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1. Introduction

Let k be a finite field of characteristic p. Let V/k be a smooth projective geo-
metrically connected curve with function field K. Let X/k be a proper smooth and
geometrically connected surface endowed with a proper flat map f : X → V such
that the generic fiber XK/K is smooth and geometrically connected of genus g ≥ 1.
Let AK/K denote the Jacobian of XK/K.

The proof of Theorem 4.3 in [LLR1], which we state in corrected form below, is
based in part on a result of Gordon [Go]. Thomas Geisser noted in [4] that the
formula provided in Theorem 4.3 in [LLR1] needs to be corrected, due to the fact
that Lemma 4.2 in [Go] is missing a hypothesis. He provides a corrected formula
in [4], Theorem 1.1, and his method applies also to the number field case (up to
a power of 2 if not totally imaginary). Several of the intermediate results in [Go]
are only valid under the assumption that Pic0(XK) = AK(K). We revisit the paper
[Go] in this corrigendum to remove this hypothesis in all arguments. In doing so, we
also avoid using Lemma 4.3 in [Go], whose proof is incorrect, and whose statement
might be wrong in general.

2. Corrected Statements

We start by recalling the notation needed to state our main theorem. Let X(AK)
denote the Shafarevich-Tate group of the abelian variety AK/K. Let Br(X) denote
the Brauer group of X. It is well-known that if either X(AK) or Br(X) is finite,
then so is the other (see [12], section 3, or [7], section 4).

The index δ := δ(XK) of a curve over a field K is the least positive degree of a
divisor on XK . The period δ′ := δ′(XK) of XK is the order of the cokernel of the
degree map PicXK/K(K)→ Z. When v ∈ V is a closed point, we denote by Kv the
completion of K at v, and let δv := δ(XKv), and δ′v := δ′(XKv).

Recall that we have an exact sequence

0 −→ Pic0(XK) −→ AK(K) −→ Br(K).

Our coauthor, mentor, and friend Michel Raynaud fell ill soon after we started writing this
corrigendum. We are profoundly sad by his passing on March 10, 2018. All mistakes in this
corrigendum are ours only (Qing Liu and Dino Lorenzini).
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CORRIGENDUM 2

Since the Brauer group Br(K) is a torsion group, and since AK(K) is a finitely
generated abelian group, the quotient AK(K)/Pic0(XK) is finite, and Pic0(XK)
and AK(K) have the same rank. Let

a := |AK(K)/Pic0(XK)|.

We find in [LLR1], Proof of 4.6, based on the proofs of 2.3 and 2.5 in [5], that a
divides (

∏
δ′v)/ lcm(δ′v). We are now ready to state the main result of this corrigen-

dum.

Corrected Theorem 4.3. Let X/k and f : X → V be as above. Assume that
X(AK) and Br(X) are finite. Then the equivalence of the Artin-Tate and Birch-
Swinnerton-Dyer conjectures holds exactly when

(2.1) |X(AK)|
∏
v

δvδ
′
v = a2δ2|Br(X)|.

The statement of Theorem 4.3 of [LLR1] unfortunately omits the factor a2 in
the above formula. This omission leads to the following change in Corollary 4.7
of [LLR1]. The paragraph after Corollary 4.7 in [LLR1] can now be completely
omitted.

Corrected Corollary 4.7 Assume that X(AK) and Br(X) are finite. Then the
conjectures of Artin–Tate and Birch–Swinnerton-Dyer are equivalent if and only if
δa = δ′bcε.

Theorem 4.3 in [LLR1] is used in the proof of Corollary 3 of [LLR2]. The corrected
version of Theorem 4.3 can be used in that proof to produce exactly the same result.
We restate below Corollary 3 of [LLR2] with the correct formula relating the orders
of X(AK) and Br(X).

Corrected Corollary 3. Let f : X → V be as above. Assume that for some
prime `, the `-part of the group Br(X) or of the group X(AK) is finite. Then
|X(AK)|

∏
v δvδ

′
v = a2δ2|Br(X)|, and |Br(X)| is a square.

3. Proof of the Corrected Theorem 4.3

We follow closely the paper [Go] of Gordon, and indicate below every change that
needs to be made to the statements in [Go] to obtain a complete proof of Formula
(2.1).

