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Introduction

Let K be a complete ®eld with a discrete valuation. Let OK denote the ring of integers
of K , with maximal ideal �t�. Let k be the residue ®eld of OK , assumed to be algebraically
closed of characteristic pZ 0. We shall call a curve in this article a smooth proper geo-
metrically connected variety X=K of dimension 1. Let A=K denote the jacobian of X=K.
Let P and Q be two K-rational points of X . The divisor of degree zero PÿQ de®nes a K-
rational point of A=K . In this article, we study the reduction of the point PÿQ in the
NeÂron model of A=K in terms of the reductions of the points P and Q in a regular model
X=OK of X=K.

Let A=K be any abelian variety of dimension g. Denote by A=OK its NeÂron model.
Recall that the special ®ber Ak=k of A=OK is an extension of a ®nite abelian group
FK :� FK�A�, called the group of components, by a smooth connected group scheme
A0

k , the connected component of zero in Ak. We denote by p : A�K� !Ak�k� the canoni-
cal reduction map. We will often abuse notation and also denote by p the composition
A�K� !Ak�k� ! FK .

In [Lor3], the author introduced two functorial ®ltrations of the prime-to-p part F
� p�
K

of the group FK . These ®ltrations are key in the complete description of all possible groups
F
� p�
K [Edi]. Filtrations for the full group FK were later introduced by Bosch and Xarles in

[B-X]. An example of a functorial subgroup of FK occurring in one of the ®ltrations is the
group CK ;L described below, where L=K denotes the minimal extension of K such that
AL=L has semistable reduction (see [Des], 5.15). More generally, let F=K be any separable
extension. Let FF denote the group of components of AF=F . The functoriality property of
the NeÂron models induces a map g : FK ! FF , whose kernel is denoted by CK;F .



Given two points P and Q in X�K�, it is natural to wonder whether it is possible to
predict when the reduction of PÿQ in FK belongs to one of the functorial subgroups
mentioned above. This question is not easy since even deciding whether the reduction of
PÿQ is trivial is not immediate. We give in this paper a su½cient condition on the special
®ber of a model X for the image of the point PÿQ in FK to belong to the subgroup CK ;L.
When this condition is satis®ed, we are able to provide a formula for the order of this
image. To explicitly compute this order, we exploit the fact that a natural pairing attached
to F is non-degenerate. We also discuss cases where the image of the point PÿQ belongs
to the subgroup Y

�3�
K of CK ;L (notation recalled in 5.6).

1. The main results

Let X=K be a curve. Let X=OK be a regular model of X=K. Let Xk :�Pv
i�1

riCi denote

the special ®ber of X and let M :� ÿ�Ci � Cj�
�

1Yi; jYv
be the associated intersection matrix.

The dual graph G associated to Xk is de®ned as follows. The vertices of G are the curves Ci

and, when j 3 h, the vertex Cj is linked in G to the vertex Ch by exactly �Cj � Ch� edges. The
degree of the vertex Ci in G is the integer di :� P

i3 j

�Ci � Cj�.

Let tR :� �r1; . . . ; rv�, so that MR � 0. We assume in this paper that
gcd�r1; . . . ; rv� � 1. The triple �G;M;R� is called an arithmetical graph. When the co-
e½cients of M are not thought of as intersection numbers, we may denote �Ci � Cj� simply
by cij. As we will recall in section 5, Raynaud has shown that the group of components
FK

ÿ
Jac�X�� is isomorphic to Ker� tR�=Im�M�, where tR : Zv ! Z and M : Zv ! Zv

are the linear maps associated with the matrices M and tR. We call the group
F�G� :� Ker�tR�=Im�M� the group of components of the arithmetical graph �G;M;R�.

Let �C; r� and �C 0; r 0� be two distinct vertices of G. Let E�C;C 0� denote the vector of
Zv with null components everywhere except for r 0=gcd�r; r 0� in the C-component, and
ÿr=gcd�r; r 0� in the C 0-component. Clearly, E�C;C 0� A Ker�tR�. The image of E�C;C 0�
in the quotient Ker� tR�=Im�M� will be called the element of F�G� associated to the pair of
vertices �C;C 0�.

Let P A X�K�. Let P A X denote the closure of P in X. The Cartier divisor P inter-
sects Xk in a smooth point of Xk (see, for instance, [L-L], 1.3). Hence, there exists a unique
component CP of Xk, of multiplicity one, such that PXXk A CP. Let now P and Q be
distinct points of X�K�. It follows from Raynaud's results recalled in section 5 that if
CP � CQ, then the image of PÿQ in FK

ÿ
Jac�X�� is trivial, and that to determine the

image of PÿQ in FK

ÿ
Jac�X�� when CP 3CQ, it is su½cient to determine the image of

the vector E�CP;CQ� in Ker� tR�=Im�M�. Thus, in the remainder of this article, we shall
usually assume that CP 3CQ.

1.1. Let us recall the following terminology. A node of a graph G is a vertex of
degree greater than 2. A terminal vertex is a vertex of degree 1. The topological space
obtained from G by removing all its nodes is the union of connected components. A chain

of G is a connected subgraph of the closure of such a connected component. In particular, a
chain contains at most two nodes of G. If a chain contains a terminal vertex, we call it a
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terminal chain. We de®ne the weight of a chain C to be the integer

w�C� :� gcd�rj;Cj a vertex on C�:

Let �C; r�; �C1; r1�; . . . ; �Cn; rn�; �C 0; r 0� be the vertices on a chain C of an arithmetical
graph, with C and C 0 nodes: then �C � C1� � �Ci � Ci�1� � �Cn � C 0� � 1. The reader will
check that gcd�r; r1� � gcd�r1; r2� � � � � � gcd�rn; r

0�. In particular, w�C� � gcd�r; r1�. When
�C; r�; �C1; r1�; . . . ; �Cn; rn� are the vertices of a terminal chain, with Cn the terminal vertex,
then gcd�r; r1� � rn. Note that if the set of vertices on a chain consists of exactly two nodes
C and C 0, it may happen that �C � C 0� > 1.

Let �C; r� and �C 0; r 0� be two distinct vertices of G. We say that the pair �C;C 0� is
weakly connected if there exists a path P in G between C and C 0 such that, for each edge
e on P, the graph Gnfeg is disconnected. Note that when a pair �C;C 0� is weakly con-
nected, then the path P is the unique shortest path between C and C 0. If a pair is not
weakly connected, we will say that it is multiply connected. A graph is a tree if and only if
every pair of vertices of G is weakly connected.

Let �C; r� and �C 0; r 0� be a weakly connected pair with associated path P. While
walking on PnfC;C 0g from C to C 0, label each encountered node consecutively by
�C1; r1�; �C2; r2�; . . . ; �Cs; rs�. (There may be no such nodes, in which case the integer s is set
to be 0.) Thus P is the union of chains: the chain C0 from C to C1, then the chain C1 from
C1 to C2, and so on. The last chain on P is the chain Cs from Cs to C 0. If there are no nodes
on PnfC;C 0g, then P is a chain from C to C 0, and if there are no vertices on PnfC;C 0g,
then by de®nition of weakly connected, �C � C 0� � 1. Let l be a prime number. We say that
the weakly connected pair �C;C 0� is l-breakable if, for all i � 0; . . . ; s, the weight w�Ci�
is not divisible by l. In particular, if the pair �C;C 0� is l-breakable, then each chain Ci

contains a vertex of multiplicity prime to l. To study the element of F�G� associated to the
pair �C;C 0�, we will break the graph G at each such vertex and study each smaller graph so
obtained individually.

Note that there is only one reduction type of curve of genus g � 1 which contains
a weakly connected pair that is not l-breakable: the type I �n , with l � 2 and n > 0. For
examples with g > 1, see 6.6.

1.2. Let �C;C 0� be a weakly connected and l-breakable pair. Let P denote the as-
sociated path between C and C 0, with nodes �C1; r1�; . . . ; �Cs; rs�. If s � 0, set l�C;C 0� :� 1.
If s > 0, de®ne l�C;C 0� as follows. Remove all edges of P from G to obtain a disconnected
graph G. Let Gi, i � 1; . . . ;m, denote the connected components of G. Let us number these
connected components in such a way that the node �Ci; ri� on the path P belongs to the
graph Gi. Let

mi :� gcd
ÿ
rj; �Dj; rj� a vertex of Gi

�
and let l�C;C 0� denote the power of l such that

ordl

ÿ
l�C;C 0�� :� maxfordl�ri=mi�;Ci a node on Pg:
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1.3. Recall that a ®nite abelian group H can be written as a product H G
Q

l prime

Hl.

The group Hl is called the l-part of H. Let h be an element of H of order m. We call
the l-part of h the following element hl of H. If lam, then hl is trivial. Otherwise, write
1 � P

l prime

alm=l
ord l�m�. Then set hl :� halm=lord l�m� . The reader will check that the element

hl does not depend on the choice of the coe½cients al. We may now state the main results
of this article.

Theorem 5.5. Let X=K be a curve. Let X=OK be a regular model of X=K with asso-

ciated arithmetical graph �G;M;R�. Let l3 p be a prime. Let P;Q A X �K� with CP 3CQ.
If the pair �CP;CQ� is weakly connected and l-breakable, then the image of the l-part of
PÿQ in FK

ÿ
Jac�X �� belongs to CK ;L, and has order l�CP;CQ�.

Theorem 6.3/6.4. Let X=K be a curve. Assume that L=K is tame. Let X=OK be a

regular model of X=K with associated arithmetical graph �G;M;R�. Let P;Q A X�K� with

CP 3CQ. If the pair �CP;CQ� is weakly connected but not l-breakable for some prime l3 p,
then the image of PÿQ in FK

ÿ
Jac�X�� does not belong to CK;L.

Note that Theorem 6.3 is only a partial converse to Theorem 5.5 since 6.3 provides
information only on the image of PÿQ and not on the image of the l-part of PÿQ.

1.4. Recall that the connected component A0
k of the NeÂron model A=OK is the ex-

tension of an abelian variety of dimension aK by the product of a torus and a unipotent
group of dimension tK and uK respectively. The integers aK , tK , and uK are called the
abelian, toric, and unipotent ranks of A=K , respectively. For each prime l dividing �L : K�,
l3p, let Kl=K denote the unique sub®eld of L with the property that �Kl :K ��lord l��L : K��.
An abelian variety has potentially good reduction if tL � 0. It is said to have potentially

good l-reduction if tKl
� 0. An abelian variety with potentially good reduction has poten-

tially good l-reduction for all primes l3 p, but the converse is false, even when p � 0.

We shall say that an element h of a group H is divisible by l, or is l-divisible if
there exists g A H such that lg � h. Note that the l-part hl of h is l-divisible if and only if
h is l-divisible.

Theorem 7.2. Let X=K be a curve. Let l3 p be a prime. Let P;Q A X�K�. Assume
that Jac�X�=K has potentially good l-reduction. Then CK ;L;l � FK

ÿ
Jac�X ��

l
. If the l-

part of the image of PÿQ in FK

ÿ
Jac�X�� is not trivial, then PÿQ is not divisible by l in

Jac�X��K�.

This article will proceed as follows. In the next three sections, we prove several
propositions on arithmetical graphs needed to compute the order in FK of elements of the
form p�PÿQ�. In particular, we introduce in the third section a very useful pairing on
FK �FK that is non-degenerate. These ®rst three sections are linear algebraic in essence
and can be read independently of the rest of the paper. In the ®fth section, we prove the ®rst
theorem stated above. In section six, we discuss a partial converse to this theorem. In the
last section, we study the case where the jacobian has potentially good l-reduction and
prove Theorem 7.2.
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2. Terminal chains

Let �G;M;R� be an arithmetical graph. As the reader may have noted, it is not easy
in general to compute the order of the group F�G�, or the order in F�G� of a given pair of
vertices of G. There is no easy criterion to determine in terms of G whether, for instance,
jF�G�j � 1 (see, however, 6.5 and 3.3). When the arithmetical graph is reduced, that is,
when all its multiplicities are equal to 1, such a criterion exists: F�G� is trivial if and only if
G is a tree. We provide in this section a su½cient condition on a pair �C;C 0� for the image
of E�C;C 0� to have order 1 in F�G�. When the arithmetical graph is reduced, a necessary
and su½cient criterion already exists. Indeed, it is shown in [Lor4], 2.3, or [Edi2], 9.2, that:

Proposition 2.1. When G is reduced, the image of E�C;C 0� has order 1 if and only if
�C;C 0� is weakly connected.

