rnoity—n + - -+ 1/rir) = by /rry.
Lemma 2.6 shows that b, and r/r, are coprime. The same arguments show that
(U rprwa 4 1/r ity -+ Urr) = by,
and for any truncated sum,
(V/rymg g+ 1rigr)) = cifrin,
for some integer ¢; with ged(c;, r//r,,) = 1. It follows that
(rTy = lem(ry, 1) (b frr + bl Jrrl).
Proposition 3.7. Keep the notation introduced above.

(@) If £ k kut,,, then the /-part of the order of {t;t) in Q/Z is equal to £0M41/2) The
/-part of the order of T in ®(G) is equal to ¢ ord(r/m)

(b) If ord(r,) = ord,(r,,) > 0, then the /-part of the order of {t;t) in Q/Z is equal to
0402 The /-part of the order of T in ®(G) is equal to ¢°//*mtn1))
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(¢) If ord/(ry) < ord,(r,), then the /-part of the order of {t;7) in Q/Z and the {-part
of the order of T in ®(G) are both equal to ¢°/mUwr,).

Proof. Using 3.6, we find that, if ord/(r/lcm(rn,r,;,)) =0, then the /-part of 7 is
trivial. Thus, Proposition 3.7 holds. Assume now that ord, (r/lem(r,, r,,)) > 0. Recall that

(it = lem(r,, r;,)2 (bnr,:/ + b,’1,r,,>.

!/
'ty r

Lemma 2.6 shows that b,r; —r, = er and b,,r; —r,, = fr for some integers e, f. Thus

1 (bt + bliry) = ribury, + (fr+1l)r,
=(|D-Dlr—z—r))byrl, + (fr+71)r
= (|D - D|r — 2)bur), — (er + r)r + (fr + 1. )5

It follows that modulo Z,

ng(VVlv rl') —
r m@; > =1 (bur) + blry) /1 = —zbur) /.
Since r, = ged(ry,r) and b,r; —r, = er, we find that ged(Z,b,) = 1. Since r,, = ged(r{,r),
ord,(r),) = ord,(r}). If ord(r),) > ord,(r,), then the relation r; 4+ r|{ + z = |D - D|r shows
that in this case ord,(z) = ord,(r,). Part (c) of Proposition 3.7 follows in this case from 3.6
since the order of 7 is at least equal to the order of {z;7).

Assume now that ord,(r,,) = ord,(r,). Then, clearly, the /-part of the order of {z;7)
in Q/Z is equal to /°4("7%) Let (C,r¢) be a vertex of G. Let u denote the image in @ of
E(C,, C). Assume first that C does not belong to the shortest path 2 in G from C, to C,,.
Then

oy = lem(ry, r)) lem(rg, o) (1 gty + - + 1/r17)

= lem(ry, r),) lem(ry, v )by /11

If ord,(r,) > 0, then there exists a vertex C outside of 2 whose multiplicity is not divisible
by /. For such C, we find that the /-part of the order of {z; ) is divisible by the /-part of
r/lem(r,, r,,). Thus, 3.7 (b) follows again in this case from 3.6.

Let us then assume that / t r,r,. Then, for any C not on 2, the /-part of the order of
{t; 1> equals £°790/7¢) ' We are going to show that the /-part of the order of 7 in d(G) is
equal to #°/"/™ by showing that 7°"4/("/™ is the maximum of the orders of the /-parts of
the elements {7;u)», with u e ®. If C belongs to the chain from C, to D, then it follows
from 2.7 and 3.4 that 4 = 0, so that {t; u) = 0. If C = C/ for some i, write

Vil 4+ 1/rr= U, + -+ 1/rr) = e 4+ 1)

=by [rr,, — ¢/l
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It follows that

oy = lem(ry, 1)) lem(ry, 10) (b /11 + b), Jres — i)

= lem(ry, ) lem(ry, r}) (by /110 + b, [11)).

Using the computation of {7;7) done above, we find that when C = C], the /-part of the
order of {z; i) is at most #°40/?) and ord,(r/z) < ord,(r/m). It follows that the /-part of
the order of {z; x> is at most /°4U/™ for all ue ® of the form image of E(C,, C). By
definition of m, there exists a vertex (C, r¢) outside of the path 2 whose multiplicity is such
that ord,(r¢) = ord,(m). Thus for this vertex C, the /-part of the order of <{z;x) equals
¢£°r/m “To conclude the proof of 3.7 (a), it remains to show that when 7 } r,, the set of
elements of @ of the form u as above generates the /-part of the group ®. By construction,
the /-part of ® is isomorphic to Ker('R) ® Z,/Im(M) ® Z,. Since the multiplicity of C, is
coprime to Z, it is invertible in Z,, and our claim follows.

Example 3.8. Consider the following graphs.

(O'R)) : ()] .

G, Gy
(6] (o))

The pair E(C, C’) has order 4 in ®(G)), and order 2 in ®(G).

Corollary 3.9. Keep the notation introduced above. If either (a) ¢ ¥ r,r., and
ord,(z) = ord,(m), or (b) ord,(z) = ord,(r,) = ord,(r,,) >0 or (c) ord,(r,) < ord,(r,,),
then 7 is not divisible by ¢ in ®.

Proof- Given any two elements 7 and ¢ of @ of orders 7 and s, respectively, it is easy
to check that the order of the element <{7; o) divides gcd(z,s). Hence, if 1 = /¢ in @, then
{ry1y = £<{z; &) is killed by t//. Now let 7 be the image of an elementary pair, as in 3.7.
Under our hypotheses, Proposition 3.7 shows that /°4/(") divides the order of {z; 7). Thus,
7 is not divisible by 7.

The reader will find in 6.6 an explicit example where / f r,r,, and ord,(z) > ord,(m),
and where 7 is divisible by / in ®@. Note that it is not true in general that if / } r,r,, and 7 is
not divisible by 7 in ®, then ord,(z) = ord,(m).

As a last example of the usefulness of the pairing in providing information on the
order of elements in @, let us consider the following situation. Let (G, M, R) be an arith-
metical graph with a weakly connected pair of terminal vertices (C,, C, ) such that the
unique path 2 of G that connects C, and C,, has the following vertices:

{(Cn,rn), (Cn_l,rn_1>, ey (Cl,rl), (D,V)}

is a terminal chain with node D, {(D,r),(Dy,t1),...,(Dk, t),(D’,s)} is a chain with
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exactly two nodes D and D’, and {(D',s), (Cy,s1),...,(C),_;,Sm-1), (C,,,8n)} is a terminal

chain with node D’ and terminal vertex C,,. The reader will find an explicit example of such
a graph in 6.6.