3.1. It may be of interest to first quickly indicate why the change in the formula
occurs as a ‘square’. This fact is essential for the proof of Corollary 3 in [LLR2]
to remain correct. The conjectures of Birch–Swinnerton-Dyer and of Artin–Tate
require the explicit computation on one hand of the determinant of the height pairing
on the lattice AK(K)/AK(K)tors, and on the other hand of the determinant of the
intersection pairing on the free part NS(X)/NS(X)tors of the Néron–Severi group
NS(X). For this, it suffices to construct explicit bases for sublattices of finite index
in these lattices (see, e.g., 3.7, 3.10), and the following well-known lemma then
introduces ‘squares’ in the formulas.
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Lemma 3.2. Let Λ be a free abelian group of finite rank n, and let Λ′ ⊆ Λ be a
sublattice of finite index [Λ : Λ′]. Let B : Λ×Λ→ R be a bilinear form. Consider a
basis λ1, . . . , λn for Λ, and a basis λ′1, . . . , λ

′
n for Λ′. Let d := det((B(λi, λj))1≤i,j≤n),

and similarly, let d′ := det((B(λ′i, λ
′
j))1≤i,j≤n). Then

d′ = [Λ : Λ′]2d.

3.3. We introduce below a finite group E. This group is claimed in [Go], Lemma
4.3, to be always trivial, but the proof provided in [Go] is unfortunately incorrect
(in the last paragraph, the computation of π∗C is wrong). This group will appear in
two quotients of the filtration of NS(X) introduced in 3.8. The final index discussed
in 3.9 however does not depend on |E|.

We follow below the notation in [Go] on page 177. Let k denote an algebraic
closure of k, and for any k-scheme S, set as usual S := S ×k k. The natural
map X → X defines an injection Div(X) → Div(X) which is compatible with
the intersection pairings ( , )X and ( , )X . We identify Div(X) with its image in
Div(X). Similarly, we use the maps f : X → V and f : X → V to identify Div(V )
and Div(V ) with their images in Div(X) and Div(X), respectively. Let us now
define some natural subgroups of Div(X).

First, Divvert(X) is the subgroup generated by the irreducible curves C on X for
which f(C) is a single point. We denote by Div0(X) the subgroup generated by the
irreducible curves C on X which are algebraically equivalent to zero. Finally, let
Div0(V ) denote the image in Div(X) of the subgroup of divisors on V algebraically
equivalent to zero. The subgroup Div0(V ) is the set of all divisors of the form∑

v avXv, where Xv is the fiber over v ∈ V and
∑

v av = 0. The intersection of

Div(X) with the subgroup Div0(V ), resp. with Div0(X) or Divvert(X), is denoted
by Div0(V ), resp. by Div0(X), or Divvert(X).

It is clear that Div0(V ) is contained in Div0(X) ∩Divvert(X). We let

E :=
Div0(X) ∩Divvert(X)

Div0(V )
.

For v ∈ V , write Xv =
∑

a pvaXva with Xva/k(v) irreducible of multiplicity pva,
and set dv := gcdv(pva). The integer dv is called the multiplicity of the fiber Xv,
and when dv > 1, Xv is called a multiple fiber. Clearly 1

dv
Xv ∈ Div(X).

If W ∈ Div0(X) ∩ Divvert(X), then W is numerically equivalent to zero, and so
(W ·Xva)X = 0 for all Xva. It follows from the fact that 1

dv
Xv generates the kernel

of the intersection matrix associated with the fiber Xv that W =
∑

vmv(
1
dv
Xv) for

some integers mv. Since (W · Ω)X = 0 for any horizontal divisor Ω on X, we find
that

∑
v(mv/dv) degk v = 0. Hence for any W ∈ Div0(X) ∩ Divvert(X), we have

W ∈ Div0(V ) if and only if mv ∈ dvZ for all v. This implies that E is isomorphic to
a subgroup of ⊕vZ/dvZ. Let ∆ := lcmv(dv). Then E is killed by ∆ and |E| divides∏
dv.