We shall see below that even in the general case, it is possible to show that certain
weakly connected pairs have order 1. After a series of preliminary lemmas on chains, we
prove in 2.7 the main result of this section, that E�C;C 0� is trivial if C and C 0 both belong
to the same terminal chain. The case where C and C 0 are consecutive vertices on a chain is
easy and is treated in the following lemma.

Lemma 2.2. Let �C; r� and �C 0; r 0� be two vertices of an arithmetical graph �G;M;R�
joined by a single edge e. Assume that Gnfeg is disconnected. Let GC denote the connected

component of Gnfeg that contains C. Let s :� gcd
ÿ
d; �D; d� vertex on GC

�
. Then the image

of E�C;C 0� in F�G� is killed by gcd�r; r 0�=s. In particular, if C and C 0 belong to the same

terminal chain, then the image of E�C;C 0� is trivial.

Proof. Multiply each column of M corresponding to a vertex �D; d� of GC by
d=s. Add all these columns to the C-column multiplied by r=s. The new matrix has the
vector

ÿÿgcd�r; r 0�=s
�
E�C;C 0� in the C-column. Hence,

ÿÿgcd�r; r 0�=s
�
E�C;C 0� belongs

to Im�M� and is thus trivial in F�G�. If C and C 0 belong to the same terminal chain, we
may without loss of generality assume that GC contains the terminal vertex of the chain.
The terminal vertex has then multiplicity s, which equals gcd�r; r 0�.

2.3. Let nZ 1. Let �C; r�; �C1; r1�; . . . ; �Cn; rn�; �C 0; r 0� be the vertices on a chain
of an arithmetical graph. Letting ÿci denote the self-intersection of Ci, we obtain an
�n� n� matrix N and a relation:

N :�

ÿc1 1 0 . . . 0

1 ÿc2 1 ..
.

0 1 . .
. . .

.
0

..

. . .
. ÿcnÿ1 1

0 . . . 0 1 ÿcn

0BBBBBB@

1CCCCCCA and N

r1

r2

..

.

rnÿ1

rn

0BBBBB@

1CCCCCA �
ÿr

0
..
.

0

ÿr 0

0BBBBB@

1CCCCCA:

If C, C1; . . . ;Cn is a terminal chain with terminal vertex Cn, then

�r1; . . . ; rn�N � �ÿr; 0; . . . ; 0�:
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It is possible to ®nd a sequence of integers b1 � 1; b2; . . . ; bn such that

�b1; . . . ; bn� �N � �0; . . . ; 0;ÿb�

for some b 2 Z. Indeed, set b1 � 1 and solve for b2 in the above equation. Once b1 and b2

are known, then it is possible to solve for b3, and so on.

Lemma 2.4. We have brn � r� bnr 0. When the chain �C; r�; . . . ; �Cn; rn� is terminal

with terminal vertex Cn, then brn � r.

Proof. Compute �b1; . . . ; bn� �N � t�r1; . . . ; rn� in two di¨erent ways.

Let us note there that the integers b1 � 1; b2; . . . ; bn; b are all positive. Indeed, if bY 0,
then brn � r� bnr 0Y 0 implies bn < 0. If bi < 0 for some i, then the equality
biriÿ1 � r� biÿ1ri implies that biÿ1 < 0, which is a contradiction since b1 > 0.

2.5. The sequence �C1; r1�; �C2; r2�; . . . ; �Cn; rn�; �C 0; r 0� is also a chain, with asso-
ciated matrix N 11, the principal minor of N obtained by removing the ®rst row and ®rst
column of N. Let d1 � 1; d2; . . . ; dnÿ1, d denote the integers associated to N 11 such that

�d1; d2; . . . ; dnÿ1�N 11 � �0; . . . ; 0;ÿd�:

Let

A :�

ÿ1 0 d1 d2 . . . dnÿ1

0 b1 b2 b3 . . . bn

..

.
0 1 0 . . . 0

..

.
0 0 1 ..

.

..

. . .
.

0

0 0 . . . . . . 0 1

0BBBBBBBB@

1CCCCCCCCA
and N 0 :�

1 0 0 . . . 0

N

0BBBBBBBB@

1CCCCCCCCA
:

The matrix AN 0 is an �n� 1� � n matrix. Using operations involving only the columns of
AN 0, it is easy to see that AN 0 is equivalent over Z to the following matrix (we shall say
that AN 0 is `column equivalent' to):

0 0 . . . 0 ÿd

0 0 . . . 0 ÿb

1 0 0 . . . 0

0 . .
. . .

. . .
. ..

.

..

.
1 0 0

0 . . . 0 1 0

0BBBBBBBB@

1CCCCCCCCA
:

Set d0 � 0.

Lemma 2.6. Let �C; r�; �C1; r1�; . . . ; �Cn; rn� be a terminal chain of an arithmetical

graph. Then det�N� � �ÿ1�nr=rn. Moreover, r divides ribj ÿ birj, for all i3 j, and
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r

r1
� ribj ÿ birj

ridjÿ1 ÿ diÿ1rj
; for all i 3 j; 1Y i; j Y n:

In particular, bnr1=rn is congruent to 1 modulo r=rn and gcd�bn; r=rn� � 1.

Proof. Recall that, with the notation introduced above, we have

�r1; . . . ; rn�N � �ÿr; 0; . . . ; 0�;
�b1; . . . ; bn�N � �0; . . . ; 0;ÿb�;

�0; d1; . . . ; dnÿ1�N � �d1; 0; . . . ; 0;ÿd�:
Recall also that b1 � d1 � 1, and that since the vertices form a terminal chain, Lemma 2.4
shows that b � r=rn and d � r1=rn. It is easy to check that rn � gcd�r; r1� and that rn divides
all ri.

Let N � :� ÿ�aij�
�

1Yi; jYn
denote the comatrix of N: N �N � NN � � det�N�In.

Multiply both sides of the three equalities above by
ÿ�aij�

�
. We ®nd that

det�N�ri � ÿai;1r for all i � 1; . . . ; n;

det�N�bi � ÿai;nb for all i � 1; . . . ; n;

det�N�di � ai�1;1 ÿ ai�1;nd for all i � 0; . . . ; nÿ 1:

In particular, det�N�rn � ÿan;1r � �ÿ1�nr. It follows from the three equalities above that

ribj ÿ rjbi � rn�ai;1aj;n ÿ aj;1ai;n�;
�ridjÿ1 ÿ rjdiÿ1�r � rn�ai;1aj;n ÿ aj;1ai;n�r1:

From the equality �ribj ÿ rjbi�r1 � �ridjÿ1 ÿ rjdiÿ1�r, we ®nd that rjribj ÿ rjbi. This con-
cludes the proof of Lemma 2.6.

As a corollary to our study of the properties of the matrix N, we may now prove the
following result.

Proposition 2.7. Let �G;M;R� be an arithmetical graph, and let

�C; r�; �C1; r1�; . . . ; �Cn; rn�
be a terminal chain of G. Then E�Ci;Cj� is trivial in F�G�, for all i; j A f1; . . . ; ng, i3 j.

Proof. The matrix M has the form

M �

�
..
.

� � � � � 1

1

N

0BBBBBBBBB@

1CCCCCCCCCA
: Let A 0 :�

Ids

A

0BBBBBBB@

1CCCCCCCA;
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where A is as in 2.5 and, if v denotes the number of vertices of G, then s :� vÿ nÿ 1. Then,
using 2.5 and the facts that d � r1=rn and b � r=rn, the reader will check that A 0M is
column equivalent to a matrix of the form

� �
� � 0 . . . 0 ÿr1=rn

1 0 . . . 0 ÿr=rn

1 . .
.

0
. .

.
0 ..

.

1 0

0BBBBBBBBB@

1CCCCCCCCCA
:

The transpose of the vector A 0E�Ci;Cj� has the form (if i < j):

1

rn
�0; . . . ; 0; diÿ1rj ÿ djÿ1ri; birj ÿ ribj; 0; . . . ; 0;�rj; 0; . . . ; 0;ÿri; 0; . . . ; 0�

(where the ®rst s coe½cients are 0). We claim that A 0E�Ci;Cj� is in the span of the
last n columns of the matrix A 0M. To prove this claim, it is su½cient to show that
1

rn
�diÿ1rj ÿ djÿ1ri; birj ÿ ribj� is an integer multiple of �ÿr1=rn;ÿr=rn�, which follows im-

mediately from Lemma 2.6. Since A 0 is invertible over Z, A 0E�Ci;Cj� is in the span of A 0M
if and only if E�Ci;Cj� is in the span of M. Hence, E�Ci;Cj� is trivial in F�G�.

We conclude this section with a key lemma used in the next sections.

Lemma 2.8. Let �C; r�; �C1; r1�; . . . ; �Cn; rn� be a terminal chain. Then

1

rr1
� 1

r1r2
� � � � � 1

rnÿ1rn
� bn

rrn
:

Proof. We proceed by induction on n. If n � 1, Lemma 2.8 holds since b1 � 1. By
induction hypothesis applied to C1; . . . ;Cn,

1

r1r2
� � � � � 1

rnÿ1rn
� dnÿ1

r1rn
:

Lemma 2.6 shows that r=r1 � �r1bnÿrnb1�=�r1dnÿ1ÿd0rn�. In other words, dnÿ1r � r1bnÿrn.
Dividing both sides by rr1rn shows that

dnÿ1

r1rn
� bn

rrn
ÿ 1

rr1
:

3. Computations using a pairing attached to F

3.1. Let us introduce in this section a pairing associated to F�G�. Let �G;M;R� be
any arithmetical graph. Let t; t 0 A F and let T ;T 0 A Ker� tR� be vectors whose images in F
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are t and t 0, respectively. Let S;S 0 A Zv be such that MS � nT and MS 0 � n 0T 0. Note that
n and n 0 are divisible by the order of t and t 0, respectively. De®ne

h ; i : F�F! Q=Z;

�t; t 0� 7! �tS=n�M�S 0=n 0� �mod Z�:

It is shown in [B-L], 2.1, that this pairing is well-de®ned and perfect (i.e., that if ht; mi � 0
for all m A F, then t � 0).

Let �C; r� and �C 0; r 0� be a weakly connected pair with associated path P. While
walking on PnfC;C 0g from C to C 0, label each encountered vertex consecutively by
�C1; r1�; �C2; r2�; . . . ; �Cn; rn�. The following proposition is proved in [B-L], 2.4.

Proposition 3.2. Keep the notation introduced above. Assume that �C;C 0� is a weakly

connected pair of G. Let g denote the image of the element E�C;C 0� in F�G�. If �D; s� and

�D 0; s 0� are any two distinct vertices on G, then let d denote the image of E�D;D 0� in F�G�.
Let Ca denote the vertex of P closest to D in G, and let Cb denote the vertex of P closest to
D 0. Assume that aY b. (Note that we may have a � b, and we may have D � Ca or D 0 � Cb.)
Then

hg; di � lcm�r; r 0� lcm�s; s 0��1=rara�1 � 1=ra�1ra�2 � � � � � 1=rbÿ1rb�:

In particular, if Ca � Cb, then hg; di � 0. Moreover,

hg; gi � lcm�r; r 0�2�1=rr1 � 1=r1r2 � � � � � 1=rnr 0�:

The existence of this explicit perfect pairing has the following interesting
consequences.