Proposition 3.10. Let (G,M,R) be an arithmetical graph with a weakly
connected pair of terminal vertices (C,, C,,) as above. Assume that ord,(t;) = ord,(r) for all
i=1,...,k, and that ord,(s) > ord(r). Assume also for simplicity that

ord,(r,) = ord/(s,,) = 0.
Let 7 denote the image of E(C,, C,,) in ®(G). Then the order of t is divisible by ¢orde(rs)

Proof. Let a:=ord,(r) and a+ b :=ord,(s). The relations ¢; divides r+ 5, £,
divides 11 + 13, ..., 1, divides #,_1 + s, show that the sequence

sC el YL , Zlf_a, ™
can be continued using Euclid’s algorithm with #/¢ and /™ into a sequence
S:={st7ul ... o0l Uy )

as in [Lor2], 2.4, and that this sequence S can be considered as the sequence of multi-
plicities of a terminal chain of some arithmetical graph. In particular, Lemma 2.8 shows
that

Loy by o 1 F
Uyl 1 wuy  wrd ™ vl 4!l s s,

for some integer f§ coprime to s/~ “/u,,, and

1 1 1 y

Fob b=
Uy Uy | wuy  wrd ™l u,

for some integer y coprime to r/~“/u,,. Using Proposition 3.2, we find that

_ 1 1 1 1 1
lem(ry, Sim) 2<‘L’;‘L’>=< +-~-—|——>+<—+~-~+ +—>
Tntn—1 rr rt 1ty S

1 1
=+ + :
S81 Sm—15m

Lemma 2.8 implies that there exist integers ¢, and d,, coprime to / such that

_ 1 (4 d,
lem(7y, $im) 2(1;7} =24 (ﬁ _? ) + 2.
Ty SUyy Pl SSn;

Regarded as elements in Q,/Z,, ¢,/rr, has order /¢, d,,/ss, has order / atb y/{“ru,, has
order at most /2. Since b > 0, 7 ¥ and, thus, 8//“su,, has order /****. Since a > 0, we
find that {z; ) has order 7%**’ in Q, /Z ;, which concludes the proof of Proposition 3.10.
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3.11. For later use in 6.6, let us note the following fact. The details are left to the
reader. Let (D,r) and (D’,s) be two nodes on a chain % of a graph G. Let 7 denote the
image of E(D,D’) in ®. Assume that / divides the weight w(%). Then the /-part of the
order of 7 in ® may be non-trivial, but the /-part of the order of <z;7) is always trivial.

4. A splitting of the group of components

Let (G, M, R) be an arithmetical graph. Fix a prime /. Let ®,(G) denote the /-part
of the group of components ®(G). Let (D,r) be a vertex of G such that G\{D} is not
connected. Our aim in this section is to establish an isomorphism between ®,(G) and the
product of the /-parts of the groups of components of arithmetical graphs associated to the
connected components of G\{D}.

Construction 4.1. Label the connected components of G\{D} by %,,...,%,. Label
the vertices of %; adjacent in G to D by (C;1,7:1),...,(Ciy,Tis). Assume that ¢ > 1. For
i=1,...,t let g; denote the greatest common divisor of r and the multiplicities of all
vertices of ¥;.

Construct a new connected arithmetical graph G; associated to ¥; as follows. Start
with ¢; U {D}. Give to D the multiplicity r/g;. Give to a vertex in ¥; its multiplicity in G
divided by g;. Let ¢; denote the least integer such that ¢;r — ZI(CU- - D)rj 2 0. The integer
=1
¢; will be the self-intersection of D in G;.

If r divides 'SZil(Cij -D)rj, then the graph G;:=% u{D} with multiplicities
=
as above is an arithmetical graph. If r does not divide i‘i(C,j - D)rj, then let
Fii= (cir - i(Cg : D)ri,-> /g;. Construct a terminal chain 7 using (r/g;,7;) and Euclid’s
algorithm a:in [Lor2], 2.4. The graph G; consists then in the graph ¥; U {D}, with the
chain 7 attached to D. We shall say that the graph G is /-breakable at (D,r) if / y r and
> 1.

Example 4.2. Let G be the following graph.

Let D denote the central vertex of multiplicity 6. Then G\{D} has 3 components ¥4;, %,
and %3, and the above procedure produces 3 new arithmetical graphs:
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1 1 6
5
3 6 6
4
3
1
G G> G3

Note that |®(Gy)| =2, |®(Gy)| =8, and |D(G3)| = 1. Our next proposition shows then
that the only primes that can divide |®(G)| are 2 or 3. One may compute that the full group
®(G) has order 144.

Proposition 4.3.  Let (G, M, R) be any arithmetical graph. Let ¢ be a prime. Assume
that G is /-breakable at a vertex (D,r). Let Gy,...,G, denote the arithmetical graphs
associated as in 4.1 to the components of G\{D}. Then there exists an isomorphism

o (D/(G) — ﬁlCD/(G,)

Let (Cy,ry) and (Cy, 1) be any two vertices of G. If Cy and C, belong to the same component
of G\{D}, say to 9;, or if C; € 9; and C, = D, then we denote by E(C,, C;) and E(C,D)
both the elements of ®(G) and the corresponding elements of ®(G;). Then the /-part of

t
E(Cy, Cy) is mapped under o to the element of [[ ®,(G;) having the /-part of E(Cy,C) in
i=1
the j-th coordinate, and 0 everywhere else.

Proof- Let N;,i=1,...,t denote the square submatrix of the intersection matrix M
corresponding to the vertices of G that belong to %;. The matrix M has the following form:

(D-D) % ... ... x
* Ny 0 0
0 N O
L0
* 0 0 N

(in particular, the first column is the ‘D-column’). Multiply the first row by r, and add to it
the sum of all other rows, each multiplied by its corresponding multiplicity. Perform a
similar operation on the first column of M, to obtain a matrix M' of the form

o o0 ... ... 0
0 N
. N2
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Since / t r, the row and column operations described above are permissible over Z,. The
module Ker('R) ®; Z, is thus the direct sum of ¢ Z,-submodules V;, i = 1,...,t, where

Vii= @ 7,/ 'E(C,D).
Ce%;

t
Let W; denote the Z,-span of the column vectors of N;, so that Im(M) ® Z, =~ @ W;. Then
=1

1

D,(G)

Il

4
D Vi/ W
=1

We claim that ®,(G;) = V;/W;. Indeed, the intersection matrix M; associated to G; has the
following form:

1 (D-D) ... x

or

N;

where the case on the right occurs if G; = %; LI {D} (see 4.1). Multiply the D-row by r/g;,
and add to it all other rows multiplied by their corresponding multiplicities. Perform a
similar operation on the columns of M; to get a matrix M/ of the form

* 1 0
| 0 0
1 = 0 or :
0 00 ... 0 O
SN
0

0 -8 0
1 0
1 0 0 ;
0 0 0 ... 0
| N;
0
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where f = —r/ged(r, 7;) (see the proof of 2.7; note that gcd(r, 7;) is the terminal multiplicity
of the terminal chain attached to D in G;). Since / 4 r, we find that in both cases,

O,(G) = @ 7, "E(C,D)/Im(N;).

Ce%

Therefore, we have an isomorphism between ®,(G;) and V;/W;, where the /-part of
E(C,D) in ®,(G;) is mapped to the /-part of the element E(C, D) in V;/W; < ®,(G). We
leave it to the reader to compute the image of E(Cj, C;) under the above isomorphism.
This concludes the proof of Proposition 4.3.

We now use Proposition 4.3 to prove the following important theorem.

Theorem 4.4. Let (G, M, R) be any arithmetical graph. Let ¢ be any prime. Let (C,r)
and (C',r") be a weakly connected and /-breakable pair of vertices of G with ¢ ¥ rr' and
associated integer 2(C,C") as in 1.2. Then the /-part of E(C,C') has order .(C,C’) in
D(G).

Proof. Suppose that both C and C’ are not terminal vertices of G. Then by
hypothesis the graph is /-breakable at C into two or more arithmetical graphs. Denote by
G’ the new arithmetical graph that contains C’ (graph constructed while breaking G). Then
the /-part of E(C,C’) in G has the same order as the /-part of E(C,C’) in G’. Since
(C, C') is weakly connected, C lies on a terminal chain 7 of G’, and its multiplicity is still
coprime to /. Moreover, (C, C’) is a weakly connected /-breakable pair of G’. Denote by D
the terminal vertex of 7. If C + D, we find using Remark 3.5 that the /-part of E(C, C')
has the same order as the /-part of E(D, C’). The pair (D, C') is clearly a weakly connected
/-breakable pair of G'. Thus, to prove Theorem 4.4 for (C, C’) in G, it is sufficient to prove
it for pairs where one vertex is a terminal vertex, say the vertex C.