Let now D`(X) denote the subgroup of divisors in Div(X) that are linearly equiv-
alent to zero. Set D`(X) := D`(X) ∩ Div(X). Let Pic0

X/k and Pic0
V/k denote the

Picard schemes of X/k and V/k, respectively. (Pic0
V/k is nothing but the Jacobian
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of V/k.) The scheme Pic0
X/k might not be reduced, and we denote by Pic0

X/k,red the

(reduced) abelian variety associated with Pic0
X/k. We have

Pic0
X/k,red(k) = Div0(X)/D`(X) and Pic0

V/k(k) = Div0(V )/D`(V )

because Br(k) is trivial.

Lemma 3.4. Keep the above notation. Then

a) We have (Div0(X) ∩Divvert(X)) ∩ (Div0(V ) +D`(X)) = Div0(V ).
b) We have a natural injection

E −→ Pic0
X/k,red(k)/Pic0

V/k(k)

given explicitly as

Div0(X) ∩Divvert(X)

Div0(V )
=

Div0(X) ∩ (Divvert(X) +D`(X))

Div0(V ) +D`(X)
−→

−→ Div0(X)

Div0(V ) +D`(X)
.

Proof. The proof of b) follows immediately from a). To prove Part a), it suffices to
prove that

Divvert(X) ∩ (Div0(V ) +D`(X)) = Div0(V ).

If D ∈ Divvert(X) ∩ (Div0(V ) + D`(X)), then D ∈ Divvert(X) ∩ Div0(X). As
noted in 3.3, we can then write D =

∑
v rvXv for some rational numbers rv with∑

v rv deg(v) = 0. On the other hand, by hypothesis, D = div(f) + D0 for some
f ∈ k(X)∗ and D0 ∈ Div0(V ). Since k is finite, some multiple of D0 is linearly
equivalent to zero. Thus, for some positive integer m, mD = div(fmh) for some
h ∈ k(V )∗. Since mD =

∑
vmrvXv ∈ Div0(V ), we find that some positive multiple

n of mD is of the form div(h′) for some h′ ∈ k(V )∗. Hence, fmn ∈ k(V )∗. Since
we assume that the generic fiber of X → V is geometrically integral, we find that
f ∈ k(V )∗. Thus D ∈ Div0(V ). �

We stray here a little bit from the notation used by [Go], and we define B/k to
be the quotient abelian variety B := Pic0

X/k,red /Pic0
V/k. Since k is finite, we have

B(k) := Pic0
X/k,red(k)/Pic0

V/k(k).

For use in the proof of 3.8 (iv), let us note that

(3.1)
B(k)

E
=

Div0(X)

(Div0(X) ∩Divvert(X)) +D`(X)
.

Remark 3.5. In [Go], just before Proposition 4.4 on page 180, B/k is defined to
be the K/k-trace of AK/K. Then Proposition 4.4 asserts that the K/k-trace of
AK/K is an abelian variety which is purely inseparably isogenous to the quotient
abelian variety Pic0

X/k,red /Pic0
V/k. The proof of Proposition 4.4 in [Go] uses the

fact that a = 1. We refer the reader to [3] for the definition and existence of the
K/k-trace of AK/K. When k is algebraically closed, we find in [11], Theorem 2, a
theorem of Raynaud which asserts that the K/k-trace of AK/K is k-isomorphic to
Pic0

X/k,red /Pic0
V/k when f : X → V does not have any multiple fibers (i.e., dv = 1
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for all v). The notion of K/k-trace is not needed in this corrigendum, and we do
not use Proposition 4.4 in [Go].

Let Div0(X) denote the subgroup of Div(X) generated by the irreducible curves
which intersect each complete vertical fiber Xv with total intersection multiplicity
zero. We let Div0(X) := Div0(X)∩Div(X). Let Ω ∈ Div(X) be a horizontal divisor
of degree δ, where δ is the index of XK over K. In the following modified version of
Lemma 4.2 in [Go], the group AK(K) has now been replaced by Pic0(XK).

Lemma 3.6. (see Lemma 4.2 in [Go]) There are natural isomorphisms of groups

Div(X)

(Divvert(X)⊕ ZΩ) +D`(X)
−→ Div0(X)

Divvert(X) +D`(X)
−→ Pic0(XK).

Proof. Same as in [Go], replacing when necessary AK(K) by Pic0(XK). �

3.7. LetNS(X) := Div(X)/Div0(X). Let us now introduce further notation needed
to define below the completely explicit subgroup N0 of NS(X).

