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Abstract

We consider a generalization of the Frobenius problem, where the object of inter-

est is the greatest integer having exactly j representations by a collection of positive

relatively prime integers. We prove an analogue of a theorem of Brauer and Shockley

and show how it can be used for computation.

1 Introduction

The linear diophantine problem of Frobenius has long been a celebrated problem in number
theory. Most simply put, the problem is to find the Frobenius number of k positive relatively
prime integers (a1, . . . , ak), i.e., the greatest integer M for which there is no way to express
M as the non-negative integral linear combination of the given ai.

A generalization, which has drawn interest both from classical study of the Frobenius
problem ([1, Problem A.2.6]) and from the perspective of partition functions and integer
points in polytopes (as in Beck and Robins [2]), is to ask for the greatest integer M that can
be expressed in exactly j different ways. We make this precise with the following definitions:

A representation of M by a k-tuple (a1, . . . , ak) of non-negative, relatively prime integers
is a solution (x1, . . . , xk) ∈ N

k to the equation M =
∑k

i=1 aixi.
We define the j-Frobenius number of a k-tuple (a1, . . . , ak) of relatively prime positive

integers to be the greatest integer M with exactly j representations of M by (a1, . . . , ak) if
such a positive integer exists and zero otherwise. We refer to this quantity as gj(a1, . . . , ak).
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Finally, we define fj(a1, . . . , ak) exactly as we defined gj(a1, . . . , ak), except that we con-
sider only positive representations (x1, . . . , xk) ∈ Z

k
>0.

Note that the 0-Frobenius number of (a1, . . . , ak) is just the classical Frobenius number.
The purpose of this paper is to prove a generalization of a result of Brauer and Shockley [3]
on the classical Frobenius number.

2 The Main Results

Our main result is the following:

Theorem 1. If d = gcd(a2, . . . , ak) and j ≥ 0, then either

gj(a1, a2, . . . , ak) = d · gj(a1,
a2

d
, . . . ,

ak

d
) + (d − 1)a1

or gj(a1, a2, . . . , ak) = gj(a1,
a2

d
, . . . , ak

d
) = 0.

Lemma 2. If fj(a1, . . . , ak) is nonzero, there exist integers x2, . . . , xk > 0 such that

fj(a1, . . . , ak) =
k∑

i=2

aixi.

Proof. Let fj := fj(a1, . . . , ak). By the definition of fj, we can write fj =
k∑

i=1

aixi,ℓ with

xi,ℓ > 0 for 1 ≤ ℓ ≤ j. Since

fj + a1 =
k∑

i=1

aixi,ℓ + a1 = a1(x1,ℓ + 1) +
k∑

i=2

aixi,ℓ,

we obtain at least j positive representations of fj + a1. As fj is the largest number with
exactly j positive representations, there must be at least j + 1 distinct ways to represent

fj + a1. Specifically, we have fj + a1 =
k∑

i=1

aix
′

i,ℓ with x′

i,ℓ > 0 for all 1 ≤ ℓ ≤ j + 1. Subtract

a1 from both sides of these j +1 equations to obtain fj = (x′

1,ℓ − 1)a1 +
k∑

i=2

aix
′

i,ℓ. Evidently,

there exists some ℓ0 ∈ [1, j + 1] for which x′

1,ℓ0
− 1 = 0 because fj cannot have j + 1 positive

representations. Therefore, fj(a1, . . . , ak) =
k∑

i=2

aix
′

i,ℓ0
.

Theorem 3. If gcd(a2, . . . , ak) = d, then

fj(a1, a2, . . . , ak) = d · fj(a1,
a2

d
, . . . ,

ak

d
).
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Proof. Let ai = da′

i for i = 2, . . . , k and N = fj(a1, . . . , ak).
Assuming N > 0, we know by Lemma 2 that

N =
k∑

i=2

aixi = d

k∑

i=2

a′

ixi

with xi > 0. Let N ′ =
∑k

i=2 a′

ixi. We want to show that N ′ = fj(a1, a
′

2, . . . , a
′

k) and will do
this in three steps.

Step 1: First, we know that N ′ does not have j + 1 or more positive representations
by a1, a

′

2, . . . , a
′

k. If N ′ could be so represented, then for 1 ≤ l ≤ j + 1 we would have

N ′ = a1y1,ℓ +
k∑

i=2

a′

iyi,ℓ.

Multiplying this equation by d immediately produces too many representations of N and
thus a contradiction.

Step 2: Next, we know that

fj(a1, . . . , ak) = N = a1x1,ℓ +
k∑

i=2

aixi,ℓ

for 1 ≤ l ≤ j and xi > 0, so

N

d
=

a1x1,ℓ

d
+

k∑

i=2

aixi,ℓ

d
.

Since d|N and d|ai for i ≥ 2, we must have d|a1x1,ℓ for 1 ≤ ℓ ≤ j. In addition, gcd(a1, d) = 1
so we must have d|x1,ℓ for 1 ≤ ℓ ≤ j. So

N ′ = a1
x1,ℓ

d
+

k∑

i=2

a′

ixi,ℓ,

hence N ′ has at least j distinct positive representations. But we have already shown that
N ′ cannot have j + 1 or more positive representations, thus N ′ has exactly j positive repre-
sentations.