Let 2 denote the path associated to the weakly connected pair (C,C’).
(Note that if 2\{C,C’} contains no vertices, the theorem follows from 2.2.) Let
(C1,11),(Ca,12),...,(Cs, 1y) be the nodes on 2\{C, C'}, as discussed in 1.1. If s = 0, then
C and C’ belong to the same terminal chain of G, and Theorem 4.4 follows from 2.7. If
s =1 and C’ is not a terminal vertex, we may apply the reduction step described at the
beginning of the proof and assume without loss of generality that C’ is a terminal vertex.
Then we can apply 3.7 to show that our statement holds in this case.

We proceed by induction on the number s of nodes on #. Let m > 1 and assume that
Theorem 4.4 holds for s <m — 1. Let (C, C’) be a pair whose associated path £ contains
m nodes. Since the pair is /-breakable, there exists a vertex (D,rp) on 2 with / yrp and
such that both components of Z\{D} contain at most m — 1 nodes C;. (Note that one
component may contain no nodes such as, for instance, when rp = Cj.) Break the graph G
at D. Call G; the arithmetical graph associated to the connected component of G\{D}
which contains C. Call G, the arithmetical graph that contains C’. The pairs (C, D) and
(D, C') are weakly connected and /-breakable pairs of G| and G,, respectively. We may
thus apply the induction hypothesis to both pairs. To conclude the proof of Theorem 4.4,
we need only to show that the order of the /-part of E(C, C’) is equal to the maximum of
the orders of the /-parts of E(C, D) and E(D, C"). Note that 3.5 only shows that the order
of E(C, ') divides the maximum of the orders of E(C,D) and E(D,C’). To prove our
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claim, we need to use the fact that breaking the graph G at D produces a splitting of ®(G),,
with ®(Gy), and ®(G»), as direct summands (4.3).

5. The subgroups ¥, and O},

Let X/K be a curve. We recall below Raynaud’s description of the group ®x and of

the map 7 in terms of a regular model Z'/0x of X/K. Let 2 = > r;C;, and assume
v i=1

that ged(ry,...,r,) = 1. Let ¥ := € ZC; denote the free abelian group generated by the
i=1

components C;, i = 1,...,v. Let " := Homy (%, Z), and let {x,.. xL} denote the dual

basis of ., so that x;(C;) = ;. Let R: ¥* — Z be the map Z aix; — Z a;r;. Consider the

i= i=1

following diagram:

¥ — Pie(@) = Pic(x) -2

T

¢ 1 L ey 2.7

The map i is defined as follows: i(C;) := curve C; in Z, where the curve C; is viewed as
an element of Pic(Z’). The map res restricts a d1V1sor of Z to the open set X of Z. The
map res is surjective because the scheme 2 is regular. The map deg is defined as follows:

N N
deg<z a,»Pl) = > a[K(P;) : K], where K(P;) is the residue field of P; in X. We denote
i=1 i=1

by Pic’(X) the kernel of the map deg. The intersection matrix M of Z; can be thought
of as a bilinear map on ¥ x % and, therefore, induces a map y: ¥ — Z£* defined by

u(Ci) :==>2(C; - Cj)x;. Then 'Ro u= 0. Let D be an irreducible divisor on 2, and define
j=1

#(D) :=>_(C; - D)x;. The map y is the natural map induced by ¢. It is well-known that

the diagram above is commutative.

One easily checks that Ker('R)/u(.Z) is the torsion subgroup of #*/u(.#). Raynaud
[BLR], 9.6, showed that the group of components @k of the jacobian 4/K of the curve
X /K is isomorphic to the group Ker('R)/u(%). It follows from this description that the
group @ can be explicitly computed using a row and column reduction of the intersection
matrix M (see [Lorl], 1.4). Since the residue field & is algebraically closed, 4(K) = Pic’(X).
Raynaud ([BLR], 9.5/9 and 9.6/1) has shown that the reduction map = : 4(K) — ® corre-
sponds to the restricted map  : Pic’(X) — Ker('R)/u(.#). Thus, given two points P and
Q in X (K), the image of P — Q in the group @ is trivial if Cp = Cp, and can be identified
with the image of E(Cp, Cp) in ®(G) when Cp % Cp. To prove Theorem 5.5 below, we
need to recall the following facts.

5.1. Let 2 /0 be any regular model of X/K. Let F/K be a finite extension.
Let % /0f denote the normalization of the scheme 2 Xgpec (o) Spec (UF). Let b: % — X
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denote the composition of the natural maps
Y — X Xspec (o) SPec (Op) — X

Let p: & — % denote the minimal desingularization of %. To recall the descriptions of
the maps p and b, we need the following definition. Let Cy, ..., C, be smooth irreducible

components of the special fiber 2. The divisor C := > C; is said to be a Hirzebruch-Young
i=1

string if the following four conditions hold: 1) ¢(C;) =0, for all i=1,...,m, and 2)

(Ci-C)= =2, foralli=1,...,m,and 3) (C;-C;) =11if|i—j|=1,and 4) (C;- ;) =0

if i —j| > 1.

Let D and D’ be two reduced effective divisors on 2 with no irreducible component
in common. Recall that D and D’ meet at a point P with normal crossings if the local
intersection number (D - D), is equal to 1. In particular, P is a smooth point on both D
and D’. We say that two effective divisors meet with normal crossings if they meet with
normal crossings at each intersection point. We say that %} has normal crossings of every

singular point of 27 is an ordinary double point.

Given any integer m prime to p, let us denote by F,,/K the unique Galois extension of
K of degree m. We shall call F/K an /-extension of K if [F : K| is a power of /.

The following facts are well known; we state them without proof (see for instance
[BPV], Theorem 5.2, when Z/C is a surface).

Facts 5.2. Let g be a prime, g # p. Let F := F,. Let (C,r) be a component of Z.

® The map b : % — Z is ramified only over the divisor R:= >, C..
ged(g,ri)=1

e If ¢ tr, then b~!(C) =: D is irreducible and the restricted map bp:D — Cisan
isomorphism. The curve D has multiplicity r in %.

e Let P e % be a point such that b(P) € R. If b(P) is a smooth point of 2;°¢, then P
is regular on %.

® Let P e % be such that h(P) is the intersection point of exactly two components

C and C’' of R. If C and C’' meet with normal crossings at b(P), then the divisor
m(P)

p(P) := E; is a Hirzebruch-Young string. Let P € D n D', where D and D’ are the
i1 -

preimages of C and C’ in %,.. Write D for the strict transform of D in %. Then:

(5 (P) D) = (Er- D) = 1 = (Eyp - D) = (o' (P) - D).
Moreover, (p~!(P) - E) = 0 if E is an irreducible component of 2 with E % D, D'.

® If g|r and C " R # 0, then the restricted map by-1(c) : b~1(C) — C is a morphism
of degree ¢ ramified over |C n R| points of C. If C intersects R with normal crossings in at
least one point, then D := b~!(C) is irreducible and the curve D has multiplicity r/q in %.
When C is smooth and meets R with normal crossings, then D is smooth and its genus is
computed using the Riemann-Hurwitz formula.
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e If glr and CAR =0, then b: bh~'(C) — C is an etale map and each irreducible
component of »~!(C) has multiplicity r/q in %. If 5~'(C) is not irreducible, then it is
equal to the disjoint union D U--- U D, of ¢ irreducible curves, and each restricted map
byp, : D; — C is an isomorphism.

e [f 7} has smooth components and normal crossings, then % has smooth compo-
nents and normal crossings.