Proposition 3.3. Let �G;M;R� be any arithmetical graph. Let l be any prime. Let

�C;C 0� be a weakly connected pair such that la rr 0. Let t denote the image in F of E�C;C 0�.
Then the order of the l-part of t is greater than or equal to the maximum of the l-parts of
the weights w�C�, where C is a chain on the path from C to C 0. In particular, if �C;C 0� is not

l-breakable, then the l-part of t is not trivial in F.

Proof. Let C be any chain on the path P in G linking C and C 0 (see 1.1). Let �D; d�
and �D 0; d 0� be two consecutive vertices on C. Recall that w�C� � gcd�d; d 0�. Let t 0 denote
the image in F of E�D;D 0�. Then Proposition 3.2 implies that

ht; t 0i � lcm�r; r 0� lcm�d; d 0��1=dd 0�:

Since la rr 0, ht; t 0i has order gcd�d; d 0� in Ql=Zl. Thus, the l-parts of t and t 0 have
orders at least equal to the l-part of gcd�d; d 0�.

By de®nition, when �C;C 0� is weakly connected and not l-breakable, the path P
contains a chain C with consecutive vertices �D; d� and �D 0; d 0� such that gcd�d; d 0� is
divisible by l. Thus, in this case, the l-parts of t and t 0 are not trivial in F. Note that
it follows from Lemma 2.2 that ordl�t 0� � ordl

ÿ
gcd�d; d 0��.

Lorenzini, NeÂron model of a jacobian 125



The arithmetical graph I�2n, occurring as a type of reduction of elliptic curves, pro-
vides an example of a pair �C;C 0� where the l-part of t is equal to the maximum of the l-
parts of the weights w�C�.

Proposition 3.4. Let �G;M;R� be any arithmetical graph. Let

�C; r�; �C1; r1�; . . . ; �Cn; rn�

be a terminal chain T of G, with node C and terminal vertex Cn. Then the image t of

E�C;Cj� in F�G� is trivial for all j � 1; . . . ; n.

Proof. Since the pairing h ; i is perfect, it is su½cient, to show that t � 0, to show
that ht; si � 0 for all s A F�G�. Let s denote the image in F of E�D;D 0�, where D;D 0 are
any vertices of G, of multiplicity rD and rD 0 . If neither D nor D 0 belong to the terminal
chain T , or if D � C and D 0 B T , then Proposition 3.2 implies that ht; si � 0. Assume now
that D � Ci and D 03Cs, for all s � 1; . . . ; n. Let m � min�i; j�. Then, using 3.2 and 2.8,
we ®nd that there exist two integers b and c such that

ht; si � lcm�r; rj� lcm�ri; rD 0 � 1

rmrmÿ1
� � � � � 1

r1r

� �
� lcm�r; rj� lcm�ri; rD 0 � b

rrn
ÿ c

rmrn

� �
:

Since rnjri, we have lcm�r; rj� lcm�ri; rD 0 �b=rrn � 0 in Q=Z. If m � i, then we use the fact
that rnjr to ®nd that lcm�r; rj� lcm�ri; rD 0 �c=rirn � 0 in Q=Z. If m � j, we use again the
fact that rnjri to ®nd that lcm�r; rj� lcm�ri; rD 0 �c=rjrn � 0 in Q=Z. Thus, in all cases,
ht; si � 0. If D � Ci and D 0 � Cs, Proposition 2.7 shows that s � 0. This concludes the
proof of Proposition 3.4. The reader may use the techniques developed in the above proof
to give a di¨erent proof of Proposition 2.7.

Remark 3.5. Let �C1; r1�, �C2; r2�, and �D; r�, be three vertices on an arithmetical
graph �G;M;R�. Then

rE�C1;C2� � r2 gcd�r; r1�
gcd�r2; r1� E�C1;D� � r1 gcd�r; r2�

gcd�r2; r1� E�D;C2�:

If la rr1r2, we ®nd that the order of the l-part of E�C1;C2� divides the maximum of the
orders of the l-parts of E�C1;D� and E�D;C2�.

If C1 and C2 belong to the same terminal chain of G and if la r1r2, we ®nd, using 2.7
and 3.4, that the orders of the l-parts of E�C1;D� and E�C2;D� are equal.

3.6. If �D; r� is a node and �Cn; rn� and �C 0n 0 ; r 0n 0 � are terminal vertices on two ter-
minal chains attached to D, then we shall call �Cn;C

0
n 0 � an elementary pair. In the case of an

elementary pair, both rn and r 0n 0 divide r and we ®nd that as vectors in Zv,

r

lcm�rn; r 0n 0 �
E�Cn;C

0
n 0 � � E�Cn;D� � E�D;C 0n 0 �:
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Using Proposition 3.4, we see that E�Cn;C
0
n 0 � has order dividing r=lcm�rn; r

0
n 0 �. We shall

compute below the precise order of such a pair of vertices.

Let �C;C 0� be any pair in a graph G, and let t denote the image of E�C;C 0� in F.
When the pair �C;C 0� is weakly connected, the perfectness of the pairing h ; i reduces the
sometimes di½cult computation of the order of t in F to a series of easier computations.
Indeed, the perfectness of the pairing implies that the order of t is equal to the maximum of
the orders of the elements of Q=Z of the form ht; mi, where m ranges over all elements of
F. Since ht; mi is very easy to compute when �C;C 0� is weakly connected, the order of t
can be easily computed. We illustrate this technique in our next proposition.

Consider the following elementary pair �Cn;C
0
n 0 �. Let �D; r� be a node of the graph G.

Let �D; r�, �C1; r1�; . . . ; �Cn; rn� be a terminal chain T on G with terminal vertex Cn. Let
�D; r�, �C 01; r 01�; . . . ; �C 0n 0 ; r 0n 0 � be a terminal chain T 0 on G with terminal vertex C 0n 0 . Let GD

denote the connected component of D in Gnfedges of T WT 0g. Let

m :� gcd
ÿ
rj; �Dj; rj� any vertex of GD

�
:

Note that mjr. We know from the relation MR � 0 that jD �Djr � r1 � r 01 � z, for some
integer z divisible by m. Let t A F�G� denote the image of E�Cn;C

0
n 0 �. It follows from

Proposition 3.2 that

ht; ti � lcm�rn; r
0
n 0 �2�1=rnrnÿ1 � � � � � 1=r1r� 1=rr 01 � � � � � 1=r 0n 0ÿ1r 0n 0 �:

Let fb1; . . . ; bng denote the sequence of integers associated in 2.3 to the terminal chain T .
Lemma 2.8 shows that

�1=rnrnÿ1 � 1=rnÿ1rnÿ2 � � � � � 1=r1r� � bn=rrn:

Lemma 2.6 shows that bn and r=rn are coprime. The same arguments show that

�1=r 0n 0rn 0ÿ1 � 1=r 0n 0ÿ1r 0n 0ÿ2 � � � � � 1=r 01r� � b 0n 0=rr 0n 0 ;

and for any truncated sum,

�1=r 0n 0r
0
n 0ÿ1 � � � � � 1=r 0i�1r 0i� � ci=r 0i r

0
n 0 ;

for some integer ci with gcd�ci; r
0
i=r 0n 0 � � 1. It follows that

ht; ti � lcm�rn; r
0
n 0 �2�bn=rrn � b 0n 0=rr 0n 0 �:

Proposition 3.7. Keep the notation introduced above.

(a) If la rnr 0n 0 , then the l-part of the order of ht; ti in Q=Z is equal to lord l�r=z�. The

l-part of the order of t in F�G� is equal to lord l�r=m�.

(b) If ordl�rn� � ordl�r 0n 0 � > 0, then the l-part of the order of ht; ti in Q=Z is equal to

lord l�r=z�. The l-part of the order of t in F�G� is equal to lord l�r=lcm�rn;r
0

n 0 ��.
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(c) If ordl�rn� < ordl�r 0n 0 �, then the l-part of the order of ht; ti in Q=Z and the l-part

of the order of t in F�G� are both equal to lord l�r=lcm�rn;r
0

n 0 ��.

Proof. Using 3.6, we ®nd that, if ordl

ÿ
r=lcm�rn; r

0
n 0 �
� � 0, then the l-part of t is

trivial. Thus, Proposition 3.7 holds. Assume now that ordl

ÿ
r=lcm�rn; r

0
n 0 �
�
> 0. Recall that

ht; ti � lcm�rn; r
0
n 0 �2

rnr 0n 0
bnr 0n 0 � b 0n 0rn

r

� �
:

Lemma 2.6 shows that bnr1 ÿ rn � er and b 0n 0r
0
1 ÿ r 0n 0 � f r for some integers e; f . Thus

r 01�bnr 0n 0 � b 0n 0rn� � r 01bnr 0n 0 � � f r� r 0n 0 �rn

� �jD �Djrÿ zÿ r1�bnr 0n 0 � � f r� r 0n 0 �rn

� �jD �Djrÿ z�bnr 0n 0 ÿ �er� rn�r 0n 0 � � f r� r 0n 0 �rn:

It follows that modulo Z,

r 01
gcd�rn; r

0
n 0 �

lcm�rn; r 0n 0 �
ht; ti � r 01�bnr 0n 0 � b 0n 0rn�=r1ÿzbnr 0n 0=r:

Since rn � gcd�r1; r� and bnr1 ÿ rn � er, we ®nd that gcd�l; bn� � 1. Since r 0n 0 � gcd�r 01; r�,
ordl�r 0n 0 � � ordl�r 01�. If ordl�r 0n 0 � > ordl�rn�, then the relation r1 � r 01 � z � jD �Djr shows
that in this case ordl�z� � ordl�rn�. Part (c) of Proposition 3.7 follows in this case from 3.6
since the order of t is at least equal to the order of ht; ti.

Assume now that ordl�r 0n 0 � � ordl�rn�. Then, clearly, the l-part of the order of ht; ti
in Q=Z is equal to lord l�r=z�. Let �C; rC� be a vertex of G. Let m denote the image in F of
E�Cn;C�. Assume ®rst that C does not belong to the shortest path P in G from Cn to C 0n 0 .
Then

ht; mi � lcm�rn; r
0
n 0 � lcm�rn; rC��1=rnrnÿ1 � � � � � 1=r1r�

� lcm�rn; r
0
n 0 � lcm�rn; rC�bn=rrn:

If ordl�rn� > 0, then there exists a vertex C outside of P whose multiplicity is not divisible
by l. For such C, we ®nd that the l-part of the order of ht; mi is divisible by the l-part of
r=lcm�rn; r

0
n 0 �. Thus, 3.7 (b) follows again in this case from 3.6.

Let us then assume that la rnr 0n 0 . Then, for any C not on P, the l-part of the order of
ht; mi equals lord l�r=rC�. We are going to show that the l-part of the order of t in F�G� is
equal to lord l�r=m� by showing that lord l�r=m� is the maximum of the orders of the l-parts of
the elements ht; mi, with m A F. If C belongs to the chain from Cn to D, then it follows
from 2.7 and 3.4 that m � 0, so that ht; mi � 0. If C � C 0i for some i, write

1=r 0i r
0
iÿ1 � � � � � 1=r 01r � �1=r 0n 0r

0
n 0ÿ1 � � � � � 1=r 01r� ÿ �1=r 0n 0r

0
n 0ÿ1 � � � � � 1=r 0i�1r 0i�

� b 0n 0=rr 0n 0 ÿ ci=r 0i r
0
n 0 :
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It follows that

ht; mi � lcm�rn; r
0
n 0 � lcm�rn; r

0
i��bn=rrn � b 0n 0=rr 0n 0 ÿ ci=r 0i r

0
n 0 �

� lcm�rn; r
0
n 0 � lcm�rn; r

0
i��bn=rrn � b 0n 0=rr 0n 0 �:

Using the computation of ht; ti done above, we ®nd that when C � C 0i , the l-part of the
order of ht; mi is at most lord l�r=z�, and ordl�r=z�Y ordl�r=m�. It follows that the l-part of
the order of ht; mi is at most lord l�r=m� for all m A F of the form image of E�Cn;C�. By
de®nition of m, there exists a vertex �C; rC� outside of the path P whose multiplicity is such
that ordl�rC� � ordl�m�. Thus for this vertex C, the l-part of the order of ht; mi equals
lord l�r=m�. To conclude the proof of 3.7 (a), it remains to show that when la rn, the set of
elements of F of the form m as above generates the l-part of the group F. By construction,
the l-part of F is isomorphic to Ker� tR�nZl=Im�M�nZl. Since the multiplicity of Cn is
coprime to l, it is invertible in Zl, and our claim follows.

