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THE p-PART OF THE GROUP OF COMPONENTS
OF A NERON MODEL
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Let K be a complete field with a discrete valuation v. Let @g denote its
ring of integers. Let k denote the residue field of O, and assume that it is
algebraically closed. Let p > 0 denote the characteristic of k. Let A/K be an
abelian variety of dimension g and let .A/Of denote its Néron model. The
special fiber Ay of A is a smooth group scheme over k. It is an extension of
a finite abelian group ®, called the group of components, by a connected
commutative group scheme A, the connected component of 0 in Ay.

Let M/K be any finite separable field extension. The functoriality prop-
erties of the Néron model show the existence of a natural map of groups of
components:

Y, P P — Py

Let Wk ps denote the kernel of vk p. Let L/K denote the extension of K
minimal with the property that A;/L has semistable reduction (note that
L/K is Galois). Recall that the abelian variety A/K is said to have potentially
good reduction if the special fiber of the Néron model of Ay /L is an abelian
variety. In this case, ¥ ; = k.

In an unpublished preprint, McCallum [McC] proves that the group ¥ KM
is killed by the order of the group Gal(M/K) when k is the algebraic closure
of a finite field and M/K is Galois. A proof that the prime-to-p part of ¥ K.L
is killed by Gal(L/K) can be found in [Lorl, 3.5]. Since the largest quotient of
Gal(M/K) having prime-to-p order is cyclic, we find that the prime-to-p part
of Wk a is killed by the exponent of Gal(M/K). McCallum asks in [McC]
whether the full group ¥ s is in fact killed by the exponent of Gal(M/K).
The purpose of this paper is to present a different proof of McCallum’s result,
without any restriction on k, as well as to show that the p-part of ¥ K.M 1S
not, in general, killed by the exponent of Gal(M/K).

Let us stress here the significance of McCallum’s theorem. While the prime-
to-p part of Wk 1 is well understood (see, for instance, [Lor3], [Edi2]), Mc-
Callum’s result is the only known general statement regarding the p-part of
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Uk 1. Since Serre and Tate have shown in [S-T] that |Gal(L/K)| is divisible
only by primes q with ¢ < 2¢ + 1, we find that McCallum’s theorem implies
that p may divide |V 1| only when p < 2¢g 4 1. The next theorem general-
izes McCallum’s theorem to the case where k is arbitrary. Contrary to the
general hypotheses in this article, K is not necessarily complete and £ is not
necessarily algebraically closed in the next theorem and its proof.

Theorem 1. Let D be a henselian discrete valuation ring, K its field of
fractions, k its residue field and A an abelian variety over K. Let K — K' be
a finite separable field extension, D' C K’ the integral closure of D and k' the
residue field of D'. Let A and A’ denote the Néron models of A and A" := Ay
over D and D', respectively. Let ® := A/ A and & := A, /(A})°. Then
the kernel of the morphism i k1 : ®x — ® is killed by n == [K' : K].

Proof. Let S := Spec (D) and S’ := Spec (D’). Replacing K by the largest
unramified extension of K in K’ we reduce to the case where K — K’ is
completely ramified, i.e., where k — k’ is purely inseparable. So from now on
we assume that k — k' is purely inseparable.

The Néron mapping property of A’ gives a morphism a: Ag: — A’ inducing
the identity on the generic fibres. Let B := [], /s A’ denote the Weil restric-
tion of A’ from S’ to S (see [BLR, §7.6], or [Edil, §2], for some properties of
this construction). By the definition of B, « induces a morphism a: A — B.
Let B := Bi and let K — K*®P be a separable closure. Since Bgser is canon-
ically isomorphic to the product of n copies, indexed by Homg (K', K®°P), of
Agser, we have a morphism Bjcser : Biseo — Agser which takes the sum. This
morphism By is compatible with the canonical descent data from K®P to
K for both source and target; hence, there is a unique morphism : B — A
which, by base change from K to K5°P, gives Sxser. From the fact that A is
a Néron model of A it follows that 3 extends (uniquely) to §: B — A. By
construction we have that fo a: A — A is the “multiplication by n” mor-
phism. Let ¥ := Bi/BY. The composition 8 o a of the induced morphisms
a:® — ¥ and B: ¥ — @ is multiplication by n. To finish the proof we
will show the existence of a canonical isomorphism between ¥y and @' that
identifies aps : Ppr — Wi with i k7.