(a) Let r be the rank of AK(K), and let {α1, . . . , αr} be a basis of the lattice
Pic0(XK)/Pic0(XK)tors. Choose divisors A1, . . . , Ar in Div(X) such that for
each i, the class in Pic0(XK) of the restriction of Ai to the generic fiber XK is
αi. For the later purpose of computing the global height pairing 〈αi, αj〉 as in
3.11, we assume also that we have chosen the divisors A1, . . . , Ar, such that the
supports of the restrictions of Ai and Aj to the generic fiber XK are pairwise
disjoint when i 6= j.

(b) SinceXK/K has index δ, choose a divisor
∑

i sixi in Div(XK) such that
∑

i si degK(xi) =
δ. Let xi denote the closure of xi in X, and set Ω :=

∑
i sixi in Div(X).

(c) Since V/k is geometrically integral, its index δ(V/k) is equal to 1. Choose a
divisor

∑
j tjvj in Div(V ) such that

∑
j tj degk(vj) = 1. Let F :=

∑
j tjXvj in

Div(X). This definition agrees with [Go], 4.6, when XK has a k-rational point
and the complete fiber in 4.6 is chosen to be above a k-rational point.

(d) For each v ∈ V , write the fiber Xv as Xv =
∑h(v)

a=1 pvaXva, where the components
Xva are irreducible. For each closed point v ∈ V such that Xv is reducible,
consider the set {Xva, a > 1, v ∈ V } of irreducible divisors in Div(X).

We let N0 denote the subgroup of NS(X) generated by NS(X)tors and the classes
of {A1, . . . ,Ar}, Ω, F , and {Xva, a > 1, v ∈ V }. We will compute the index of N0

in NS(X) in Proposition 3.9.

Denote by S1 the set of closed points v ∈ V such that Xv is reducible. Let S2

denote the set of closed points v ∈ V such that Xv is irreducible but not reduced.
Set Σ := S1 t S2. Let S3 denote the set of v ∈ V such that Xv is integral but not
geometrically integral.

The set Σ is finite, and thus we have

(3.2) Q :=
Divvert(X)

Div(V )
=
⊕v(⊕aZXva)

⊕vZXv

= ⊕v∈Σ

(
⊕aZXva

ZXv

)
.

Define NS(X)vert to be the image in NS(X) of the subgroup Divvert(X) of Div(X).
Let [Ω] denote the class of Ω in NS(X). It is clear that NS(X)vert ∩ Z[Ω] = (0),
and we write

N := NS(X)vert ⊕ Z[Ω].
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We may now state a modified version of Proposition 4.5 in [Go], where the group E
occurs in two different factors.

Proposition 3.8. (see Proposition 4.5 in [Go]) The group NS(X) has a filtration
by subgroups

0 ⊆ f ∗NS(V ) ⊆ NS(X)vert ⊆ N ⊆ NS(X)

with respective quotients Z, Q/E, Z, and Pic0(XK)/(B(k)/E).

Proof. (i) The map f ∗ : NS(V ) → NS(X) is injective, and since NS(V ) is free of
rank 1, so is f ∗NS(V ).

(ii) Let us first note that the natural map

E =
Div0(X) ∩Divvert(X)

Div0(V )
−→ Q =

Divvert(X)

Div(V )

is injective because

(3.3) Div0(X) ∩Divvert(X) ∩Div(V ) = Div0(V ).

Recall that

NS(X)vert =
Divvert(X)

Divvert(X) ∩Div0(X)
,

and consider the natural map f ∗Div(V ) −→ NS(X)vert. This map has kernel
f ∗Div0(V ), by (3.3). Hence, we have an exact sequence

0→ f ∗NS(V ) −→ NS(X)vert −→ Q/E −→ 0.

(iii) By construction N /NS(X)vert = Z[Ω] ' Z.
(iv) As in Part (4) of the proof in [Go], we have an exact sequence

0 −→ Div0(X)

Div0(X) ∩ (Divvert(X)) +D`(X))
−→

−→ Div0(X)

Divvert(X) +D`(X)
−→ NS(X)

N
−→ 0.

The first term in this sequence is identified with B(k)/E in (3.1) since D`(X) ⊆
Div0(X). The middle term is identified with Pic0(XK) in 3.6. We thus have an
isomorphism

NS(X)/N −→ Pic0(XK)

B(k)/E
.