Example 3.8. Consider the following graphs.

The pair E�C;C 0� has order 4 in F�G1�, and order 2 in F�G2�.

Corollary 3.9. Keep the notation introduced above. If either (a) la rnr 0n 0 and
ordl�z� � ordl�m�, or (b) ordl�z� � ordl�rn� � ordl�r 0n 0 � > 0 or (c) ordl�rn� < ordl�r 0n 0 �,
then t is not divisible by l in F.

Proof. Given any two elements t and s of F of orders t and s, respectively, it is easy
to check that the order of the element ht; si divides gcd�t; s�. Hence, if t � lx in F, then
ht; ti � lht; xi is killed by t=l. Now let t be the image of an elementary pair, as in 3.7.
Under our hypotheses, Proposition 3.7 shows that lord l�t� divides the order of ht; ti. Thus,
t is not divisible by l.

The reader will ®nd in 6.6 an explicit example where la rnr 0n 0 and ordl�z� > ordl�m�,
and where t is divisible by l in F. Note that it is not true in general that if la rnr 0n 0 and t is
not divisible by l in F, then ordl�z� � ordl�m�.

As a last example of the usefulness of the pairing in providing information on the
order of elements in F, let us consider the following situation. Let �G;M;R� be an arith-
metical graph with a weakly connected pair of terminal vertices �Cn;C

0
m� such that the

unique path P of G that connects Cn and C 0m has the following vertices:

f�Cn; rn�; �Cnÿ1; rnÿ1�; . . . ; �C1; r1�; �D; r�g

is a terminal chain with node D, f�D; r�; �D1; t1�; . . . ; �Dk; tk�; �D 0; s�g is a chain with
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exactly two nodes D and D 0, and f�D 0; s�; �C 01; s1�; . . . ; �C 0mÿ1; smÿ1�; �C 0m; sm�g is a terminal
chain with node D 0 and terminal vertex C 0m. The reader will ®nd an explicit example of such
a graph in 6.6.

Proposition 3.10. Let �G;M;R� be an arithmetical graph with a weakly
connected pair of terminal vertices �Cn;C

0
m� as above. Assume that ordl�ti�Z ordl�r� for all

i � 1; . . . ; k, and that ordl�s� > ordl�r�. Assume also for simplicity that

ordl�rn� � ordl�sm� � 0:

Let t denote the image of E�Cn;C
0
m� in F�G�. Then the order of t is divisible by lord l�rs�.

Proof. Let a :� ordl�r� and a� b :� ordl�s�. The relations t1 divides r� t2, t2

divides t1 � t3; . . . ; tq divides tqÿ1 � s, show that the sequence

slÿa; tkl
ÿa; . . . ; t1l

ÿa; rlÿa

can be continued using Euclid's algorithm with t1l
ÿa and rlÿa into a sequence

S :� fslÿa; tkl
ÿa; . . . ; t1l

ÿa; rlÿa; u1; . . . ; uwg;

as in [Lor2], 2.4, and that this sequence S can be considered as the sequence of multi-
plicities of a terminal chain of some arithmetical graph. In particular, Lemma 2.8 shows
that

1

uwuwÿ1
� � � � � 1

u2u1
� 1

u1rlÿa �
1

rlÿat1l
ÿa � � � � �

1

tkl
ÿaslÿa �

b

slÿauw

for some integer b coprime to slÿa=uw, and

1

uwuwÿ1
� � � � � 1

u2u1
� 1

u1rlÿa �
g

rlÿauw

for some integer g coprime to rlÿa=uw. Using Proposition 3.2, we ®nd that

lcm�rn; sm�ÿ2ht; ti � 1

rnrnÿ1
� � � � � 1

r1r

� �
� 1

rt1
� � � � � 1

tkÿ1tk
� 1

tks

� �

� 1

ss1
� � � � � 1

smÿ1sm

� �
:

Lemma 2.8 implies that there exist integers cn and dm coprime to l such that

lcm�rn; sm�ÿ2ht; ti � cn

rrn

� blÿa

suw

ÿ glÿa

ruw

� �
� dm

ssm

:

Regarded as elements in Ql=Zl, cn=rrn has order la, dm=ssm has order la�b, g=laruw has
order at most l2a. Since b > 0, la b and, thus, b=lasuw has order l2a�b. Since a > 0, we
®nd that ht; ti has order l2a�b in Ql=Zl, which concludes the proof of Proposition 3.10.
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3.11. For later use in 6.6, let us note the following fact. The details are left to the
reader. Let �D; r� and �D 0; s� be two nodes on a chain C of a graph G. Let t denote the
image of E�D;D 0� in F. Assume that l divides the weight w�C�. Then the l-part of the
order of t in F may be non-trivial, but the l-part of the order of ht; ti is always trivial.

4. A splitting of the group of components

Let �G;M;R� be an arithmetical graph. Fix a prime l. Let Fl�G� denote the l-part
of the group of components F�G�. Let �D; r� be a vertex of G such that GnfDg is not
connected. Our aim in this section is to establish an isomorphism between Fl�G� and the
product of the l-parts of the groups of components of arithmetical graphs associated to the
connected components of GnfDg.

Construction 4.1. Label the connected components of GnfDg by G1; . . . ;Gt. Label
the vertices of Gi adjacent in G to D by �Ci;1; ri;1�; . . . ; �Ci; si

; ri; si
�. Assume that t > 1. For

i � 1; . . . ; t, let gi denote the greatest common divisor of r and the multiplicities of all
vertices of Gi.

Construct a new connected arithmetical graph Gi associated to Gi as follows. Start
with Gi W fDg. Give to D the multiplicity r=gi. Give to a vertex in Gi its multiplicity in G

divided by gi. Let ci denote the least integer such that cirÿ
Psi

j�1

�Cij �D�rij Z 0. The integer

ci will be the self-intersection of D in Gi.

If r divides
Psi

j�1

�Cij �D�rij, then the graph Gi :� Gi W fDg with multiplicities

as above is an arithmetical graph. If r does not divide
Psi

i�1

�Cij �D�rij, then let

r̂i :� cirÿ
Psi

j�1

�Cij �D�rij

 !
=gi. Construct a terminal chain T using �r=gi; r̂i� and Euclid's

algorithm as in [Lor2], 2.4. The graph Gi consists then in the graph Gi W fDg, with the
chain T attached to D. We shall say that the graph G is l-breakable at �D; r� if la r and
t > 1.

Example 4.2. Let G be the following graph.

Let D denote the central vertex of multiplicity 6. Then GnfDg has 3 components G1, G2

and G3, and the above procedure produces 3 new arithmetical graphs:
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aaa aaaa aaaaG1 G2 G3

Note that jF�G1�j � 2, jF�G2�j � 8, and jF�G3�j � 1. Our next proposition shows then
that the only primes that can divide jF�G�j are 2 or 3. One may compute that the full group
F�G� has order 144.

Proposition 4.3. Let �G;M;R� be any arithmetical graph. Let l be a prime. Assume
that G is l-breakable at a vertex �D; r�. Let G1; . . . ;Gt denote the arithmetical graphs

associated as in 4.1 to the components of GnfDg. Then there exists an isomorphism

a : Fl�G� !
Qt
i�1

Fl�Gi�:

Let �C1; r1� and �C2; r2� be any two vertices of G. If C1 and C2 belong to the same component

of GnfDg, say to Gj, or if C1 A Gj and C2 � D, then we denote by E�C1;C2� and E�C1;D�
both the elements of F�G� and the corresponding elements of F�Gj�. Then the l-part of

E�C1;C2� is mapped under a to the element of
Qt
i�1

Fl�Gi� having the l-part of E�C1;C2� in

the j-th coordinate, and 0 everywhere else.

Proof. Let Ni, i � 1; . . . ; t, denote the square submatrix of the intersection matrix M

corresponding to the vertices of G that belong to Gi. The matrix M has the following form:

�D �D� � . . . . . . �
� N1 0 . . . 0
..
.

0 N2 0 ..
.

..

. ..
. . .

.
0

� 0 . . . 0 Nt

0BBBBB@

1CCCCCA
(in particular, the ®rst column is the `D-column'). Multiply the ®rst row by r, and add to it
the sum of all other rows, each multiplied by its corresponding multiplicity. Perform a
similar operation on the ®rst column of M, to obtain a matrix M 0 of the form

0 0 . . . . . . 0

0 N1

..

.
N2

..

. . .
.

0 Nt

0BBBBB@

1CCCCCA:
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Since la r, the row and column operations described above are permissible over Zl. The
module Ker� tR�nZ Zl is thus the direct sum of t Zl-submodules Vi, i � 1; . . . ; t, where

Vi :� L
C AGi

Zlr
ÿ1E�C;D�:

Let Wi denote the Zl-span of the column vectors of Ni, so that Im�M�nZlG
Lt

i�1

Wi. Then

Fl�G�G
Lt

i�1

Vi=Wi:

We claim that Fl�Gi�GVi=Wi. Indeed, the intersection matrix Mi associated to Gi has the
following form:

� 1

1 . .
. . .

.

. .
. � 1

1 �D �D� � . . .

�
..
.

Ni

0BBBBBBB@

1CCCCCCCA or

�D �D� . . . �
..
.

�
Ni

0BBB@
1CCCA;

where the case on the right occurs if Gi � Gi t fDg (see 4.1). Multiply the D-row by r=gi,
and add to it all other rows multiplied by their corresponding multiplicities. Perform a
similar operation on the columns of Mi to get a matrix M 0

i of the form

� 1 0

1 . .
. . .

. ..
.

. .
. . .

.
1 ..

.

1 � 0

0 . . . . . . 0 0 . . . 0

..

.
Ni

0

0BBBBBBBBBBB@

1CCCCCCCCCCCA
or

0 . . . 0
..
.

0
Ni

0BB@
1CCA:

In the case of the ®rst matrix M 0
i , the top left corner can be further reduced to:

0 ÿb 0

1 . .
.

0 ..
.

. .
. . .

. ..
. ..

.

1 0 0

0 . . . . . . 0 0 . . . 0

..

.
Ni

0

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
;
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where b � ÿr=gcd�r; r̂i� (see the proof of 2.7; note that gcd�r; r̂i� is the terminal multiplicity
of the terminal chain attached to D in Gi). Since la r, we ®nd that in both cases,

Fl�Gi�G
L

C AGi

Zlr
ÿ1E�C;D�=Im�Ni�:

Therefore, we have an isomorphism between Fl�Gi� and Vi=Wi, where the l-part of
E�C;D� in Fl�Gi� is mapped to the l-part of the element E�C;D� in Vi=Wi HFl�G�. We
leave it to the reader to compute the image of E�C1;C2� under the above isomorphism.
This concludes the proof of Proposition 4.3.

We now use Proposition 4.3 to prove the following important theorem.

Theorem 4.4. Let �G;M;R� be any arithmetical graph. Let l be any prime. Let �C; r�
and �C 0; r 0� be a weakly connected and l-breakable pair of vertices of G with la rr 0 and

associated integer l�C;C 0� as in 1.2. Then the l-part of E�C;C 0� has order l�C;C 0� in

F�G�.

Proof. Suppose that both C and C 0 are not terminal vertices of G. Then by
hypothesis the graph is l-breakable at C into two or more arithmetical graphs. Denote by
G 0 the new arithmetical graph that contains C 0 (graph constructed while breaking G). Then
the l-part of E�C;C 0� in G has the same order as the l-part of E�C;C 0� in G 0. Since
�C;C 0� is weakly connected, C lies on a terminal chain T of G 0, and its multiplicity is still
coprime to l. Moreover, �C;C 0� is a weakly connected l-breakable pair of G 0. Denote by D

the terminal vertex of T . If C 3D, we ®nd using Remark 3.5 that the l-part of E�C;C 0�
has the same order as the l-part of E�D;C 0�. The pair �D;C 0� is clearly a weakly connected
l-breakable pair of G 0. Thus, to prove Theorem 4.4 for �C;C 0� in G, it is su½cient to prove
it for pairs where one vertex is a terminal vertex, say the vertex C.