We define R := D' ®p k’. Note that R is an Artinian local k'-algebra with
residue field k¥’ and of k’-dimension n; we consider R as a D’-algebra in the
usual way. We have B = [[ K Alp, since Weil restriction commutes with
base change. Let m C R be the maximal ideal; note that m™ = 0. As in §5.1
of [Edil] we define, for any k'-algebra C, and for any ¢ with 0 <: < n:

(F'By)C = ker (Bw (C) = A(C ®) R) — A(C ® (R/m"))).
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This defines a filtration of By by subfunctors:’
B = FOBk/ O---DF'B =0.

Each functor C — A'(C @y (R/m')) is represented by the group scheme
R /miynr AR /mi; hence, the functors FiB, are represented by closed sub-
group schemes of By/. For 0 <7 < n and any k'-algebra C we define

(Gr'By)C = ((F'By)C)/(F*1Bi)C).

For all ¢ and C the maps A'(C ® R) — A(C ®x (R/m?)) are surjective,
since A’ is smooth over D’. It follows that Gr’B, = > and as in §5.1 of
[Edil] one shows that for 0 < ¢ < n there are canonical isomorphisms

CGr'By, -~ Tang(A}) ® (m?/miTh),

where the k'-vector space on the right-hand side should be regarded as a
variety over k’. Since F!B, is a repeated extension of the Gr'By withi > 0, it
is connected and the projection By — Gr’By, = A}, induces an isomorphism
from ¥, to ®'. The composition of ay : Ap — By with the projection
By — Gr'°By = A} is the canonical morphism A, — Aj}, and hence induces
Vi kot P — @ O

Lemma 2. Let E/K be an elliptic curve. Then Wk 1, ts killed by the ex-
ponent of Gal(L/K).

Proof. The possible groups Vg ; are (1),2/2Z, Z/2Z x Z/2Z, Z./37Z, and
Z/4Z. 1t is shown in [Lorl, 4.2], using Tate’s algorithm, that, if p = 2 or 3
and if p | |/, then p | |Gal(L/K)|. Hence, Lemma 2 is true if p = 3. When
p = 2, it remains only to show that, if ¥ | = Z/4Z, then Gal(L/K) is not
killed by 2. When K is the maximal unramified extension of Qs, the fact
that the exponent of Gal(L/K) is divisible by 4 can be verified using Tate’s
algorithm and the tables of Kraus [Kra]. However, when K is any field, it
seems very difficult to prove Lemma 2 using only the “equation” of the elliptic
curve. We will therefore provide a proof here that uses McCallum’s result.
Since |Gal(L/K)| kills Uk 1, we are left, again, to consider only the case
where p =2 and Yy ; = Z/4Z. In this case, 4 must divide |Gal(L/K)|. 1t is
well known that Gal(L/K) is a subgroup of SLy(IF3). One easily checks that
every subgroup of SLy(F3) of order divisible by 4 has exponent divisible by 4.
Hence, Lemma 2 follows. O

Let us now describe an example that shows that the group ¥k s is not, in
general, killed by the exponent of Gal{M/K). Let t € Ok be a uniformizing
parameter. Let p > 2 and ¢ := p/. Let X/K denote the smooth projective
model of the plane curve

y? = (27 + )2 + Atz
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with 4 € O}, m,r € N, and 0 < r < ¢, and m > 2. Note that (0,%t) is a
K -rational point of X. Let J/K denote the Jacobian of X. Our aim in the
remainder of this paper is:

(1) To describe the minimal model of X/K over Og. This model is inde-
pendent of the residual characteristic of Ox. We will show, using this
model, that the group of components ®x of J is cyclic of order g°.

(2) To show that, if v(p) is large enough and if r is appropriately chosen,
then the Jacobian J has potentially good reduction. In particular,
@ K= \I’ K,L:

(3) To show that the first ramification subgroup of the Galois group
Gal(L/K) associated to J is an elementary abelian p-group of order
.

The statements (2) and (3) will follow from an explicit description of the stable
reduction of the curve X /L over Or. In our search for this example, we were
guided by the case where ¢ = 3 and the curve X/K has genus 2. In this case,
the reduction of X/K over Ok can be computed using the algorithm in [Liu].