Lemma 5.3. Let X/K be a curve with a reqular model X/ Ok and associated arith-
metical graph (G, M, R). Let £ + p be a prime. Let (C, C") be a weakly connected pair with
L yrr'. Let F := F, and consider the associated map bop: % — Z. Since ¥ rv', the pre-
images of C and C' in % are irreducible, and we also denote them by C and C'. We will also
denote by C and C' the strict transforms of C and C' in & .

(@) Assume that the pair (C,C’) is /-breakable in G. Then (C,C’) is also weakly
connected and /-breakable in the graph of Z .

(b) Assume that the pair (C,C") is not /-breakable in G. Then (C,C’) is a multiply
connected pair in the graph of % .

(c) Let (G', M', R") denote the arithmetical graph associated with the regular model Z .
Let tx and tr denote respectively the elements of ®x and @ corresponding to the images of
E(C,C") in Ker('R)/u(&L) and Ker('R")/u'(£L"). Then tr is the image of tx under the
natural map y : ©x — DOp.

Proof. Note that, by definition of weakly connected, two curves of the path 2
between C and C’ that intersect do intersect with normal crossings. (Note on the other
hand that our hypothesis allows other singularities on each component.) The weakly con-
nected pair (C, C’) is /-breakable if and only if no two consecutive vertices on the path 2
have multiplicity divisible by /. The first two parts of the lemma follow immediately
from 5.2.

To prove (c), let us pick a point P of degree r and a point Q of degree ' on the
scheme X such that the closures P and Q of P and Q in Z each intersect % in a single
point, on C and C’, respectively. Let ¢ := ged(r, '). Then (+'P — rQ)/c belongs to Pic’(X)
and its image in @ is identified with the image of E(C, C’) in Ker('R)/u(%Z). Since F/K is
Galois of degree coprime to r and /, the points P and Q in X define two points P’ and Q’
in Xy, also of degree r and ', respectively. Thus (r'P’ — rQ’)/c belongs to Pic’(Xy) and
its image in @ is identified with the image of E(C, C’) in Ker('R')/u'(#"). Consider the
diagram

Pic’(X) —— Pic’(Xy)

| |

O —— O,

where the top horizontal map is the natural map f induced by Xr — X, and the bottom
horizontal map is the natural map y. Then this diagram is commutative. It is easy to check
that f(r'P — rQ) = r' P’ — rQ’, thus proving (c).
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Given any curve X /K (resp., any abelian variety 4/K), we let L/K denote the
extension minimal with the property that X, /L (resp., A, /L) has semistable reduction.

Lemma 5.4. Let A/K be an abelian variety. Let t € ®k. Then t € Wk 1 if and only if
there exists a finite extension F /K such that © € Wk p.

Proof. 1t is clear that Wg r < Wk pr. It follows from the fact that 4; /L has semi-
stable reduction that the canonical map ®; — ®f; is injective. Hence, Wi r = Wk 1.

Theorem 5.5. Let X/K be a curve with a regular model Z/CUx and associated
arithmetical graph (G, M,R). Let / % p be a prime. Let (C,C") be a weakly connected (-
breakable pair with ¢ ¥ rr'. Then the (-part of the image of E(C,C’) in ®g (Jac(X)) belongs
to Wk, and has order (C, C").

Proof. Let 2 denote the path linking C and C’. Let F/K be any /-extension. Let
bop: % — Z be the associated base change and desingularization map as in 5.1. Denote
again by C and C’ the preimages in % of the components C and C’ in 2" as well as their
strict transform in Z. It follows from 5.3 that the pair (C, C’) is also weakly connected
and /-breakable in Z. Thus, the order of the /-part of the image of E(C, C’) can be com-
puted using Theorem 4.4.

Let us now consider the nodes on the path 2’ linking C and C’ in 2. If D is a vertex
of 2’ such that (b o p)(D) is a node of 2, then D is a node on 2'. If D is a node on 2’ such
that (b o p)(D) is not a node of 2, then the component (b o p)(D) is not smooth. The reader
will note that after an extension of degree /¢, the multiplicity of the preimage in % of a
component (C,r) on the path 2 is equal to r/~™n(@0d/(N) Define u to be the power of /
such that

ord,(u) := max{ord,(r),(C,r) a component on 2}.

It follows that over F),, all the nodes of the path 2’ linking C and C’ in 2 have multiplicity
prime to /. Thus, Theorem 4.4 shows that the image of E(C, C’) has trivial /-part in ®,.
Therefore, the /-part of the image of E(C, C’) in ®k belongs to Wk r,. Thus, Lemma 5.4
implies that the /-part of the image of E(C, C’) in @ belongs to Wk ;. Note that it is not
always true that F,, = L. This concludes the proof of Theorem 5.5.

5.6. Let us recall now the description of the first functorial subgroup of ®g ,
appearing in the filtration

(3]
Ok, Yk SOk = Pk s

introduced in [Lor3], 3.21. Let A4/K be an abelian variety. Let 7; denote the Tate module
T A,/ + p. Let D, := Q//Z,. Let Ix := I(K/K). There is a natural isomorphism

(T, ® D)’

cOg ,— E = .
Pk Pk " oD,

Given any submodule X of 7y, let fy : X ® Q, — T; ® D, denote the natural map. We
denote by 7(X) the subgroup of E generated by the elements x € (7, ® D,)’* such that
there exists X € X ® Q, with fy(X) = x. Consider the submodules W, ; < T/L c T, where
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W, 1 is canonically isomorphic to the Tate module of the maximal torus .77 in the con-
nected component of the Néron model of 4, /L. Then, by definition ([Lor3], 3.8),

¢K,/(®[13],/) =1(W;,1) and ¢ ,(Yk1/)= H(T/").

As we shall see in 5.12, the description of the elements of ®[I§] , seems to be more compli-
cated than the description of the elements of Wg ; /.

Let F/K be any finite separable extension. Denote by .o/ /O the Néron model of
Ap/F. Let o i /k denote its spemal fiber, with connected component .7, F i Let Ip < %F k
denote the maximal torus of LQZF - Denote by np : A(F) — o/p i (k) the reduction map.

Lemma 5.7. Let A/K be an abelian variety with purely additive reduction. Let { % p
be any prime. Let T € @ ;. Let t denote the unique element of A(K),,., , whose image in @k
is 7. The element t belongs to the subgroup ®£] , if and only if there exists a finite separable
extension F /K such that np(t) belongs to Ip.

Proof- When A has purely additive reduction, T/" = (0) and the canonical reduc-
tion map A(K),,s , — Pk, is an isomorphism. Consider the map

g: A(K)torsj - (Tf ® D/)IK

defined as follows. If x € A(K),.,, ;» pick {x;},2; € T, such that x = x; for some j € N. Then
set g(x) := class of ({x;};°, ® /7). That the map g is well defined and an isomorphism is
proved in [Lor3], 3.4. When 4 has purely addlthC reduction, the canonical reduction map
A(K) — @k , factors through (7 ® ID/) as follows:

o5
A(K)tors,/ L) (T/ ® D/)IK L) Ok .

tors,/

Let te @k . Let 7:={;,}2, ® /"€ T, ® Q, be such that its image in (7, ® [D)/)IK is
¢1§,1 ,(7). Then t, € A(K) is the preimage of 7 under the reduction map. Thus, if 7 € ®E7 /5
then by hypothesis we may choose 7 in W, ; ® Q/, so that n.(t,) € I1.