Let P denote the path associated to the weakly connected pair �C;C 0�.
(Note that if PnfC;C 0g contains no vertices, the theorem follows from 2.2.) Let
�C1; r1�; �C2; r2�; . . . ; �Cs; rs� be the nodes on PnfC;C 0g, as discussed in 1.1. If s � 0, then
C and C 0 belong to the same terminal chain of G, and Theorem 4.4 follows from 2.7. If
s � 1 and C 0 is not a terminal vertex, we may apply the reduction step described at the
beginning of the proof and assume without loss of generality that C 0 is a terminal vertex.
Then we can apply 3.7 to show that our statement holds in this case.

We proceed by induction on the number s of nodes on P. Let m > 1 and assume that
Theorem 4.4 holds for sYmÿ 1. Let �C;C 0� be a pair whose associated path P contains
m nodes. Since the pair is l-breakable, there exists a vertex �D; rD� on P with la rD and
such that both components of PnfDg contain at most mÿ 1 nodes Ci. (Note that one
component may contain no nodes such as, for instance, when rD � C1.) Break the graph G
at D. Call G1 the arithmetical graph associated to the connected component of GnfDg
which contains C. Call G2 the arithmetical graph that contains C 0. The pairs �C;D� and
�D;C 0� are weakly connected and l-breakable pairs of G1 and G2, respectively. We may
thus apply the induction hypothesis to both pairs. To conclude the proof of Theorem 4.4,
we need only to show that the order of the l-part of E�C;C 0� is equal to the maximum of
the orders of the l-parts of E�C;D� and E�D;C 0�. Note that 3.5 only shows that the order
of E�C;C 0� divides the maximum of the orders of E�C;D� and E�D;C 0�. To prove our
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claim, we need to use the fact that breaking the graph G at D produces a splitting of F�G�l,
with F�G1�l and F�G2�l as direct summands (4.3).

5. The subgroups CK,L and YK , l
[3]

Let X=K be a curve. We recall below Raynaud's description of the group FK and of

the map p in terms of a regular model X=OK of X=K. Let Xk �
Pv
i�1

riCi, and assume

that gcd�r1; . . . ; rv� � 1. Let L :�Lv

i�1

ZCi denote the free abelian group generated by the

components Ci, i � 1; . . . ; v. Let L� :� HomZ�L;Z�, and let fx1; . . . ; xvg denote the dual

basis of L, so that xi�Cj� � dij. Let tR : L� ! Z be the map
Pv
i�1

aixi 7!
Pv
i�1

airi. Consider the

following diagram:

L ���!i Pic�X� ���!res
Pic�X � ���!deg

Z



 ???yf

???yc






L ���!m L� ���! L�=m�L� ���!tR

Z:

The map i is de®ned as follows: i�Cj� :� curve Cj in X, where the curve Cj is viewed as
an element of Pic�X�. The map res restricts a divisor of X to the open set X of X. The
map res is surjective because the scheme X is regular. The map deg is de®ned as follows:

deg
Ps

i�1

aiPi

� �
:�Ps

i�1

ai�K�Pi� : K�, where K�Pi� is the residue ®eld of Pi in X . We denote

by Pic0�X� the kernel of the map deg. The intersection matrix M of Xk can be thought
of as a bilinear map on L�L and, therefore, induces a map m : L!L� de®ned by

m�Ci� :�Pv
j�1

�Ci � Cj�xj. Then tR � m � 0. Let D be an irreducible divisor on X, and de®ne

f�D� :�Pv
j�1

�Cj �D�xj. The map c is the natural map induced by f. It is well-known that

the diagram above is commutative.

One easily checks that Ker� tR�=m�L� is the torsion subgroup of L�=m�L�. Raynaud
[BLR], 9.6, showed that the group of components FK of the jacobian A=K of the curve
X=K is isomorphic to the group Ker� tR�=m�L�. It follows from this description that the
group FK can be explicitly computed using a row and column reduction of the intersection
matrix M (see [Lor1], 1.4). Since the residue ®eld k is algebraically closed, A�K� � Pic0�X�.
Raynaud ([BLR], 9.5/9 and 9.6/1) has shown that the reduction map p : A�K� ! F corre-
sponds to the restricted map c : Pic0�X� ! Ker�tR�=m�L�. Thus, given two points P and
Q in X�K�, the image of PÿQ in the group FK is trivial if CP � CQ, and can be identi®ed
with the image of E�CP;CQ� in F�G� when CP 3CQ. To prove Theorem 5.5 below, we
need to recall the following facts.

5.1. Let X=OK be any regular model of X=K. Let F=K be a ®nite extension.
Let Y=OF denote the normalization of the scheme X�Spec �OK � Spec �OF �. Let b : Y! X
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denote the composition of the natural maps

Y! X�Spec �OK � Spec �OF � ! X:

Let r : Z! Y denote the minimal desingularization of Y. To recall the descriptions of
the maps r and b, we need the following de®nition. Let C1; . . . ;Cm be smooth irreducible

components of the special ®ber Xk. The divisor C :�Pm
i�1

Ci is said to be a Hirzebruch-Young

string if the following four conditions hold: 1) g�Ci� � 0, for all i � 1; . . . ;m, and 2)
�Ci � Ci�Yÿ2, for all i � 1; . . . ;m, and 3) �Ci � Cj� � 1 if ji ÿ jj � 1, and 4) �Ci � Cj� � 0
if ji ÿ jj > 1.

Let D and D 0 be two reduced e¨ective divisors on X with no irreducible component
in common. Recall that D and D 0 meet at a point P with normal crossings if the local
intersection number �D �D 0�P is equal to 1. In particular, P is a smooth point on both D

and D 0. We say that two e¨ective divisors meet with normal crossings if they meet with
normal crossings at each intersection point. We say that Xk has normal crossings of every
singular point of Xred

k is an ordinary double point.

Given any integer m prime to p, let us denote by Fm=K the unique Galois extension of
K of degree m. We shall call F=K an l-extension of K if �F : K � is a power of l.

The following facts are well known; we state them without proof (see for instance
[BPV], Theorem 5.2, when X=C is a surface).

Facts 5.2. Let q be a prime, q3 p. Let F :� Fq. Let �C; r� be a component of Xk.

. The map b : Y! X is rami®ed only over the divisor R :� P
gcd�q; ri��1

Ci.

. If qa r, then bÿ1�C� �: D is irreducible and the restricted map bjD : D! C is an
isomorphism. The curve D has multiplicity r in Yk.

. Let P A Y be a point such that b�P� A R. If b�P� is a smooth point of Xred
k , then P

is regular on Y.

. Let P A Y be such that b�P� is the intersection point of exactly two components
C and C 0 of R. If C and C 0 meet with normal crossings at b�P�, then the divisor

rÿ1�P� :� Pm�P�
i�1

Ei is a Hirzebruch-Young string. Let P A DXD 0, where D and D 0 are the

preimages of C and C 0 in Yk. Write ~D for the strict transform of D in Z. Then:ÿ
rÿ1�P� � ~D

� � �E1 � ~D� � 1 � �Em�P� � ~D 0� � ÿrÿ1�P� � ~D 0
�
:

Moreover,
ÿ
rÿ1�P� � E� � 0 if E is an irreducible component of Zk with E 3 ~D; ~D 0.

. If qjr and C XR3j, then the restricted map bjbÿ1�C� : bÿ1�C� ! C is a morphism
of degree q rami®ed over jC XRj points of C. If C intersects R with normal crossings in at
least one point, then D :� bÿ1�C� is irreducible and the curve D has multiplicity r=q in Yk.
When C is smooth and meets R with normal crossings, then D is smooth and its genus is
computed using the Riemann-Hurwitz formula.
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. If qjr and C XR � j, then b : bÿ1�C� ! C is an etale map and each irreducible
component of bÿ1�C� has multiplicity r=q in Yk. If bÿ1�C� is not irreducible, then it is
equal to the disjoint union D1 t � � � tDq of q irreducible curves, and each restricted map
bjDj

: Dj ! C is an isomorphism.

. If Xk has smooth components and normal crossings, then Zk has smooth compo-
nents and normal crossings.

Lemma 5.3. Let X=K be a curve with a regular model X=OK and associated arith-

metical graph �G;M;R�. Let l3 p be a prime. Let �C;C 0� be a weakly connected pair with

la rr 0. Let F :� Fl and consider the associated map b � r : Z! X. Since la rr 0, the pre-
images of C and C 0 in Y are irreducible, and we also denote them by C and C 0. We will also

denote by C and C 0 the strict transforms of C and C 0 in Z.

(a) Assume that the pair �C;C 0� is l-breakable in G. Then �C;C 0� is also weakly

connected and l-breakable in the graph of Z.

(b) Assume that the pair �C;C 0� is not l-breakable in G. Then �C;C 0� is a multiply

connected pair in the graph of Z.

(c) Let �G 0;M 0;R 0� denote the arithmetical graph associated with the regular model Z.
Let tK and tF denote respectively the elements of FK and FF corresponding to the images of

E�C;C 0� in Ker�tR�=m�L� and Ker� tR 0�=m 0�L 0�. Then tF is the image of tK under the

natural map g : FK ! FF .

Proof. Note that, by de®nition of weakly connected, two curves of the path P
between C and C 0 that intersect do intersect with normal crossings. (Note on the other
hand that our hypothesis allows other singularities on each component.) The weakly con-
nected pair �C;C 0� is l-breakable if and only if no two consecutive vertices on the path P
have multiplicity divisible by l. The ®rst two parts of the lemma follow immediately
from 5.2.

To prove (c), let us pick a point P of degree r and a point Q of degree r 0 on the
scheme X such that the closures P and Q of P and Q in X each intersect Xk in a single
point, on C and C 0, respectively. Let c :� gcd�r; r 0�. Then �r 0Pÿ rQ�=c belongs to Pic0�X �
and its image in FK is identi®ed with the image of E�C;C 0� in Ker� tR�=m�L�. Since F=K is
Galois of degree coprime to r and r 0, the points P and Q in X de®ne two points P 0 and Q 0

in XF , also of degree r and r 0, respectively. Thus �r 0P 0 ÿ rQ 0�=c belongs to Pic0�XF � and
its image in FF is identi®ed with the image of E�C;C 0� in Ker� tR 0�=m 0�L 0�. Consider the
diagram

Pic0�X � ���! Pic0�XF �???y ???y
FK ���! FF ;

where the top horizontal map is the natural map b induced by XF ! X , and the bottom
horizontal map is the natural map g. Then this diagram is commutative. It is easy to check
that b�r 0Pÿ rQ� � r 0P 0 ÿ rQ 0, thus proving (c).
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Given any curve X=K (resp., any abelian variety A=K), we let L=K denote the
extension minimal with the property that XL=L (resp., AL=L) has semistable reduction.

Lemma 5.4. Let A=K be an abelian variety. Let t A FK . Then t A CK;L if and only if

there exists a ®nite extension F=K such that t A CK;F .

Proof. It is clear that CK;F LCK;FL. It follows from the fact that AL=L has semi-
stable reduction that the canonical map FL ! FFL is injective. Hence, CK;F LCK ;L.

Theorem 5.5. Let X=K be a curve with a regular model X=OK and associated

arithmetical graph �G;M;R�. Let l3 p be a prime. Let �C;C 0� be a weakly connected l-
breakable pair with la rr 0. Then the l-part of the image of E�C;C 0� in FK

ÿ
Jac�X �� belongs

to CK;L and has order l�C;C 0�.