Let X /O denote the regular minimal model of X/K over Ok . Its special

fiber is a Cartier divisor and, as such, can be written as A} = Zf=1 r;C;,
where C; is an irreducible component of multiplicity r;. Let (G, M, R) de-
note the associated arithmetical graph (see [Lor2, 1.2]). We describe below
an arithmetical graph G(v,n,a, b, ¢,d), and we will show that the graph asso-
ciated to the special fiber X} is of the form G(v,n,a,b, ¢, d) for certain values
of the parameters v, n,a,b,c, and d.

Let v > 0 and n,a,b,c,d > 1 be integers. Let G(v,n,a,b,c,d) denote the

following arithmetical graph:

FIGURE 1

Recall that e denotes a vertex of multiplicity 7. The symbols

FIGURE 2
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indicate that the chain is continued as in [Lor2, 2.4], using Euclid’s algorithm
onr and 7y, and that ged(r,71) = 1. The integer v is one less than the number
of vertices of multiplicity n. Implicit in the above graph is the fact that n
divides a +b and ¢+ d. The integer (a + b+ n)/n is the “self-intersection” of
the node on the left (a node is a vertex with at least three adjacent edges).
Similarly, (c+d+n)/n is the self-intersection of the node on the right. When
no confusion may occur, we will denote the graph G(v,n,a,b,c,d) simply by
G. We let M denote the intersection matrix associated to G, and we denote
by @ the group of components of G. Recall that if diag(es,...,es,1,...,1,0)
is an integer matrix row and column equivalent to M , then @ = [T°_, Z/e;Z.
The order of @ can be computed using the formula in [Lorl, 1.5]. We find
that |®] = n?.

Recall that the graph G(v,2,1,1,1,1) corresponds to the graph I in Ko-
daira’s notation for the reduction types of elliptic curves. In particular, the
associated group ® is Z/4Z if v is odd, and Z/2Z x Z/2Z if v is even. These
facts are generalized as follows:

Lemma 8. The group of components ® of the graph G(v,n,a,b,c,d) is
isomorphic to the product of Z/ ged(n, v)Z and Z/g—cdi(sz.

Proof. Let us only briefly sketch the row and column operations needed to
compute ®. Order the vertices of G as follows. First order the vertices of the
chain “a” from left to right, from the end point to the vertex of multiplicity
a; then order the vertices of the chain “b” from bottom to top, from the end
point to the vertex of multiplicity b; then order the vertices of multiplicity n
from left to right; then order the vertices of the chain “c” from top to bottom;
and finally order the vertices of the chain “d” from left to right. Use Lemma
2.5 in [Lor2] to “shrink” the four terminal chains. Let sn = a + b+ n, and let
tn = c+d+n. We are left to compute the row and column reduction of the
following matrix:

-n 0 1
0 —=n 1
a b —-s 1
1 -2 1
1 -2 1
1
-2 1
1 —t ¢ d
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The entries that are not explicitly indicated in the above matrix are all null,
except for the ones on the diagonal, and on the lower and upper diagonals. To
deal with the central part of this (v +5) x (v + 5)-matrix, proceed as follows.
Assume that v > 3. Add the columns 4, 5,...,v+1tothe (v + 2)-column,
add the columns 4,5, ..., v to the (v+1)-column, etc., and finally add column
4 to colurnn 5. Then add column (v + 2) to column (v + 1), etc. and, lastly,
add column 5 to column 4. The new matrix has the form:

-n 0 1
0 —n 1
b —-s v-—1 v—2 e 1
1 -y —w-2) ... -1
0 -1 0 0
0
-1 1
1 1 i -t c d
1 -n 0
1 0 -n
Hence, we are reduced to finding the row and column reduction of the 8 x 8
matrix
-n 0
0 -—~n 1
b —s (v—-1) 1
1 —v -1
0 -1 1
1 1 ~-t ¢ d
1 -n 0
1 0 -n

Using, among other operations, operations with the first line and third col-
umn, and operations on the sixth column and the last line, one is reduced to
considering the matrix

—n b v—1 1 0 —n 0
n 0 —-v -1 0 b c 0
0 -1 0 =n |’ andthen | = o o o
1 1 c —-n 0 0 —-n O