Step 3: Finally we will show that N ′ is the largest number with exactly j positive rep-
resentations by a1, a

′

2, . . . , a
′

k. Consider any n > N ′. Since dn > dN ′ = N , we know that dn

can be represented as a linear combination of a1, . . . , ak in exactly X ways with X 6= j.
Thus, for 1 ≤ l ≤ X and X 6= j we have

dn = a1x1,ℓ +
k∑

i=2

aixi,ℓ
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and as in Step 2,

n = a1(
x1,ℓ

d
) +

k∑

i=2

a′

ixi,ℓ.

If X > j then we certainly do not have exactly j representations, so assume X < j. Assume
now that we can write n = a1y1 +

∑k

i=2 a′

iyi where yi 6= xi,ℓ for any such ℓ. By multiplying
by d we get a new representation for dn, which is a contradiction because dn is represented
in exactly X 6= j ways.

Therefore N ′ is the greatest number with exactly j positive representations and so

N ′ = fj(a1, a
′

2, . . . , a
′

k).

Thus
fj(a1, a2, . . . , ak) = d · fj(a1,

a2

d
, . . . ,

ak

d
).

Having established our results about fj(a1, . . . , ak), we show that we can translate these
results to results about the j-Frobenius numbers.

Lemma 4. Either fj(a1, . . . , ak) = gj(a1, . . . , ak) = 0 or,

fj(a1, . . . , ak) = gj(a1, . . . , ak) +
k∑

i=1

ai.

Proof. For ease, write fj for fj(a1, . . . , ak), gj for gj(a1, . . . , ak), and K =
∑k

i=1 ai.

Any representation (y1, . . . , yk) of M gives a representation (y1 + 1, . . . , yk + 1) of M + K.
Moreover, adding or subtracting K preserves the distinctness of representations because it
adjusts every coefficient yi by 1. Therefore if M has j representations, M + K has at least
j positive representations. Likewise, every positive representation of M + K gives a repre-
sentation of M . Thus fj = 0 if and only if gj = 0. Assume now that fj and gj are both
nonzero.

Suppose that fj < gj + K. By definition, we can find exactly j representations (y1, . . . , yk)
for gj and gj has exactly j representations if and only if gj + K has exactly j positive rep-
resentations (x1, . . . , xk). However, by assumption gj + K > fj and gj + K has exactly j

positive representations. This contradicts the definition of fj, hence fj ≥ gj + K.

Suppose that fj > gj + K. By definition, we can find exactly j positive representations
(x1, . . . , xk) for fj. The same argument as above shows that fj − K has exactly j represen-
tations in contradiction to the definition of gj. Thus fj ≤ gj + K.

Proof of Theorem 1: Combine Theorem 3 with Lemma 4.
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Corollary 5. Let a1, a2 be coprime positive integers and let m be a positive integer. Suppose
that gj = gj(a1, a2,ma1a2) 6= 0. Then

• gj = (j + 1)a1a2 − a1 − a2 for j < m + 1

• gm+1 = 0 and

• gm+2 = (m + 2)a1a2 − a1 − a2.

Proof. Theorem 1 tells us that if gj(1, 1,m) 6= 0 then

gj(a1, a2,ma1a2) = a2(gj(a1, 1,ma1)) + (a2 − 1)a1

= a2 (a1gj(1, 1,m) + (a1 − 1)1) + (a2 − 1)a1

= a1a2(gj(1, 1,m) + 2) − a1 − a2.

Following Beck and Robins in their proof of [2, Proposition 1], we can use the values
of the restricted partition function p1,1,m(k) to determine gj(1, 1,m). Furthermore we can
determine the relevant values with the Taylor series 1

(1−t)2(1−tm)
=

∑
∞

k=0 p1,1,m(k)tk. Now

recall that for k < m, p1,1,m(k) = p1,1(k) = k + 1 but p1,1,m(m) = m + 2 and for all k > m,
p1,1,m(k) > m+2. Note that no number is represented m+1 times. Thus gm+1(1, 1,m) = 0,
gj(1, 1,m) = j − 1 for j < m and gm+2(1, 1,m) = m.

Remark 6. It is a consequence of the asymptotics in Nathanson [4] that for a given
tuple, there may be many j for which gj = 0, so the ordering g0 < g1 < · · · may not hold.
In the process of discovering the theorems of this paper, we noted the somewhat stranger
occurrence of tuples where 0 < gj+1 < gj.

Take, for instance, the 3-tuple (3, 5, 8). The order g0 < g1 < · · · holds until g14 = 52
and g15 = 51. As should also be the case, the 3-tuple increased by a factor of d = 2 creates
the new “dependent” 3-tuple (3, 10, 16), which fails to hold order in the same position with
g14 = 107 and g15 = 105. A few independent examples are as follows:

g17(2, 5, 7) = 43 and g18(2, 5, 7) = 42,
g38(2, 5, 17) = 103 and g39(2, 5, 17) = 102,
g35(4, 7, 19) = 181 and g36(4, 7, 19) = 180, and
g38(9, 11, 20) = 376 and g39(9, 11, 20) = 369.

We do not as of yet know a lower bound on j for the above to occur. Indeed, in every case
we have computed, if g0, g1 > 0 then g1 > g0, but to date neither a proof or a counterexample
has presented itself.
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