Proof. Let P denote the path linking C and C 0. Let F=K be any l-extension. Let
b � r : Z! X be the associated base change and desingularization map as in 5.1. Denote
again by C and C 0 the preimages in Y of the components C and C 0 in X as well as their
strict transform in Z. It follows from 5.3 that the pair �C;C 0� is also weakly connected
and l-breakable in Z. Thus, the order of the l-part of the image of E�C;C 0� can be com-
puted using Theorem 4.4.

Let us now consider the nodes on the path P 0 linking C and C 0 in Z. If D is a vertex
of P 0 such that �b � r��D� is a node of P, then D is a node on P 0. If D is a node on P 0 such
that �b � r��D� is not a node of P, then the component �b � r��D� is not smooth. The reader
will note that after an extension of degree ld , the multiplicity of the preimage in Y of a
component �C; r� on the path P is equal to rlÿmin�d;ord l�r��. De®ne m to be the power of l
such that

ordl�m� :� maxfordl�r�; �C; r� a component on Pg:
It follows that over Fm, all the nodes of the path P 0 linking C and C 0 in Z have multiplicity
prime to l. Thus, Theorem 4.4 shows that the image of E�C;C 0� has trivial l-part in FFm

.
Therefore, the l-part of the image of E�C;C 0� in FK belongs to CK ;Fm

. Thus, Lemma 5.4
implies that the l-part of the image of E�C;C 0� in FK belongs to CK ;L. Note that it is not
always true that Fm LL. This concludes the proof of Theorem 5.5.

5.6. Let us recall now the description of the ®rst functorial subgroup of FK;l

appearing in the ®ltration

Y
�3�
K;l LCK ;L;l LYK ;l LFK ;l

introduced in [Lor3], 3.21. Let A=K be an abelian variety. Let Tl denote the Tate module
TlA, l3 p. Let Dl :� Ql=Zl. Let IK :� I�K=K�. There is a natural isomorphism

fK;l : FK;l ! E :� �Tl nDl�IK

T IK

l nDl

:

Given any submodule X of Tl, let fX : X nQl ! Tl nDl denote the natural map. We
denote by t�X � the subgroup of E generated by the elements x A �Tl nDl�IK such that

there exists ~x A X nQl with fX �~x� � x. Consider the submodules Wl;L LT IL

l LTl, where
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Wl;L is canonically isomorphic to the Tate module of the maximal torus TL in the con-
nected component of the NeÂron model of AL=L. Then, by de®nition ([Lor3], 3.8),

fK;l�Y�3�K;l� � t�Wl;L� and fK;l�CK;L;l� � t�T IL

l �:

As we shall see in 5.12, the description of the elements of Y
�3�
K ;l seems to be more compli-

cated than the description of the elements of CK ;L; l.

Let F=K be any ®nite separable extension. Denote by AF=OF the NeÂron model of
AF=F . Let AF ;k=k denote its special ®ber, with connected component A0

F ;k. Let TF HA0
F ;k

denote the maximal torus of A0
F ;k. Denote by pF : A�F� !AF ;k�k� the reduction map.

Lemma 5.7. Let A=K be an abelian variety with purely additive reduction. Let l3 p
be any prime. Let t A FK;l. Let t denote the unique element of A�K�tors;l whose image in FK

is t. The element t belongs to the subgroup Y
�3�
K;l if and only if there exists a ®nite separable

extension F=K such that pF �t� belongs to TF .

Proof. When A has purely additive reduction, T IK

l � �0� and the canonical reduc-
tion map A�K�tors; l ! FK ;l is an isomorphism. Consider the map

g : A�K�tors;l ! �Tl nDl�IK

de®ned as follows. If x A A�K�tors;l, pick fxigyi�1 A Tl such that x � xj for some j A N. Then

set g�x� :� class of �fxigyi�1 n lÿj�. That the map g is well de®ned and an isomorphism is
proved in [Lor3], 3.4. When A has purely additive reduction, the canonical reduction map
A�K�tors;l ! FK ;l factors through �TlnDl�IK as follows:

A�K�tors; l ��!g �Tl nDl�IK ��!fÿ1
K; l

FK;l:

Let t A FK;l. Let ~t :� ftigyi�1 n lÿr A TlnQl be such that its image in �Tl nDl�IK is
fÿ1

K;l�t�. Then tr A A�K� is the preimage of t under the reduction map. Thus, if t A Y
�3�
K;l,

then by hypothesis we may choose ~t in Wl;L nQl, so that pL�tr� A TL.

Let us now assume that there exists a ®nite separable extension F=K such that pF �t�
belongs to TF . Then pL�t� belongs to TL. Indeed, it follows from the properties of smooth
connected commutative groups that the natural map AF !AFL restricts to a map
TF !TFL. Thus pFL�t� belongs to TFL. In particular, the image of t under the natural
map FK ! FFL is trivial. Since the map FL ! FFL is injective, we conclude that
pL�t� A A0

L;k�k�. Since A0
L;k �A0

FL;k by semistability, we ®nd that pL�t� A TL.

Choose now y :� fyigyi�1 A Wl;L such that t � yr for some r. Then the image of
yn lÿr in Tl nDl belongs to �Tl nDl�IK . Thus fÿ1

K ;l�t� is in the image of Wl;L nQl, and

t belongs to Y
�3�
K;l.

5.8. Our next theorem describes an element t A F�G� whose l-part belongs to the
subgroup Y

�3�
K;l. To describe this element, we need to introduce the following notation. Let

�G;M;R� be any arithmetical graph. Let �D; r� be a node of G. Let �Di; ri�, i � 1; . . . ; d,
denote the vertices of G linked to D. Assume that �Di �D� � 1 for all i � 1; . . . ; d, and that
the numbering of the vertices Di is such that for i � 1; . . . ; s, the vertex Di belongs to a
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terminal chain Ti attached at D, and for i � s� 1; . . . ; d, the vertex Di is not on a terminal
chain at D. We assume that sZ 2. For simplicity, we will assume that gcd�r; ri� � 1, for all
i � 1; . . . ; s. Thus the terminal vertex Ci on Ti has multiplicity 1. Let ti denote the image of
E�Ci;Cs� in F�G�, i � 1; . . . ; sÿ 1. Let

t :� Psÿ1

i�1

riti:

To motivate this de®nition of t, let us ®rst note the following.

Lemma 5.9. Let l be any prime. If ordl�r�Y ordl

Ps

i�1

ri

� �
, then ht; tii � 0 in

Ql=Zl, for all i � 1; . . . ; sÿ 1.

Proof. If C is any vertex of G, let r�C� denote its multiplicity. Then Lemma 2.8
shows the existence of integers bi, i � 1; . . . ; s, such that

P
C;C 0 ATi

�C�C 0��1

1

r�C�r�C 0� �
bi

r gcd�r; ri� :

Proposition 3.2 shows that

hti; tji �
bs

r
if i3 j;

bi

r
� bs

r
if i � j:

8>><>>:
Thus, for k � 1; . . . ; sÿ 1, we ®nd that

ht; tki �
Psÿ1

i�1

rihti; tki �
Psÿ1

i�1

ri

� �
bs=r� bkrk=r

� Ps

i�1

ri

� �
bs=rÿ bsrs=r� bkrk=r:

Lemma 2.6 shows that bsrs 1 11 bkrk mod r, and our hypothesis is that

ordl�r�Y ordl

Ps

i�1

ri

� �
:

Hence, ht; tki � 0 in Ql=Zl.

5.10. Assume that �G;M;R� is associated to a curve X=K whose jacobian has

purely additive reduction. We have established in [Lor3], 3.13, that Y
�3�
K;l�CK;L;l XC?K ;L;l,

where the orthogonal subgroup is computed with respect to the pairing 3.12 in [Lor3].
While no relationship between the pairing 3.12 and the pairing h ; i described in section 3
is fully established as of yet, one may certainly anticipate a relationship and, thus, we
may expect that an element t of CK ;L;l that is orthogonal to CK;L;l under the pairing h ; i
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belongs to Y
�3�
K;l. Theorem 5.5 shows that the l-parts of ti, i � 1; . . . ; sÿ 1 and, thus, the

l-part of t, belong to CK;L. Lemma 5.9 and Theorem 5.5 show that the l-part of t is
orthogonal to any element of CK;L image of E�C;C 0� with la rr 0. Thus the l-part of t is
a `good candidate' to be an element of Y

�3�
K ;l, and Theorem 5.12 below describes some

instances where the l-part of t belongs to Y
�3�
K;l.

5.11. Note that if s > 2, then Theorem 4.4 shows that ti 3 0 for all i � 1; . . . ; sÿ 1.
But it may happen that t is trivial in F�G�, in which case the l-part of t certainly belongs to
Y
�3�
K;l, as in the following example (with D being the node of multiplicity 4, and l � 2).

On the other hand, if G contains a vertex C with gcd
ÿ
r; r�C�� � 1 and C B Ti, for

all i � 1; . . . ; s, then t has order r in F�G�. Indeed, each ti has order r, thus the order of t
divides r. Let tC denote the image of E�C1;C� in F�G�. Then ht; tCi � b1r1rC=r. Thus, r

divides the order of t (and of tC�.

Theorem 5.12. Let X=K be a curve with a regular model X=OK and associated

arithmetical graph �G;M;R�. Assume that the jacobian A=K of X=K has purely additive

reduction over OK and that the graph G contains a node �D; r� as in 5.8. Assume that D and
all components on the terminal chains attached to D are smooth (rational ) curves. Let l3 p

be prime. Suppose that r � lord l�r� and that ordl�ri�Z ordl�r� for all i � s� 1; . . . ; d. Then

t belongs to Y
�3�
K;l.

Proof. Let ti A A�K�tors;l denote the unique torsion point in A�K� whose image in
FK;l is equal to ti. Let Pi A X�K� be such that CPi

� Ci. Then pK�Pi ÿ Ps� � ti in FK;l. By
hypothesis, the special ®ber AK;k is an extension of FK by a unipotent group. Let Ui denote
the connected component of AK;k such that pK�Pi ÿ Ps� A Ui. Consider the natural map

gK;F : AK �Spec�OK � Spec�OF � !AF :

If A0
F ;k does not contain any unipotent group, the image of Ui under gK;F is a single

point of A0
F ;k. It follows that pF �Pi ÿ Ps� � pF �ti� in AF ;k. To prove Theorem 5.12, it

is su½cient to exhibit an extension F=K such that pF

Psÿ1

i�1

ri�Pi ÿ Ps�
� �

A TF . Indeed, if

pF

Psÿ1

i�1

ri�Pi ÿ Ps�
� �

A TF , then pFL

Psÿ1

i�1

ri�Pi ÿ Ps�
� �

A TFL. Since AFL=FL has semistable

reduction, we ®nd that pFL

Psÿ1

i�1

ri�Pi ÿ Ps�
� �

� pFL

Psÿ1

i�1

riti

� �
. Hence, it follows from

Lemma 5.7 that t :� Psÿ1

i�1

riti belongs to Y
�3�
K ;l.

Let F :� Fr. Consider the model Y=OF of XF=F associated as in 5.1 to F=K and the
model X=OK . Let E=k HYk denote the strict transform of D in Y. It follows from 5.2 and
our hypotheses on D that if P A E, then P is a regular point on Y. In particular, E is a
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smooth curve. Let bjE : E ! D be the map obtained by restriction from Y! X. Let k�D�
be the function ®eld of D. Choose a coordinate function x in k�D� so that when D is
identi®ed with A1=k t fyg, then y3DXDi, for all i � 1; . . . ; s. Let ai A A1�k� denote
the point DXDi, i � 1; . . . ; s. The map bjE : E ! D is a cyclic Galois cover of degree r

rami®ed only above the points ai, i � 1; . . . ; s (we use here that ordl�ri�Z ordl�r� for all
i � s� 1; . . . ; d). Thus

k�E�G k�x��y�= yr ÿ Qs
i�1

�xÿ ai�qi

� �

for some positive integers q1; . . . ; qs such that rjPs

i�1

qi. Moreover, bjE is totally rami®ed

above the points ai, i � 1; . . . ; s, so that we may assume that gcd�r; qi� � 1 for all
i � 1; . . . ; s.