�

Proposition 3.9. (see Proposition 4.6 in [Go]) Let N0 ⊆ NS(X) be as in 3.7. Then
the quotient NS(X)/N0 is finite with

|NS(X)/N0| =
|Pic0(XK)tors|
|B(k)|

·
∏

v∈Σ pv1

|NS(X)tors|
.
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Proof. Let N ′ be the subgroup of NS(X) generated by the classes of Ω, F, and Xva

for a > 1 and h(v) > 1, so that N ′ ⊆ N0. Recall that N := NS(X)vert ⊕ Z[Ω], so
that N ′ ⊆ N . We have two exact sequences

0

��
N /N ′

��
0 // N0/N ′ // A′ := NS(X)/N ′ //

��

NS(X)/N0
// 0

P := NS(X)/N

��
0

Let us start by computing the order of N /N ′. Write N ′′ for the subgroup of
N ′ generated by the classes of F , and Xva, a > 1 for all v with h(v) > 1. Then
N ′′ ⊆ NS(X)vert and N ′ = N ′′ ⊕ Z[Ω]. It follows that

N
N ′

=
NS(X)vert

N ′′
=

NS(X)vert/f
∗NS(V )

(N ′′ + f ∗NS(V ))/f ∗NS(V )
.

The numerator of the group on the right is identified with Q/E in 3.8. One checks
that N ′′ ∩ f ∗NS(V ) = Z[F ]. With the group Q identified as in (3.2), let Q′ denote
the subgroup of Q generated by the classes of the components Xva with a > 1 for
all v with h(v) > 1. Then the denominator in the above expression is equal to Q′

and it is clear that Q/Q′ is isomorphic to
∏

v∈Σ Z/pv1Z. Since Q′ is torsion free and
E is torsion, we find that

N /N ′ ' (Q/E)/Q′ ' Q/(Q′ + E),

so that N /N ′ is finite, of order (
∏

v∈Σ pv1)/|E|.
Recall now from 3.8 that P ' Pic0(XK)/(B(k)/E). Since B(k)/E is finite, we

find that

(3.4) |Ptors| = |Pic0(XK)tors|/|B(k)/E|,
and we also have a canonical isomorphism

(3.5) Pic0(XK)/Pic0(XK)tors −→ P/Ptors.

Since the group N /N ′ is finite, we find that

(3.6) |A′tors| = |N /N ′| · |Ptors|
and that

(3.7) A′/A′tors −→ P/Ptors

is an isomorphism.
By construction, the classes of the restrictions ofA1, . . . ,Ar to the generic fiber are

a basis of Pic0(XK)/Pic0(XK)tors. Using the isomorphisms (3.5) and (3.7), we find
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that the classes of A1, . . . ,Ar are a basis of A′/A′tors. This implies that NS(X)/N0

is torsion and that

0 −→ (N0/N ′)tors −→ A′tors −→ NS(X)/N0 −→ 0

is exact. It is clear that

N0 = (〈[A1], . . . , [Ar]〉+NS(X)tors)⊕N ′.

It follows that

NS(X)/N0 =
A′tors

NS(X)tors

.

The desired formula for the index follows from (3.4) and (3.6). �

3.10. LetN 0 be the image ofN0 in the lattice NS(X)/NS(X)tors. The computation
of the discriminant of the intersection pairing on the sublattice N 0 is done exactly as
in Proposition 5.1 of [Go], and the formula obtained is the same. The only difference
now is that the discriminant of the height pairing | det 〈αi, αj〉 | that appears in the
formula is the discriminant for the height pairing on Pic0(XK)/Pic0(XK)tors, and not
anymore on AK(K)/AK(K)tors. Let af denote the index of Pic0(XK)/Pic0(XK)tors

in AK(K)/AK(K)tors. As indicated in Lemma 3.2, the two discriminants differ by a
factor a2

f .

Similarly, the discriminant of the intersection pairing on N 0 differs from the dis-
criminant of the intersection pairing on the full lattice NS(X)/NS(X)tors by the
square of the index

|Pic0(XK)tors|
|B(k)|

·
∏

v∈Σ pv1

|NS(X)tors|
obtained in 3.9. This index is exactly the same as the one obtained [Go], ex-
cept that in [Go], the term |Pic0(XK)tors| is replaced by |AK(K)tors|. Let ators :=
|AK(K)tors/Pic0(XK)tors|. We have a = afators, and we find that the final discrep-
ancy is a factor of a2.