Let us now assume that there exists a finite separable extension F/K such that nz(¢)
belongs to Z. Then 77 () belongs to 7;. Indeed, it follows from the properties of smooth
connected commutative groups that the natural map .o/ — .o/ restricts to a map
Ir — Tpr. Thus mp(t) belongs to Jpr. In particular, the image of 7 under the natural
map ®x — Dpy is trivial. Since the map ®; — Dpy is injective, we conclude that
ni(t) € ) (k). Since /) = /7, , by semistability, we find that 7. (¢) € 7;.

Choose now y:={y;}2; € W;, such that =y, for some r. Then the image of
y®/inT, ® ID; belongs to (7; ® ID/) ’k Thus ¢K ,(7) is in the image of W, ; ® Q/, and

7 belongs to ®

5.8. Our next theorem describes an element t € ®(G) whose /-part belongs to the
subgroup e k..~ To describe this element, we need to introduce the following notation. Let
(G, M, R) be any arithmetical graph. Let (D,r) be a node of G. Let (D;,r;), i=1,...,d,
denote the vertices of G linked to D. Assume that (D;- D) =1foralli=1,...,d, and that
the numbering of the vertices D; is such that for i =1,... s, the vertex D; belongs to a
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terminal chain 7T; attached at D, and for i = s+ 1,...,d, the vertex D; is not on a terminal
chain at D. We assume that s = 2. For simplicity, we will assume that ged(r,r;) = 1, for all

i=1,...,s. Thus the terminal vertex C; on T; has multiplicity 1. Let 7; denote the image of
E(Ci,C) in®(G),i=1,...,s— 1. Let

s—1
Ti= Y I
i=1
To motivate this definition of 7, let us first note the following.

Lemma 5.9. Let / be any prime. If ord,(r) < ord/(
Qs/Zy, foralli=1,...,s—1.

S
r[), then {t;t;) =0 in

1

1

Proof. 1f C is any vertex of G, let r(C) denote its multiplicity. Then Lemma 2.8

shows the existence of integers b;, i = 1,...,s, such that
1 b;
Z / = l AN
coer, M(CO)(C")  reed(r,r)
(C-C)=1

Proposition 3.2 shows that

if i+ J,
{ti31) =

SRS

by .
+=2 ifi=.
r

Thus, fork =1,...,5s — 1, we find that

s—1

{10 = il ridTi Ty = <Z ri> b/r + byri/r
i=1

i=1

M=

= ( ‘ r,-)bx/r—bsrx/r—l—bkrk/r.

i=1

Lemma 2.6 shows that byry = 1 = by modr, and our hypothesis is that

ord/(r) < ord, <Z ri> )
i=1

Hence, {t;74» =01in Q//Z,.

5.10. Assume that (G, M, R) is associated to a curve X /K whose jacobian has
purely additive reduction. We have established in [Lor3], 3.13, that @E]‘ ,=¥Yx 0 ‘Pk Lo
where the orthogonal subgroup is computed with respect to the pairing 3.12 in [Lor3].
While no relationship between the pairing 3.12 and the pairing < ;) described in section 3
is fully established as of yet, one may certainly anticipate a relationship and, thus, we
may expect that an element 7 of Wk, , that is orthogonal to Wk  , under the pairing {; )
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belongs to ®[,3] ;- Theorem 5.5 shows that the /-parts of 7;, i =1,...,5 — 1 and, thus, the
/-part of 7, bélong to Wk . Lemma 5.9 and Theorem 5.5 show that the /-part of 7 is
orthogonal to any element of Wx ; image of E(C, C’) with / y rr’. Thus the /-part of 7 is
a ‘good candidate’ to be an element of G)[K] ;» and Theorem 5.12 below describes some

instances where the /-part of t belongs to e K./

5.11. Note that if s > 2, then Theorem 4.4 shows that 7; £ 0 foralli=1,...,s — 1.
But it may happen that 7 is trivial in ®(G), in which case the /-part of 7 certainly belongs to
®[I§] ;» as in the following example (with D being the node of multiplicity 4, and / = 2).

le ° 4

On the other hand, if G contains a vertex C with gcd (r, r(C)) =1 and C¢T; for
alli=1,...,s, then 7 has order r in ®(G). Indeed, each 7; has order r, thus the order of ©
divides r. Let 7¢ denote the image of E(Cj, C) in ®(G). Then <{t;t¢) = byrire/r. Thus, r
divides the order of 7 (and of 7¢).

Theorem 5.12. Let X /K be a curve with a regular model %0k and associated
arithmetical graph (G, M, R). Assume that the jacobian A/K of X /K has purely additive
reduction over Og and that the graph G contains a node (D, r) as in 5.8. Assume that D and
all components on the terminal Chams attached to D are smooth (rational) curves. Let £ % p
be prime. Suppose that r = /°") and that ord,(r;) = ord,(r) for all i=s+1,...,d. Then

7 belongs to @K_/.

Proof. Let t; € A(K),,, , denote the unique torsion point in A(K) whose image in
®k sisequal to 7. Let P; € X(K) be such that Cp, = C;. Then ng(P; — Ps) = 7; in @k 4. By
hypothesis, the special fiber .oZ¢  is an extension of @k by a unipotent group. Let U; denote
the connected component of .Z  such that ng(P; — P,) € U;. Consider the natural map

VK, F: s Ik X Spec(Ok SPCC(@F) — oF.

If JZ{FO, « does not contain any unipotent group, the image of U; under yg p is a single

point of %F({ o 1t follows that np(P; — Ps) = np(t;) in o/ . To prove Theorem 5.12, it
s—1

is sufficient to exhibit an extension F/K such that 71'17(2 ri(P; — P, )> € Jr. Indeed, if
i=1

s—1 —
7ZF<Z ri(P; — PS)) € I, then mpy <Z )) € Jrr. Since App/FL has semistable
i=1 1

s—1 s—1
reduction, we find that 7z <Z ri(P; — PS)> = 7FL (Z rit,») . Hence, it follows from
i=1 i=1

s—1
Lemma 5.7 that 7 := ) r;7; belongs to ®[,§]’/.

i=1 '

Let F := F,. Consider the model % /0r of Xr/F associated as in 5.1 to F/K and the
model Z/0k. Let E/k = % denote the strict transform of D in #. It follows from 5.2 and
our hypotheses on D that if P € E, then P is a regular point on %. In particular, E is a
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smooth curve. Let |, : E — D be the map obtained by restriction from % — Z". Let k(D)
be the function field of D. Choose a coordinate function x in k(D) so that when D is
identified with A!'/k L {00}, then 0 + D D;, for all i =1,...,s. Let a; € A'(k) denote
the point DN D;, i=1,...,s. The map b, : E — D is a cyclic Galois cover of degree r
ramified only above the points a;, i = 1,...,s (we use here that ord,(r;) = ord,(r) for all
i=s+1,...,d). Thus

) = kY (5 - [ - a)*

i=1

S

for some positive integers ¢i,...,qs such that 7|} ¢;. Moreover, b|_is totally ramified
i=1 )

above the points «@;, i=1,...,s, so that we may assume that gcd(r,q;) =1 for all

i=1,...,s.

Proposition 5.13. We may choose q; =r;, foralli=1,...,s.