Proposition 5.13. We may choose qi � ri, for all i � 1; . . . ; s.

Proof. Let x denote a primitive r-th root of unity, and let s denote the auto-
morphism of E which sends y to xy and x to x. Let ei denote the point of E totally rami®ed
above the point ai of D. Write 1 � air� biqi. Then ni :� ybi�xÿ ai�ai is a local uniformizer
at ei with the property that s�ni� � xbi ni. In fact, given any local uniformizer ni at ei with
the property that s�ni� � xni ni for some integer ni, we ®nd that ni 1 bi modulo r. In other
words, ni is the inverse of qi modulo r. Indeed, if there exists a unit u A OE; ei

such that
s�ni� � xni ni and s�uni� � xmi uni, then uq is a unit in OD;ai

, with q :� r=gcd�mi ÿ ni; r�.
Hence, the extension k�D��u�=k�D� is unrami®ed at ai. Thus, mi ÿ ni 1 0 modulo r since
OE;ei

=OD;ai
is totally rami®ed.

Let us consider the map c : X! X 0 over OK , which contracts all components of Xk

that belong to a terminal chain attached to D. Thus X 0 is a normal model of X having
exactly s singular points Q1; . . . ;Qs on the image of D. Let F :� Fr and consider the base
change maps Y! X and Y 0 ! X 0 associated to F=K , as well as the minimal desingulari-
zation maps Z! Y and Z 0 ! Y 0. The map c induces a map cY : Y! Y 0. By constru-
ction, the multiplicity of E in Y and Z is equal to 1. Thus all components C of Z whose
images in X belong to a terminal chain attached to D can be contracted by a map Z!Z 00

over OF in such a way that the image of C in Z 00 is a regular point of Z 00 (we use here the
fact that all components of the terminal chains attached at D are smooth). In particular,
Z 00 is regular, and by minimality of the resolution of singularities Z 0 ! Y 0, we ®nd that we
have a map Z 00 !Z 0. Thus, every point of Y 0 in the image of E is a regular point of Y 0.

Let us consider the action of the group Gal�F=K� on the scheme Y 0. The quotient of
this action is the scheme X 0. Let Ri denote the preimage of Qi in Y 0. As we mentioned
above, Ri is a regular point on Y 0. We may thus use the known results on quotient singu-
larities to describe the resolution of singularities at Qi. Namely, let tF denote a uniformizer
of OF . Then the completed local ring at Ri is of the form OF ��z��, and z can be chosen such
that the action of G on OF��z�� is linear: if s is a generator of G, then there exists a root
of unity x such that s�tF � � xtF and s�z� � xbi z for some bi A N. (We use here the fact
that the extension Fr=K is tame.) Then the resolution of singularities at Qi is completely
determined by the integer bi. It follows (see for instance [Vie], 6.6) that in order to have
a resolution of singularities of the type X! X 0, the integer bi must be congruent to the
inverse of ri modulo r. Hence, we ®nd that qi is congruent to ri modulo r.
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Lemma 5.14. Let sZ 2. Let E=k denote the nonsingular complete model of the plane

curve given by the equation

yr ÿ Qs
i�1

�xÿ ai�ri � 0;

with ai A k, i � 1; . . . ; s and
Q
i3 j

�ai ÿ aj�3 0. Assume that gcd�r; ri� � 1 for all i � 1; . . . ; s,

and rjPs

i�1

ri. Let ei denote the point of E corresponding to the point �ai; 0�. Then the divisor

ei ÿ es has order dividing r in Jac�E�, and
Psÿ1

i�1

ri�ei ÿ es� � 0 in Jac�E�.

Proof. The function �xÿ ai�=�xÿ as� belongs to the function ®eld of E, and

div
ÿ�xÿ ai�=�xÿ as�

� � r�ei ÿ es�:

Moreover, let d :�Ps

i�1

ri=r. Then
ÿ

y=�xÿ as�d
�r � Qsÿ1

i�1

xÿ ai

xÿ as

� �ri

. Thus,

Psÿ1

i�1

ri�ei ÿ es� � div
ÿ

y=�xÿ as�d
�
:

Let us now conclude the proof of Theorem 5.12. As mentioned at the beginning of

the proof, it is su½cient to show that pFL

Psÿ1

i�1

ri�Pi ÿ Ps�
� �

A TFL. Since the model Z 00 is

regular, we can use it to describe the special ®ber AF ;k. The group FF can be computed
using Z 00

k , and since the points Pi, i � 1; . . . ; s, all reduce to points in E LZ 00
k , we ®nd

that the image of pF

Psÿ1

i�1

ri�Pi ÿ Ps�
� �

in FF is trivial, and thus pF

Psÿ1

i�1

ri�Pi ÿ Ps�
� �

belongs

to A0
F ;k. The group scheme A0

F ;k is isomorphic to Pic0�Z 00
k =k�, and Pic0�Z 00

k =k� is an

extension of the abelian variety BF :� Q
CLZ 00

k

Jac�C� by the product of a unipotent group UF

and a torus TF . Lemma 5.14 implies that the image of pF

Psÿ1

i�1

ri�Pi ÿ Ps�
� �

in BF is trivial.

Thus, the image of pFL

Psÿ1

i�1

ri�Pi ÿ Ps�
� �

in BFL is also trivial. Since AFL=FL has semi-stable

reduction, we ®nd that pFL

Psÿ1

i�1

ri�Pi ÿ Ps�
� �

belongs to TFL.

6. Partial converses for Theorem 5.5

Let X=K be a curve. Let X=OK be a regular model of X=K. Let �C; r� and �C 0; r 0�
be two distinct components of Xk. Let l3 p be a prime. In view of Theorem 5.5, it is
natural to wonder whether it is true that if the l-part of E�C;C 0� belongs to CK;L, then the
pair �C;C 0� is weakly connected and l-breakable. As we shall see in the following example,
this question has a negative answer in general.
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Example 6.1. Consider the following arithmetical graph �G;M;R�:

Using a row and column reduction of M, it is easy to show that F�G� is cyclic of order 12.
Let C and C 0 denote the two vertices of multiplicity 1 in G which are not terminal vertices.
Let t denote the image of E�C;C 0� in F. It is easy to check that ME�C;C 0� � ÿ6E�C;C 0�
and, thus, t has order dividing 6. Since E�C;C 0� �mR, m A Z, is never divisible by 2 or 3,
we ®nd that t has order 6 in F.

Winters' Existence Theorem [Win] implies the existence of a ®eld of equicharacteristic
zero, say K , and the existence of a curve X=K with a regular model X whose associated
graph is �G;M;R�, and such that all components of Xk are smooth and rational. Consider
the base extension F3=K and the associated model Z=OF3

. Let �G3;M3;R3� be the graph
associated with Z. Then G3 has the following form:

The two nodes in G3 correspond to components of genus 1. All other components are
rational. Denote again by C and C 0 the two vertices of multiplicity 1 and degree 2 in G3.
Let t 0 denote the image of E�C;C 0� in F�G3�. Then t 0 is the image of t under the natural
map F�G� ! F�G3�. It is easy to check that t 0 has order 2. Thus, the 3-part of t is not
trivial and belongs to CK;L, even though the pair �C;C 0� is multiply connected. Let us then
ask the following less general question:

Question 6.2. Let l3 p. Let �C;C 0� be a weakly connected pair such that la rr 0. If
�C;C 0� is not l-breakable, is it true that the l-part of E�C;C 0� does not belong to CK;L?

If l � p, Question 6.2 has a negative answer, as can be seen on the following example
with p � 2. Consider an elliptic curve X=K with reduction I �n , n > 1, and with poten-
tially good reduction. Then the graph of the reduction of X contains pairs that are not
p-breakable. On the other hand, since X has potentially good reduction, CK ;L � FK .

Clearly, if Question 6.2 has a positive answer, then the l-part of E�C;C 0� is not
trivial in FK . This fact is proved in 3.3. As evidence that Question 6.2 may possibly have
a positive answer, we o¨er the following two theorems.

Theorem 6.3. Let l3 p. Let X=OK be a regular model of a curve X=K , with
associated arithmetical graph �G;M;R�. Assume that L=K is tame. Let �C;C 0� be a weakly

connected pair with r � r 0 � 1. If �C;C 0� is not l-breakable in G, then the image t of

E�C;C 0� does not belong to CK;L.
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Proof. Consider the scheme XP obtained by blowing-up a single closed point P on
Xk. Let C and C 0 denote again the strict transforms in XP of C and C 0. It is easy to check
that if �C;C 0� is a weakly connected pair in the graph of X, then �C;C 0� is also a weakly
connected pair in the graph of XP. Moreover, E�C;C 0� for X and E�C;C 0� for Z de®ne
the same elements in the group of components of the jacobian of X . We may thus assume,
without loss of generality, that Xk has smooth components with normal crossings.

Consider the base change Fl=K and the associated map r � b : Z! X introduced in
5.1. Since Xk has smooth components and normal crossings, so does Zk. We denote again
by C and C 0 the preimages in Z of C and C 0. Lemma 5.3 shows that the pair �C;C 0� is
multiply connected in the graph of the model Z. Moreover, C and C 0 have multiplicity 1
in Z. Thus, it follows from our next theorem that t B CK;FlL. To conclude the proof of
Theorem 6.3, we need only to note that if t B CK;FlL, then t B CK;L since the map
FL ! FL;FlL is injective.

Theorem 6.4. Let X=OK be a regular model of a curve X=K , with associated

arithmetical graph �G;M;R�. Assume that Xk has smooth components and normal crossings.
Assume also that L=K is tame. Let �C;C 0� be a multiply connected pair with r � r 0 � 1.
Then the image of E�C;C 0� does not belong to CK ;L.

Proof. Consider the base change L=K and the associated map b � r : Z! X. Since
L=K is assumed to be tame, we can factor b � r into a sequence of morphisms of prime
degree, and apply to each of these morphisms the facts recalled in 5.2. We denote again by
C and C 0 the preimages in Y of C and C 0 as well as their strict transforms in Z. Since Xk

has smooth components and normal crossings, so does Zk. It is easy to check that the pair
�C;C 0� is multiply connected in Z. If Zk is reduced, then to conclude the proof of Theo-
rem 6.4, we use Corollary 2.3 in [Lor4] (see 2.1), which states that in a reduced graph G, a
pair of vertices gives the trivial element in F�G� if and only if the pair is weakly connected.
In general, though, Zk is not reduced. On the other hand, since XL=L has semi-stable re-
duction, there exists a sequence of elementary blow-downs Z :�Z0 !Z1 ! � � � !Zs

such that �Zs�k is reduced. (By an elementary blow-down Z!Z1, we mean that Z is the
blow-up of a single closed point of Z1.) We may choose this sequence of elementary blow-
downs in such a way that for each i, the irreducible curve contracted by the map
Zi !Zi�1 has multiplicity greater than 1 in �Zi�k. Let C and C 0 denote again the images
of C and C 0 in Zs (these images have dimension 1 by construction). The vectors E�C;C 0�
for Z and E�C;C 0� for Zs de®ne the same element in the group of components FL of the
jacobian of XL. It is not hard to check that C and C 0 in Zs form a multiply connected pair.
We may thus apply 2.1 to the (reduced) graph of Zs to ®nd that the image of E�C;C 0� is
not trivial in FL.

Note that Example 6.1 shows that Theorem 6.4 cannot be sharpened to state that if
�C;C 0� is a multiply connected pair such that r � r 0 � 1 and the l-part of E�C;C 0� is not
trivial in FK , then the l-part of E�C;C 0� does not belong to CK;L.

Let us also note that the hypothesis that Xk has smooth components and normal
crossings cannot be removed from the statement of Theorem 6.4. Consider the reduction of
an elliptic curve consisting of three smooth rational lines intersecting in a single point. The
divisor Xk does not have normal crossings, and in its associated graph, every pair of ver-
tices is multiply connected. The group F�G� is cyclic of order 3. When p3 3, one ®nds
that such an elliptic curve has potentially good reduction. Thus, FK � CK ;L in this case.
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Corollary 6.5. Let �G;M;R� be any arithmetical graph. If G contains a multiply

connected pair �C;C 0� with r � r 0 � 1, then jF�G�j3 1.