—-n 0

The determinant of this 4 x 4 matrix is 0. The greatest common divisor of the

determinants of its 3 x 3 minors is equal to n2. The greatest common divisor of
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the determinants of its 2 x 2 minors is equal to ged(n, v). The greatest common
divisor of the coeflicients of this matrix is equal to 1. Hence, this matrix is
row and column equivalent to diag(l,ged(n,v),n?/ged(n,v),0). Lemma 3
follows. O

Lemma 4. Let K be a field with a discrete valuation v. Assume that the
associated residue field is not of characteristic 2. Let X/K denote the smooth
projective model of the plane curve given by the equation

y? = (" +t+tzf(z))? — Atz

where f(x) € Oklz] is of degree less than n, and v(A) = 0. Assume also that
m,n > 2, and that 0 < s < 2n. Then the graph associated to the special fiber
of the minimal model of X/K over Ok is of the form G(v,n,n—1,1,n—1,1),
with v = (m — 2)n + s.

Proof. Let g(z) := (z"+t+tzf(z))2+At™z*. The plane curve given by y?—
g(z) = 0 has a smooth model obtained by glueing the affine curve y?>—g(z) = 0
to the affine curve v? — §(u) = 0, where u := 1/z, v := y/z", and g(z)/z>" =:
g(1/z). Let Xy/Ok denote the model of X/K obtained by glueing in the
obvious manner the two affine schemes U; := Spec Ok |z, y]/(y* — g(z)) and
U, := Spec Ok [u, v]/(v? — §(u)).

We claim that the scheme X has a unique singular point P, belonging
to the special fiber A, , and that Xp  is the union of two smooth rational
curves C and C’ intersecting at Py. We shall represent Xp & by the following

diagram:
>§<
o

FIGURE 3

To prove our claim, recall that if a point P € Ay is a singular point of X,
then it must be a singular point on the scheme Xy x. The special fiber of
U, is Spec k[u,v]/(v? — 1), the disjoint union of two affine lines. Hence, Us
is a regular scheme. The special fiber of U; is Spec k[z,y]/(y? — "), the
union of two smooth affine lines intersecting at the point Py corresponding to
the maximal ideal M := (z,y,t). We will justify the fact that P, is singular
on Ay by showing below that the exceptional fiber of the blow-up X; of P,
on A is not a smooth rational curve. We could also verify directly that
dimy M/M? > 2.

Let us now describe the special fiber of the blow-up X;. It consists of the
strict transforms of C and C’, and of two smooth projective lines F; and
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E!. These four components have multiplicity one in Xj x, and all intersect in
a point P;, which is the unique singular point of X;. We represent Xy as

follows:
14
P, o
c
E 1
FIGURE 4

The scheme X; can be covered by four affine charts. Let us briefly describe
the chart W, that contains P;. Let y = zyn and t = xt;. Substitute these
new expressions in y? — g(z) = 0 to obtain

22y} — (2" + t1#)? — APz = 0.
Let gi(z,t1) := (271 + t1%)2 + AtTa™ 72, Let
By = Oklz,v1,t1)/ (¥} — g1(z, t1),t — xt1).

Let W, = Spec B;. The point Py corresponds to the maximal ideal (z,9,%1).
The exceptional fiber is Spec B/(z), and the union of the strict transforms of
C and C' is Spec B/(t1).

The reader will check that the scheme A5, obtained as the blow-up of P,
has a unique singular point P, and that X2 x can be represented as follows:

FIGURE 5

The exceptional components E» and Ej have multiplicity 2 in Xyr. A similar
process can be repeated n — 3 more times to obtain a scheme X, 1 with a
unique singular point P,_; and a special fiber An_1,x represented as follows:
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En 1

X
Erl C’ \ E{
7 E,

M-l

FIGURE 6

The multiplicity of the exceptional fiber in the special fiber X;  is 1.
Blowing-up X,,_; at P,_; separates the components C' and C’, and gives
a scheme Z; with a unique singular point Qo and a special fiber of the form:

FIGURE 7

We may describe an affine open set V,, of Zy that contains Qo as follows.
Let y = 2™y, and t = z™t,. Substitute these expressions into y? —g(x) =0
to get

7[R ~ (14 ta0)? = Atal" " = 0,
Let gn(z,tn) := (1 + tn0)2 + At:lnq;(m‘-Q)n-fs' Let