Proof. Let ¢ denote a primitive r-th root of unity, and let ¢ denote the auto-
morphism of E which sends y to £y and x to x. Let ¢; denote the point of E totally ramified
above the point a; of D. Write | = o7 + f,9;. Then v; :== yhi (x — a;)™ is a local uniformizer
at e; with the property that o(v;) = &%v;. In fact, given any local uniformizer v; at e; with
the property that a(v;) = £"v; for some integer n;, we find that n; = f; modulo r. In other
words, n; is the inverse of ¢; modulo r. Indeed, if there exists a unit u € O, such that
a(v;) = &"v; and o(uv;) = E™uv;, then u? is a unit in Op 4, with ¢ := r/ged(m; — n;,r).
Hence, the extension k(D)(u)/k(D) is unramified at @;. Thus, m; — n; = 0 modulo r since
OE.e,/Upq 1s totally ramified.

Let us consider the map ¢ : 4 — 2 over (O, which contracts all components of 2}
that belong to a terminal chain attached to D. Thus 2 is a normal model of X having
exactly s singular points Qy,..., O, on the image of D. Let F := F, and consider the base
change maps # — 2 and %' — 2" associated to F/K, as well as the minimal desingulari-
zation maps Z — % and 2’ — %’. The map ¢ induces a map cy : % — %'. By constru-
ction, the multiplicity of E in % and Z is equal to 1. Thus all components C of 2 whose
images in 2" belong to a terminal chain attached to D can be contracted by a map & — Z”
over O in such a way that the image of C in 2" is a regular point of 2 (we use here the
fact that all components of the terminal chains attached at D are smooth). In particular,
7" is regular, and by minimality of the resolution of singularities 2" — %', we find that we
have a map 2" — Z’. Thus, every point of %’ in the image of E is a regular point of %/’.

Let us consider the action of the group Gal(F/K) on the scheme #’. The quotient of
this action is the scheme 2. Let R; denote the preimage of Q; in %'. As we mentioned
above, R, is a regular point on %’. We may thus use the known results on quotient singu-
larities to describe the resolution of singularities at Q;. Namely, let ¢x denote a uniformizer
of Oy. Then the completed local ring at R; is of the form (r[[z]], and z can be chosen such
that the action of G on Og[[z]] is linear: if ¢ is a generator of G, then there exists a root
of unity & such that o(t7) = ¢tr and a(z) = &%z for some b; € N. (We use here the fact
that the extension F,/K is tame.) Then the resolution of singularities at Q; is completely
determined by the integer b;. It follows (see for instance [Vie], 6.6) that in order to have
a resolution of singularities of the type 2 — 2, the integer b; must be congruent to the
inverse of r; modulo r. Hence, we find that ¢; is congruent to r; modulo r.
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Lemma 5.14. Let s = 2. Let E/k denote the nonsingular complete model of the plane
curve given by the equation

s
v =Tl(x=a)" =0,
i=1

withaiek,i=1,...,5s and ] (a; — a;) + 0. Assume that gcd(r,r;) =1 foralli=1,...,s,
i*]
N
and r| > r;. Let e; denote the point of E corresponding to the point (a;,0). Then the divisor
i=1
s—1
e; — e has order dividing r in Jac(E), and " ri(e; — e5) = 0 in Jac(E).
=1

=

Proof. The function (x — @;)/(x — as) belongs to the function field of E, and

div((x — @) /(x — a5)) = r(e; — e).

s s—1 — g\
Moreover, let d := > r;/r. Then (y/(x — as)d)r =11 <x a,> . Thus,

i=1 i=1 \X — ds

s—1 d
; ri(e; — es) = div(y/(x — a,)“).

Let us now conclude the proof of Theorem 5.12. As mentioned at the beginning of
s—1
the proof, it is sufficient to show that nFL<Z ri(P; — PS)> € Zr1. Since the model 2" is
i=1
regular, we can use it to describe the special fiber .« ;. The group @ can be computed
using &/, and since the points P;, i =1,...,s, all reduce to points in E = Z’, we find

s—1 s—1
that the image of 7y (Z ri(P; — PS)> in @ is trivial, and thus 7z <Z ri(P; — PS)> belongs
i=1 i=1
to /¢ . The group scheme .7, is isomorphic to Pic’(Z/'/k), and Pic’(Z]/k) is an
extension of the abelian variety B := ][ Jac(C) by the product of a unipotent group Up

(=74
s—1
and a torus Jr. Lemma 5.14 implies that the image of 7p <Z ri(P; — Ps)> in Bp is trivial.
i=1
s—1
Thus, the image of 7z, (Z ri(P; — PS)> in Bpy is also trivial. Since Ay /FL has semi-stable
i=1
s—1
reduction, we find that 7z (Z ri(P; — PS)> belongs to Jpy.

i=1

6. Partial converses for Theorem 5.5

Let X/K be a curve. Let 2//0k be a regular model of X /K. Let (C,r) and (C’,r')
be two distinct components of Z. Let Z + p be a prime. In view of Theorem 5.5, it is
natural to wonder whether it is true that if the /-part of E(C, C’) belongs to Wk 1, then the
pair (C, C') is weakly connected and /-breakable. As we shall see in the following example,
this question has a negative answer in general.
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Example 6.1. Consider the following arithmetical graph (G, M, R):

1

1

Using a row and column reduction of M, it is easy to show that ®(G) is cyclic of order 12.
Let C and C’ denote the two vertices of multiplicity 1 in G which are not terminal vertices.
Let 7 denote the image of E(C, C’) in ®. It is easy to check that ME(C,C’) = —6E(C, C’)
and, thus, 7 has order dividing 6. Since E(C, C') + mR, m € Z, is never divisible by 2 or 3,
we find that 7 has order 6 in ®.

Winters’ Existence Theorem [Win] implies the existence of a field of equicharacteristic
zero, say K, and the existence of a curve X /K with a regular model 2" whose associated
graph is (G, M, R), and such that all components of 2 are smooth and rational. Consider
the base extension F3/K and the associated model % /(f,. Let (G3, M3, R3) be the graph
associated with . Then G3 has the following form:

1

1

The two nodes in G3 correspond to components of genus 1. All other components are
rational. Denote again by C and C’ the two vertices of multiplicity 1 and degree 2 in Gs.
Let 7/ denote the image of E(C,C’) in ®(Gs). Then 7’ is the image of 7 under the natural
map ®(G) — O(Gs). It is easy to check that ¢’ has order 2. Thus, the 3-part of 7 is not
trivial and belongs to W, 1, even though the pair (C, C’) is multiply connected. Let us then
ask the following less general question:

Question 6.2. Let 7/ + p. Let (C, C’) be a weakly connected pair such that / f rr’. If
(C, C’) is not /-breakable, is it true that the /-part of E(C, C’) does not belong to Wk ?

If / = p, Question 6.2 has a negative answer, as can be seen on the following example
with p = 2. Consider an elliptic curve X /K with reduction /*, v > 1, and with poten-
tially good reduction. Then the graph of the reduction of X contains pairs that are not
p-breakable. On the other hand, since X has potentially good reduction, Wk, ; = ®k.

Clearly, if Question 6.2 has a positive answer, then the /-part of E(C,C’) is not
trivial in ®g. This fact is proved in 3.3. As evidence that Question 6.2 may possibly have
a positive answer, we offer the following two theorems.

Theorem 6.3. Let / =+ p. Let X /0Uk be a regular model of a curve X /K, with
associated arithmetical graph (G, M, R). Assume that L/K is tame. Let (C,C’) be a weakly
connected pair with r =r" = 1. If (C,C") is not /-breakable in G, then the image t of
E(C, C’) does not belong to Wk .
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Proof. Consider the scheme Zp obtained by blowing-up a single closed point P on
2. Let C and C’ denote again the strict transforms in Zp of C and C’. It is easy to check
that if (C, C’) is a weakly connected pair in the graph of 2, then (C, C’) is also a weakly
connected pair in the graph of Zp. Moreover, E(C,C’) for Z and E(C, C’) for & define
the same elements in the group of components of the jacobian of X. We may thus assume,
without loss of generality, that 2 has smooth components with normal crossings.