Proof. Winters' Existence Theorem [Win], implies the existence of a ®eld F with a
discrete valuation of equicharateristic 0, and a smooth and proper curve Y=F having a
model Y over OF whose associated arithmetical graph is the given graph �G;M;R� and
such that Yk has smooth components and normal crossings. Apply 6.4. It would be inter-
esting to ®nd a direct proof of 6.5 that does not rely on the theory of degenerations of
curves.

Consider now the following example:

The order of F�G� equals 2=gcd�r; rÿ 2�. Hence, when r is even, jF�G�j � 1 even though
�C;D� is multiply connected. When r is odd, jF�G�j � 2 and E�C;D� is a generator. Let us
now show that Question 6.2 has a negative answer in general if ljrr 0.

Example 6.6. Let a and b be two positive integers. Consider the arithmetical graph
G given by:

aaaaas 0m0

where ordl�r� � a, ordl�r1� � ord l�r 01� � 0, ordl�s� � a� b, and ordl�s1� � ord l�s 01� � 0.
The terminal chains are constructed using Euclid's algorithm as in [Lor2], 2.4. We assume
that ordl�ti�Z a for all i � 1; . . . ; k.

Lemma 6.7. The l-part of the group F�G� is cyclic of order l2a�b and is generated by
the l-part of the image of E�B;C�.

Proof. Proposition 9.6/6 of [BLR] shows that jF�G�j � rs=rnr 0n 0sms 0m0 , so its l-part
has order l2a�b. Let t A F�G� denote the image of E�B;C�. Consider the pairing h ; i
introduced in 3.1. To show that the l-part of t has order l2a�b, it is su½cient to show that
the order of ht; ti in Q=Z is divisible by l2a�b, and that was done in 3.10.

Let us consider now the case where r � la and s � la�b. Denote by tVV 0 the image in
F of E�V ;V 0�, where �V ;V 0� is any pair of vertices. Proposition 3.7 shows that the order
of tAB is la, while the order of tCD is la�b. Let Cr and Cs denote the nodes of multiplicity
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r and s, respectively. The pair �Cr;Cs� is weakly connected but not l-breakable. We ®nd
using Remark 3.5 that la�btBC � tCrCs

. Thus, tCrCs
has order la and, hence, tAB � tCrCs

.
Winters' Existence Theorem [Win] implies the existence of a ®eld, say K , with a discrete
valuation of equicharacteristic 0, and a smooth and proper curve X=K having a model over
OK whose associated arithmetical graph is the given graph �G;M;R�. Since l is not equal
to the residue characteristic of K , Theorem 5.5 shows that tAB belongs to CK;L

ÿ
Jac�X��. It

follows that tCrCs
belongs to CK;L but �Cr;Cs� is not l-breakable, answering negatively

Question 6.2 when l divides rr 0.

Theorem 5.5 shows that tAB and tCD belong to CK;L. Hence, since F�G� is cyclic, the
element tAB is a multiple of tCD, and is thus divisible by l in CK;L. We shall see in the next
section that this phenomenon cannot occur if Jac�X� has potentially good l-reduction.

Let L=K denote the extension minimal with the property that XL=L has
semistable reduction. Let tL and aL denote the toric and abelian ranks of Jac�XL�=L, re-
spectively. When l is not the residue characteristic, one can show that tL � la ÿ 1, and
aL � �la�b ÿ la�=2. It is shown in [Lor3], 1.7 (using the fact that F is cyclic), that
jCK;Lj ÿ 1Y 2aL � tL. It follows from this bound and the fact that la�b divides jCK ;Lj that
jCK;Lj � la�b, and jCK;Lj ÿ 1 � 2aL � tL. It would be very interesting to know what are
the possible values of the integers tL and aL when l is the residue characteristic of a ®eld K

and there exists a curve X=K having a model over OK whose associated arithmetical graph
is the given graph �G;M;R�. We conjecture that in this case tL Y la ÿ 1.

Let us make one ®nal remark about this example. We found that tAB � tCrCs
.

Theorem 5.12 shows that when the graph is associated to the reduction of a curve, tAB

belongs to Y
�3�
K ;l. Let �D; r� and �D 0; s� be two nodes on a chain C of a graph G. Let t

denote the image of E�D;D 0� in F. Assume that l divides the weight w�C� of the chain. In
view of 5.10 and of the fact that the l-part of the order of ht; ti is always trivial (3.11), it is

natural to wonder whether the l-part of such an element t belongs to the subgroup Y
�3�
K;l

when �G;M;R� is the graph associated to a regular model of a curve.

Remark 6.8. Let us use a graph G of the type introduced in Example 6.6 to exhibit
an example where the l-part of the group F�G� is not generated by the images of the
l-parts of the elements of the form E�C;C 0� with gcd�l; rr 0� � 1. The multiplicities of G

are as follows. Let rn � r1 � 1, r � 4, r 0n 0 � r 01 � 1, t1 � 8, t2 � 12, s � 16, s1 � s 01 � 10,
s2 � s 02 � 4, and s3 � s 03 � 2. The order of F�G� is equal to 16. Let then l � 2. The image
of E�A;B� has order 2 (3.7) and �A;B� is the only pair with 2a rr 0. Note that the image t of
E�B;C� has order 16, since ht; ti is easily computed to have order at least 16.

Remark 6.9. If �C;C 0� is any pair of vertices on a graph G, let tCC 0 denote the image
of E�C;C 0� in F�G�. Let Y :� Y�G� denote the subgroup of F�G� generated by the set of
all tCC 0 , with �C;C 0� a weakly connected pair of G. In this paper, we have described certain
elements of the functorial subgroups Y

�3�
K ;l �l3 p�, and CK;L, of F�G�, when �G;M;R� is

associated with the reduction of a curve. It is natural to wonder whether the l-part of
the group Y�G� is always a subgroup of the ®rst functorial subgroup YK ;l in the ®ltration
recalled in 5.6.

We will not pursue this question in this article, but we will use the graph introduced
above in 6.1 to produce an example of a graph G where Y�G�HCK ;L but Y�G�3CK ;L.
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Indeed, let �G;M;R� be as in 6.1. In this example, the group Y�G� is trivial, since the image
of E�C;C 0� is trivial whenever C and C 0 belong to the same terminal chain (3.4). On the
other hand, we have shown in 6.1 that jCK;LjZ 3.

7. The case of potentially good l-reduction

Our goal in this section is to prove the following theorem. Recall the de®nitions
introduced in 1.4.

Lemma 7.1. Let A=K be a principally polarized abelian variety. Let l be a prime,
l3 p. Assume that A=K has potentially l-good reduction. Then CK ;L;l � �FK�l.

Proof. It is shown in [Lor3] (see 3.22, with 3.21 (ii) and 2.15 (ii)), that the kernel of
the map FKl

! FL is killed by �L : Kl�. Thus CKl;L;l � �0�. It also follows from [Lor3],
using the fact that tKl

� 0, that CKl;L;l � �FKl
�l. Thus, since �FKl

�l � �0�, we ®nd that
CK;L; l � �FK�l.

Theorem 7.2. Let X=K be a curve. Let l be a prime, l3 p, and assume that

Jac�X�=K has potentially good l-reduction. Let P;Q A X�K� with CP 3CQ. Then the l-part
tl of the image of PÿQ in FK belongs to CK;L; l. If tl is not trivial, then it is not l-divisible

in FK .

Proof. Lemma 7.1 shows that tl belongs to CK ;L. Theorem 7.2 is a consequence of
Theorem 7.3 below, which pertains only to arithmetical graphs. Indeed, Proposition 1.7 in
[Lor2] shows that if Jac�X �=K has potentially good l-reduction, then there exists a model
X=OK of X=K whose associated graph G is a tree satisfying Condition Cl stated in 1.5 of
[Lor2].

Theorem 7.3. Let �G;M;R� be an arithmetical tree. Let l be any prime. Let �C; r�
and �C 0; r 0� be two vertices of G such that la rr 0. If G satis®es Condition Cl, then the l-part

of E�C;C 0� has order l�C;C 0�. Moreover, if the l-part of E�C;C 0� is not trivial, then it is
not l-divisible.

Proof. Since G is a tree, every pair �C;C 0� is weakly connected. Condition Cl

implies that any two vertices C and C 0 with la rr 0 form an l-breakable weakly connected
pair. Thus we may use Theorem 4.4 to compute the order of E�C;C 0�. Let us now show
that E�C;C 0� is not divisible by l if it is not trivial. If the path P connecting C to C 0 does
not contain any node, then Theorem 4.4 shows that the l-part of the order of E�C;C 0� is
trivial and, thus, in this case the statement of Theorem 7.3 does not apply. Let us now
assume that P contains at least one node.

We claim that Theorem 7.3 holds if it holds in the special case where P has only one
node. Indeed, if the path P connecting C to C 0 contains more than one node, use Propo-
sition 4.3 to break the tree G into several trees G1; . . . ;Gm, each having a weakly connected
l-breakable pair of terminal vertices Ci and C 0i connected by a path having at most one
node. Each tree Gj satis®es Condition Cl. The construction of the graphs Gi is such that

Fl�G�G
Qm
i�1

Fl�Gj�. Moreover, the image of the l-part of E�C;C 0� in F�Gj� is the l-part
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of E�Ci;C
0
i �. Thus, the l-part of E�C;C 0� is not l-divisible in F�G� if and only if the l-part

of E�Ci;C
0
i � is not l-divisible in F�Gi� for some i.

Consider now the case where �G;M;R� is an arithmetical tree satisfying Condition
Cl, with a pair of terminal vertices �C; r� and �C 0; r 0� such that la rr 0, and such that the
path P connecting C to C 0 in G contains a unique node �D; rD�. Let n denote the total
number of nodes of G. We proceed by induction on n. Assume that �G;M;R� is an arith-
metical tree with only one node �D; r�. Let �C1; r1�; . . . ; �Cd ; rd� denote the vertices of
G adjacent to D. The vertices �D; r� and �Ci; ri� are on a unique terminal chain Ti, with
terminal vertex of multiplicity si :� gcd�r; ri�. We may always order the vertices Ci such
that

ordl�s1�Z � � � Z ordl�sdÿ1� � ordl�sd� � 1

(see [Lor2], 2.7). In particular, la sdÿ1sd . Denote by �Di; si� the terminal vertex of the chain
Ti. Without loss of generality, we may assume that C � Dd and C 0 � Ddÿ1. It is shown

in [Lor2], 2.1, that the group Fl�G� is isomorphic to
Qdÿ2

i�1

Z=lord l�r=si�Z. It follows from

Proposition 3.7 that the l-part of E�Ddÿ1;Dd� has order lord l�r=sdÿ2� in F�G�. Thus, the
l-part of E�Ddÿ1;Dd� is not divisible by l in F�G�.

Consider now the case where n > 1 and proceed as follows. Pick an edge e of G
such that one of the two components of Gnfeg contains a single node B, with B3D. The
component that does not contain B can be completed into a new arithmetical graph G 0, as
in [Lor2], page 165. The graph G 0 satis®es Condition Cl, and has nÿ 1 nodes. Thus we
may apply the induction hypothesis and obtain that E�C;C 0� is not divisible by l in F�G 0�.
The discussion on page 165 of [Lor2] shows that Fl�G� contains Fl�G 0� as a direct sum-
mand. Since E�C;C 0� is not divisible by l in F�G 0�, E�C;C 0� is not divisible by l in F�G�.

Remark 7.4. The fact in Theorem 7.2 that an element of the form E�CP;CQ� is
not divisible by l does not generalize to a statement pertaining to the group CK;L. Indeed,
when CK;L 3FK , Example 6.6 exhibits an element of the form E�CP;CQ� in CK ;L, namely
E�A;B�, that is divisible by l in CK ;L.
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