By, := Ok, Yn, tal/ (W2 = gn(z, tr), t — 2™ tn).
Let V,, := Spec B,,. The point Qg € V,, corresponds to the maximal ideal
(2,Yn, 1 + t,0). The reader will check that by localizing, one can make the
change of variable z := 1 + t,0, and obtain a main equation of the form
y2 = 22+ Dx(m~ 2"+ with D ¢ (,yn, z). This is the equation of an ordinary
double point (see [Des, 2.2]), which is resolved by a chain of n(m —2) +s —1
smooth rational curves. Hence, v + 1 = n(m — 2) + s + 1 is the number

of components of multiplicity n in the special fiber of the regular model of
X/K. O
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Remark 1. If either s > 2n or deg(f) > n, then the genus of X/K is
larger than n — 1. The graph associated to a regular model X' /O in this
case will not be simply connected. This fact can already be seen on the
corresponding model Xp: when s > 2n or deg(f) > n, the special fiber of Xy
is the union of two rational components meeting in two distinct points, one
in the chart U; and the other one in the chart Us (the notation is as in the
proof of Lemma 4). In particular, the graph associated to X/Ok cannot be
of the form G(v,n,a,b,c,d).

Remark 2. Fix a graph G(v,n,qa,b,c,d). Let £ be a prime that does not
divide any of the multiplicities of the vertices of the graph G. Only for such
¢ does the Existence Theorem of Winters ([Win, Corollary 4.3]) predict the
existence of a discrete valuation field F' of equicharacteristic £ and of a curve
Y/F such that the graph associated to the minimal model of Y/F over Op
is G(v,n,a,b,c,d). Lemma 4 shows that the graph G(v,n,n - 1,1,n — 1, 1)
occurs as the graph associated to the minimal model of a curve in any odd
residual characteristic.

Let X/K be any smooth projective curve. Recall that there exists a mini-
mal Galois extension L/K such that X admits a unique stable model ) over
the integral closure @, of Ok in L (see for instance [Des, 1.5, and 5.10-5.16]).
The special fiber Yy of Y is called the stable reduction of X. Furthermore, for
any extension M of L, the special fiber of the stable model of X over O is
isomorphic to Vi, for the construction of stable models commutes with base
change.

Lemma 5. Let ¢ = p/. Let X/K be the smooth projective curve corre-
sponding to the affine equation y> = (z7 + t)* + Atmz® with A € O,
m>2, and 0 < 1 < q. Assume that (p,7) = 1 and that v(p) > m/2. Then
the stable reduction Vi of X consists of two irreducible components E and F'
intersecting in a single point. Both components are isomorphic to the smooth
projective curve (over k) corresponding to the affine equation 22=ud —u.

Proof. Denote by K an algebraic closure of K. The absolute value |- | of
K extends uniquely to an absolute value |- | of K. Let B € K be a square
root of —A. Consider the following polynomials in Kz} :

Hy(z) := 27 + Bt™/?5" +1¢,

Hy(z) := z9 — Bt™?z" + 1.

By definition, y? = H;(z)Hz(x). Let 6 € K be a zero of H;(z). Make the
change of variables z = Au + 6 to find that

Hi(z) = (Mud + )+ Bt™2 (- 4 ruf ™+ 607) + 1.



THE p-PART OF THE GROUP OF COMPONENTS OF A NERON MODEL 811
Let A9~ ! := —rBt™/20"~1 Then
Hi(z) = M(u? — u +e1(u)),

where £;{u) € K(0,))[u] is a polynomial whose coefficients have absolute
value less than 1 (this last fact uses the properties v(p) > m/2 and m > 2).
After performing easy but tedious computations, the reader will find that

Hy(z) = —2Bt™/20" + Hy(x) = (=2X9710/r)(1 + e2(u)),

where e2(u) € K(6,A)[u] is a polynomial whose coefficients have absolute
value less than 1 and £2(0) = 0. Let o € K be a square root of —2X2¢-14/r,
and set z := y/a. We find then that

22 = (u? —u+e1(w)(1 + ea(u)).

The reader will note that reducing this equation modulo a uniformizing pa-~
rameter of K (6, A, o) produces an equation of Artin-Schreier type.