Consider the base change F,/K and the associated map po b : & — Z introduced in
5.1. Since Z; has smooth components and normal crossings, so does ;. We denote again
by C and C’ the preimages in Z of C and C’. Lemma 5.3 shows that the pair (C, C’) is
multiply connected in the graph of the model 2. Moreover, C and C’ have multiplicity 1
in Z. Thus, it follows from our next theorem that v ¢ Wg ;. To conclude the proof of
Theorem 6.3, we need only to note that if 7¢ Wk 1, then v¢ Wg ;. since the map
®; — @y f,1 1s injective.

Theorem 6.4. Let 2'/Ox be a regular model of a curve X /K, with associated
arithmetical graph (G, M, R). Assume that % has smooth components and normal crossings.
Assume also that L/K is tame. Let (C,C’) be a multiply connected pair with r =r' = 1.
Then the image of E(C, C') does not belong to Wk .

Proof.  Consider the base change L/K and the associated map bop: Z — %. Since
L/K is assumed to be tame, we can factor b o p into a sequence of morphisms of prime
degree, and apply to each of these morphisms the facts recalled in 5.2. We denote again by
C and C’ the preimages in % of C and C’ as well as their strict transforms in 2. Since 2%
has smooth components and normal crossings, so does Z. It is easy to check that the pair
(C, C') is multiply connected in Z. If % is reduced, then to conclude the proof of Theo-
rem 6.4, we use Corollary 2.3 in [Lor4| (see 2.1), which states that in a reduced graph G, a
pair of vertices gives the trivial element in ®(G) if and only if the pair is weakly connected.
In general, though, Z} is not reduced. On the other hand, since X; /L has semi-stable re-
duction, there exists a sequence of elementary blow-downs & := %) — % — -+ — Z
such that (Z;), is reduced. (By an elementary blow-down 2 — %, we mean that & is the
blow-up of a single closed point of Z;.) We may choose this sequence of elementary blow-
downs in such a way that for each i, the irreducible curve contracted by the map
% — Z;11 has multiplicity greater than 1 in (Z;),. Let C and C’ denote again the images
of C and C’ in Z; (these images have dimension 1 by construction). The vectors E(C, C’)
for Z and E(C, C') for Z; define the same element in the group of components @, of the
jacobian of X7. It is not hard to check that C and C’ in Z, form a multiply connected pair.
We may thus apply 2.1 to the (reduced) graph of Z; to find that the image of E(C,C’) is
not trivial in @; .

Note that Example 6.1 shows that Theorem 6.4 cannot be sharpened to state that if
(C, ") is a multiply connected pair such that r = ' = 1 and the /-part of E(C, C’) is not
trivial in @, then the /-part of E(C, C’) does not belong to Wk ;.

Let us also note that the hypothesis that Z; has smooth components and normal
crossings cannot be removed from the statement of Theorem 6.4. Consider the reduction of
an elliptic curve consisting of three smooth rational lines intersecting in a single point. The
divisor Zj does not have normal crossings, and in its associated graph, every pair of ver-
tices is multiply connected. The group ®(G) is cyclic of order 3. When p + 3, one finds
that such an elliptic curve has potentially good reduction. Thus, ®x = Wg ; in this case.
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Corollary 6.5. Let (G, M,R) be any arithmetical graph. If G contains a multiply
connected pair (C,C") withr =" =1, then |®(G)| * 1.

Proof.  Winters’ Existence Theorem [Win], implies the existence of a field F' with a
discrete valuation of equicharateristic 0, and a smooth and proper curve Y /F having a
model % over (O whose associated arithmetical graph is the given graph (G, M, R) and
such that %, has smooth components and normal crossings. Apply 6.4. It would be inter-
esting to find a direct proof of 6.5 that does not rely on the theory of degenerations of
curves.

Consider now the following example:

r+l1

. - D, 1

r+1

The order of ®(G) equals 2/ged(r,r — 2). Hence, when r is even, |®(G)| = 1 even though
(C, D) is multiply connected. When r is odd, |®(G)| = 2 and E(C, D) is a generator. Let us
now show that Question 6.2 has a negative answer in general if /|rr'.

Example 6.6. Let ¢ and b be two positive integers. Consider the arithmetical graph
G given by:

O (N GE R S o
A D
7,
E 1 SI
Be 1, C® Sy

where ord,/(r) = a, ord,(r;) = ord ,(r]) = 0, ord/(s) = a + b, and ord,(s;) = ord ,(s]) = 0.
The terminal chains are constructed using Euclid’s algorithm as in [Lor2], 2.4. We assume
that ord,(z;) Z aforalli=1,... k.

Lemma 6.7. The /-part of the group ®(G) is cyclic of order /**** and is generated by
the /-part of the image of E(B, C).

Proof. Proposition 9.6/6 of [BLR]| shows that |®(G)| = rs/rur,,sps,,, so its /-part
has order /%“*?. Let 7 € ®(G) denote the image of E(B, C). Consider the pairing { ; >
introduced in 3.1. To show that the /-part of 7 has order /%*”, it is sufficient to show that

the order of {z;7) in Q/Z is divisible by 7 2a%b and that was done in 3.10.

Let us consider now the case where r = /¢ and s = /“**. Denote by 7y the image in
@ of E(V, V'), where (V, V') is any pair of vertices. Proposition 3.7 shows that the order
of 745 1s /%, while the order of 7¢p is / @b et C, and C, denote the nodes of multiplicity
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r and s, respectively. The pair (C,, Cy) is weakly connected but not /-breakable. We find
using Remark 3.5 that /“*’zp¢c = 7¢.¢.. Thus, 7¢, ¢, has order /¢ and, hence, 745 = 7¢.c,.
Winters’ Existence Theorem [Win] implies the existence of a field, say K, with a discrete
valuation of equicharacteristic 0, and a smooth and proper curve X /K having a model over
Ok whose associated arithmetical graph is the given graph (G, M, R). Since / is not equal
to the residue characteristic of K, Theorem 5.5 shows that 745 belongs to Wk L(Jac(X )) It
follows that 7¢,¢, belongs to Wk, 1 but (C,, C;) is not /-breakable, answering negatively
Question 6.2 when ¢ divides rr'.

Theorem 5.5 shows that 745 and 7¢p belong to Wk 1. Hence, since ®(G) is cyclic, the
element 7,45 is a multiple of 7¢p, and is thus divisible by / in W ;. We shall see in the next
section that this phenomenon cannot occur if Jac(X) has potentially good /-reduction.

Let L/K denote the extension minimal with the property that X;/L has
semistable reduction. Let #; and a; denote the toric and abelian ranks of Jac(Xy)/L, re-
spectively. When ¢/ is not the residue characteristic, one can show that 1, = /¢ — 1, and
ap = (/" — /%) /2. Tt is shown in [Lor3], 1.7 (using the fact that @ is cyclic), that
Wk | — 1 = 2a; + t1. It follows from this bound and the fact that / @b divides |Wk 1| that
Wk ol = /%t and |Wk | — 1 =2ar + t,. It would be very interesting to know what are
the possible values of the integers 7; and ar when / is the residue characteristic of a field K
and there exists a curve X' /K having a model over (x whose associated arithmetical graph
is the given graph (G, M, R). We conjecture that in this case 7, < /¢ — 1.