Remark 3.11. We supply in this remark some references for an important result
stated just before Proposition 5.1 of [Go], and needed in its proof. Let α, β in
Pic0(XK)/Pic0(XK)tors. The global height pairing 〈α, β〉 can be computed as a sum
of local contributions

∑
v 〈α, β〉v (see, e.g., [6], (4.6)). Each local contribution can be

expressed as a local intersection number 〈α, β〉v = −(α, β)v log(|k(v)|) (see, e.g., [6],
(3.7)), where the contribution (α, β)v is the value of Néron’s pairing at v on α and
β. Let A,B ∈ Div(X)⊗Q be two divisors whose restrictions to XK are in Div(XK)
and equal the classes α and β, respectively, and have disjoint supports. Assume in
addition that (A·Xva)X = 0 for all v and all a. Then (α, β)v = (A·B)v, where (A·B)v
denotes the contribution of the points in Xv in the intersection number (A · B)X
(see, e.g., [2], 4.3, or [10], 2.2). One then obtains that 〈α, β〉 = −(A ·B)X log(|k|).

3.12. We recall below the formula of Gordon found in the middle of page 196 in [Go].
This formula is claimed to hold exactly when the Birch–Swinnerton-Dyer conjecture
is equivalent to the Artin–Tate conjecture. This claim is incorrect when a > 1. In
[Go], page 169, the integer α appearing below is defined to be the index δ.
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(3.8) |X(AK)|
∏
v

d2
vεv = α2|Br(X)|.

This formula in [Go] is misleading, as the term εv is only introduced in the state-
ment of Proposition 5.5 of [Go] when v ∈ S1, but the formula (6.2) in [Go], from
which (3.8) above is derived, involves a product over a set S (defined on page 165
of [Go]) which contains S1, but which might also contain S2 and S3 (notation in-
troduced in 3.7). Let us therefore state below the correct formula (3.9) that can be
inferred from Gordon’s work and which should be substituted for (3.8).

Let Av/OKv denote the Néron model of AKv/Kv. Let Φv/k(v) denote the group of
components of the special fiber of Av. When v ∈ S2tS3, the fiber Xv is irreducible,
say Xv = dvΓv for some irreducible curve Γv/k(v). Let qv denote the degree over
k(v) of the algebraic closure of k(v) in the function field of Γv/k(v). It follows from
the fact that k(v) is a finite field that δv = dvqv. Note that if v /∈ S1 t S2 t S3, then
δv = δ′v = 1. Then Gordon’s arguments, along with the removal of the hypothesis
that X → V be cohomologically flat in dimension 0 in [LLR1] and the corrections
given in this corrigendum, give the following formula.

(3.9) |X(AK)|

(∏
v∈S1

d2
vεv

)( ∏
v∈S2tS3

d2
v|Φv(k(v))|qv

)
= a2δ2|Br(X)|.

The formula can be turned into Formula (2.1) as we did in the proof of Theorem 4.3
in [LLR1], using Theorem 1.17 of [1]. For instance, when v ∈ S2 t S3, this theorem
shows that |Φv(k(v))| = δ′v/dv. Since it follows from the adjunction formula that
dvqv divides g − 1 in this case, Theorem 7 in [9] shows that δv = δ′v. It follows that
d2
v|Φv(k(v))|qv = δvδ

′
v, as desired, and Formula (2.1) is established.
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(2) 52 (2006), no. 1-2, 37–108.

[4] T. Geisser, Comparing the Brauer group to the Tate-Shafarevich group, to appear in J. Inst.
Math. Jussieu, arXiv:1712.06249v2

[5] C. Gonzalez-Aviles, Brauer groups and Tate–Shafarevich groups, J. Math. Sci. Univ. Tokyo
10 (2003), 391-419.

[Go] W. Gordon, Linking the conjectures of Artin–Tate and Birch–Swinnerton-Dyer, Comp. Math.
38 (1979), 163–199.

[6] B. Gross, Local heights on curves, Arithmetic geometry (Storrs, Conn., 1984), 327–339,
Springer, New York, 1986.

[7] A. Grothendieck, Le groupe de Brauer III, Exemples et compléments, (French) Dix exposés sur
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