We proceed now similarly with Hy(z). Let § € K be a root of Hy(z). Let
pd~t = rBt™/2671 and B? := 2u*~'6/r. Let v := (z — 6)/p and w = y/p.
We have |6 = [t|'/9 = |8] and |A| = |u].

Let M=K (6,6, u, A\, «¢, 3,t™/?). (It can be seen that M =K (8, §,t1/4(a-1)).
We are going to exhibit below a stable normal model Y/Op of X /M. By
construction, 1 4 €2((6§ — 6)/A) = 0. We find then that |§ — 6| > |A|. In the
function field M(X) of Xs/M, consider

wy = A/(0 —8) +1/u,

wy = p/(6—0)+1/v.

Let m := —Au/(8 — )2, so that wywy = 7, and |7| < 1. The field inclusion
M(wy) € M(X) gives a natural map X, — P, defined over M. Consider
the normal model

Z := ProjOn [Wo, W1, Wa /(W1 Wy — W)

of P}, where w; := W;/Wjy. Let ) denote the integral closure of Z in X; /M.
The scheme Y/Oy; is a normal model of Xj;/M, which contains two affine
open subsets, smooth over Oy :

U := Spec Oprlu, 2], and V := Spec Op v, w].
Namely, U (resp. V) is the preimage by V — Z of D, (W7) (resp. D, (W3)).
Denote by h the image of any h € Oplu, 2] in Oplu, 2] ®p,, k. The special
fiber Uy (resp. V%) is a smooth curve defined by the equation

2

#=4a-1 (resp. w* =09 —9).
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Let E (resp. F) be the irreducible component of Vi containing Uy (resp. Vi).
The geometric genus of E and F equals (¢—1)/2. It is easy to see that U UV%
is dense in Vi; so EUF = Y. Furthermore, the sum of the geometric genera
of E and Fis g—1 = po(Yx). This implies that E and F' are smooth, and that
they intersect in an unique point, oo, which is an ordinary double point. [

Remark 3. Let X/K be any hyperelliptic curve, and assume that the
residual characteristic of K is odd. The stable reduction of X is completely
determined if the branch locus of the canonical map X — P}, is known or,
more precisely, if the relative position of the points in the locus is known (see
[Bos]). The proof of Lemma 5 given above differs from [Bos]; it avoids the use
of rigid analytic geometry.

Let I be the minimal Galois extension of K such that X admits a stable
model over Oy, and let G denote the Galois group of L over K. The next
lemma gives an upper bound for the exponent of G.

Lemma 6. Let X/K be as in Lemma 5. Then the exponent of G divides
4p(q - 1).

Proof. We keep the notation introduced in the proof of Lemma 5. It is well
known that G injects canonically into Autk(Yx) ([Des, 5.16}). So it is enough
to prove that 4p(q — 1) is divisible by the exponent of the latter group.

Let oo denote the intersection point of E and F'. This point is the pole of the
rational function % on E. Denote by Aute,(E) the group of k-automorphisms
of E fixing co. Then one has an exact sequence

0 — Autoo(E) X Auteo(F) — Autg (Vi) — Z/2Z — 0.

The cyclic group of order 2 is generated by the permutation of the irreducible
components of V. Any automorphism 7 € Auto(E) is given by 7 : 4
aii+b, and Z — cZ, with a € F, ¢? = a, and b € F,. Therefore, the exponent
of Aut,.(E) divides 2p(g — 1) and, hence, the exponent of Auty (V) divides
4p(g — 1). (

Let us now summarize the example discussed in this article. Let X/K be
the curve introduced in Lemma 5. Let J/K denote its Jacobian. Raynaud
has shown how to compute the group ®x(J) in terms of a regular mode] of
X/Ox of X/K ([BLR, 9.6]). Using Raynaud’s result, Lemma 3, and Lemma
4, we find that ®x = Z/q*Z. Let A/Ok denote the Néron model of J/K.
Raynaud has given a description of A? in terms of X/Ok ([BLR], Theorem 4
on page 267 and Propositions 9 and 10 on pages 248-249). Using Raynaud’s
result and Lemma 5, we find that J/K has potentially good reduction, which
implies that Uy ; = ®x. Lemma 6 shows that the exponent of Gal(L/K)
does not kill the p-part of ®g.
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