Let us make one final remark about this example. We found that 745 = 7¢.¢,.
Theorem 5.12 shows that when the graph is associated to the reduction of a curve, 745
belongs to G)B?] ;- Let (D,r) and (D’,s) be two nodes on a chain % of a graph G. Let 7
denote the image of E(D, D) in ®. Assume that / divides the weight w(%) of the chain. In
view of 5.10 and of the fact that the /-part of the order of (z;7) is always trivial (3.11), it is

natural to wonder whether the /-part of such an element 7 belongs to the subgroup 62]7 ’
when (G, M, R) is the graph associated to a regular model of a curve.

Remark 6.8. Let us use a graph G of the type introduced in Example 6.6 to exhibit
an example where the /-part of the group ®(G) is not generated by the images of the
/-parts of the elements of the form E(C, C’) with ged(Z,rr’) = 1. The multiplicities of G
are as follows. Let n,=ri=1,r=4, 1, =r =1, 1 =8, b =12, s =16, 51 = 51 = 10,
sy =55 =4, and 53 = s} = 2. The order of ®(G) is equal to 16. Let then / = 2. The image
of E(A, B) has order 2 (3.7) and (4, B) is the only pair with 2 4 rr’. Note that the image 7 of
E(B, C) has order 16, since {t;7) is easily computed to have order at least 16.

Remark 6.9. If (C, C’) is any pair of vertices on a graph G, let t¢¢: denote the image
of E(C,C") in ®(G). Let ® := ©(G) denote the subgroup of ®(G) generated by the set of
all t¢cr, with (C, C') a weakly connected pair of G. In this paper, we have described certain
elements of the functorial subgroups G)[,i]_ ; (¢ % p), and Wk 1, of ®(G), when (G, M, R) is
associated with the reduction of a curve. It is natural to wonder whether the /-part of
the group ®(G) is always a subgroup of the first functorial subgroup ® , in the filtration
recalled in 5.6.

We will not pursue this question in this article, but we will use the graph introduced
above in 6.1 to produce an example of a graph G where ©(G) < Wk 1 but O(G) #+ Yk .
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Indeed, let (G, M, R) be as in 6.1. In this example, the group ®(G) is trivial, since the image
of E(C, (") is trivial whenever C and C’ belong to the same terminal chain (3.4). On the
other hand, we have shown in 6.1 that Wk | = 3.

7. The case of potentially good /-reduction

Our goal in this section is to prove the following theorem. Recall the definitions
introduced in 1.4.

Lemma 7.1. Let A/K be a principally polarized abelian variety. Let ¢ be a prime,
¢ #* p. Assume that A/K has potentially /-good reduction. Then WYk 1 , = (Pk),.

Proof. 1t is shown in [Lor3] (see 3.22, with 3.21 (ii) and 2.15 (ii)), that the kernel of
the map @k, — @ is killed by [L : K/|. Thus Wk, 1, = (0). It also follows from [Lor3],
using the fact that tx, =0, that Wg, 1, = (®g,),. Thus, since (Pg,), = (0), we find that
Yk o= (Dk),.

Theorem 7.2. Let X/K be a curve. Let { be a prime, { + p, and assume that
Jac(X)/K has potentially good /-reduction. Let P, Q € X (K) with Cp & Cg. Then the /-part
7, of the image of P — Q in ®k belongs to Vi 1. . If 1/ is not trivial, then it is not /-divisible
in (DK.

Proof. Lemma 7.1 shows that 7, belongs to Wg ;. Theorem 7.2 is a consequence of
Theorem 7.3 below, which pertains only to arithmetical graphs. Indeed, Proposition 1.7 in
[Lor2] shows that if Jac(X)/K has potentially good /-reduction, then there exists a model
Z/0k of X /K whose associated graph G is a tree satisfying Condition C, stated in 1.5 of
[Lor2].

Theorem 7.3. Let (G, M, R) be an arithmetical tree. Let / be any prime. Let (C,r)
and (C',r") be two vertices of G such that ¢ } r'. If G satisfies Condition C,, then the (-part
of E(C,C') has order 2(C,C"). Moreover, if the /-part of E(C,C’") is not trivial, then it is
not /-divisible.

Proof. Since G is a tree, every pair (C,C’) is weakly connected. Condition C,
implies that any two vertices C and C’ with /) rr’ form an /-breakable weakly connected
pair. Thus we may use Theorem 4.4 to compute the order of E(C, C’). Let us now show
that E(C, C’) is not divisible by 7 if it is not trivial. If the path 2 connecting C to C’ does
not contain any node, then Theorem 4.4 shows that the /-part of the order of E(C, C’) is
trivial and, thus, in this case the statement of Theorem 7.3 does not apply. Let us now
assume that £ contains at least one node.

We claim that Theorem 7.3 holds if it holds in the special case where 2 has only one
node. Indeed, if the path £ connecting C to C’ contains more than one node, use Propo-
sition 4.3 to break the tree G into several trees Gy, ..., G, each having a weakly connected
/-breakable pair of terminal vertices C; and C; connected by a path having at most one
node. Each tree G; satisfies Condition C,. The construction of the graphs G; is such that

D,(G) ~ Hl ®,(Gj). Moreover, the image of the /-part of E(C,C’) in ®(G;j) is the /-part
=
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of E(C;, C!). Thus, the /-part of E(C, C') is not /-divisible in ®(G) if and only if the /-part
of E(C;, C!) is not /-divisible in ®(G;) for some i.

Consider now the case where (G, M, R) is an arithmetical tree satisfying Condition
C,, with a pair of terminal vertices (C,r) and (C’,r") such that 7 4 rr’, and such that the
path 2 connecting C to C’ in G contains a unique node (D,rp). Let v denote the total
number of nodes of G. We proceed by induction on v. Assume that (G, M, R) is an arith-
metical tree with only one node (D,r). Let (Cy,r),...,(Cq,rqs) denote the vertices of
G adjacent to D. The vertices (D,r) and (C;,r;) are on a unique terminal chain 7}, with
terminal vertex of multiplicity s; := ged(r, ;). We may always order the vertices C; such
that

Ol‘d/(S1) g s g OI‘d/(Sd_1) = ord/(sd) =1

(see [Lor2], 2.7). In particular, 7 } s,4_154. Denote by (D;, s;) the terminal vertex of the chain
T;. Without loss of generality, we may assume that C = Dd and C' = D;_;. It is shown

in [Lor2], 2.1, that the group ®,(G) is isomorphic to H 7)o )7 1t follows from

Proposition 3.7 that the /-part of E(D,- 1,Dd) has order ¢°40/sa2) in @(G). Thus, the
/-part of E(Dy_1, Dy) is not divisible by 7 in ®(G).

Consider now the case where v > 1 and proceed as follows. Pick an edge e of G
such that one of the two components of G'\{e} contains a single node B, with B & D. The
component that does not contain B can be completed into a new arithmetical graph G’, as
in [Lor2], page 165. The graph G’ satisfies Condition C,, and has v — 1 nodes. Thus we
may apply the induction hypothesis and obtain that E(C, C’) is not divisible by 7 in ®(G’).
The discussion on page 165 of [Lor2] shows that ®,(G) contains ®,(G’) as a direct sum-
mand. Since E(C, C’) is not divisible by 7 in ®(G’), E(C, C’) is not divisible by / in ®(G).

Remark 7.4. The fact in Theorem 7.2 that an element of the form E(Cp, Cp) is
not divisible by / does not generalize to a statement pertaining to the group Wk ;. Indeed,
when Wk ; + @k, Example 6.6 exhibits an element of the form E(Cp, Cp) in Wk 1, namely
E(A, B), that is divisible by / in Wk ;.
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