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Abstract. Let G be a connected graph on n vertices with adjacency matrix AG. As-
sociated to G is a polynomial dG(x1, . . . , xn) of degree n in n variables, obtained as the
determinant of the matrix MG(x1, . . . , xn), where MG = Diag(x1, . . . , xn) − AG. We
investigate in this article the set VdG

(r) of non-negative values taken by this polynomial
when x1, . . . , xn ≥ r ≥ 1. We show that VdG

(1) = Z≥0. We show that for a large class of
graphs one also has VdG

(2) = Z≥0. When VdG
(2) 6= Z≥0, we show that for many graphs

VdG
(2) is dense in Z≥0. We give numerical evidence that in many cases, the complement

of VdG
(2) in Z≥0 might in fact be finite. As a byproduct of our results, we show that

every graph can be endowed with an arithmetical structure whose associated group is
trivial.

1. Introduction

Given any integer r, we let as usual Z≥r denote the set of integers greater than or equal
to r. For any polynomial f ∈ Z[x1, . . . , xn] and integer r ≥ 1, consider the following set
of non-negative values

Vf (r) := {f(a1, . . . , an) | a1, . . . , an ∈ Z≥r} ∩ Z≥0.
Given a general polynomial f , we do not know of any general results that quantify the
difference between Vf (1) and Vf (2), and more generally, provide insights on the decreasing
chain of sets Vf (1) ⊇ Vf (2) ⊇ Vf (3) ⊇ . . . . It is clear that Vf (1) ⊃ Vf (2) can be strictly
decreasing. As the example below of the path A2 on two vertices shows, the complement of
Vf (2) in Vf (1) can be infinite. In this article, inspired by questions in algebraic geometry,
we describe the sets Vf (1) ⊇ Vf (2) for a large class of polynomials f associated to graphs,
and give evidence that in many cases, the complement of Vf (2) in Vf (1) is finite for such
polynomials.

Let G denote a connected (undirected) graph on n vertices v1, . . . , vn, and no self-loops.
Let AG denote the associated symmetric adjacency matrix. Let MG denote the matrix
with coefficients in the polynomial ring Z[x1, . . . , xn] defined as:

MG := Diag(x1, . . . , xn)− AG.
Let

dG(x1, . . . , xn) := determinant(MG) ∈ Z[x1, . . . , xn].
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The matrix MG is considered in [14], where the principal ideal of Z[x1, . . . , xn] generated
by dG(x1, . . . , xn) is called the n-th critical ideal of the graph G. We will call dG the critical
polynomial of G. Since the adjacency matrix A′G associated with a different ordering of the
vertices of G is of the form A′G = P−1AGP for some permutation matrix P , the polynomial
dG is indeed independent of the choice of the ordering of the vertices of G. The polynomial
dG is also considered in [19], Proposition 1, where it is shown that two simple graphs G
and G′ on n vertices are isomorphic if and only if there is an ordering of the vertices
of G and of the vertices of G′ such that the associated polynomials dG(x1, . . . , xn) and
dG′(x1, . . . , xn) are equal.

When G is a graph, it is well-known that the set VdG(1) always contains the value 0.
Indeed, recall that the degree di of the vertex vi in a graph G is the number of edges of G
attached to vi. The Laplacian of the graph is obtained by evaluating MG at xi = di for
i = 1, . . . , n. The Laplacian of G has determinant 0 since the columns of the Laplacian
add to zero, and so are linearly dependent. We show in this article in Theorem 1.1 (i)
that the set VdG(1) can be completely described, and is always equal to Z≥0 .

Motivated by geometric questions recalled in 1.4, we also investigate in this article the
properties of the set VdG(2). Consider for instance the example of the path A2 on two
vertices. In this case,

MA2 =

(
x1 −1
−1 x2

)
and dA2(x1, x2) = x1x2 − 1.

It is clear that VdA2
(1) = Z≥0. The complement of VdA2

(2) in VdA2
(1) is infinite since

VdA2
(2) = Z≥1 \ {p− 1 | p prime}.

To state our results on VdG(2), we first recall the following concepts. Let a1, . . . , an ∈
Z>0. Let us denote by MG(a1, . . . , an) the integer matrix obtained from MG by evaluating
MG at xi = ai, i = 1, . . . , n. Such matrices play a considerable role in geometry, where
they might be in addition endowed with a positivity property. Recall that a symmetric
integer matrix B ∈ Mn(Z) is positive semi-definite (resp. positive definite) if for every
non-zero vector X ∈ Zn, we have tXBX ≥ 0 (resp. tXBX > 0). When matrices of the
form MG(a1, . . . , an) are positive definite, they are M -matrices ([33], Definition).

In some geometric contexts, such as when MG(a1, . . . , an) is obtained as the intersection
matrix associated with a finite set of curves on a surface, the following finite abelian group
ΦMG

is of interest. Let M ∈Mn(Z). Then

(a) If det(M) 6= 0, the discriminant group ΦM := Zn/Im(M) has order | det(M)|.
(b) More generally, when rank(M) = ρ < n, then Zn/Im(M) is isomorphic to the product

of Zn−ρ by a finite abelian group that we will denote ΦM . In other words, ΦM is
isomorphic to the torsion subgroup of Zn/Im(M).

For instance, given a connected graph G, consider its Laplacian L = MG(d1, . . . , dn).
The kernel of L is generated by the vector tR = (1, . . . , 1) and the group ΦL can be
identified with the group Ker(tR)/Im(L). Its order is the number of spanning trees of the
graph G. The group ΦL is found under various names in the literature (see for instance
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the introduction to [27], and [25], [4], [5]); in this article, we will call ΦL the critical group
of the graph.

The pair (L,R) attached to G can be generalized as follows. An arithmetical structure
on G (see [25], Theorem 1.4) is a pair (M,R) such that M = MG(a1, . . . , an) for some
a1, . . . , an ∈ Z≥1 and such that tR = (r1, . . . , rn) is an integer vector with positive coeffi-
cients and gcd(r1, . . . , rn) = 1 satisfying MR = 0. It turns out that then M is positive
semi-definite of rank n − 1. The associated group ΦM is isomorphic to Ker(tR)/Im(M).
Such arithmetical structures arise in algebraic geometry, and much is known about the
associated group ΦM (see, e.g., [26]).

Define now a subset VG(r) ⊆ VdG(r) as follows: u ∈ Z≥0 belongs to VG(r) if and only if
there exists a1, . . . , an ∈ Z≥r such that:

(i) u = det(MG(a1, . . . , an)).
(ii) The matrix MG(a1, . . . , an) is positive definite when det(MG) 6= 0, and positive

semi-definite of rank n− 1 when det(MG) = 0.
(iii) The associated group ΦMG(a1,...,an) is cyclic.

Recall that a graph H is an induced subgraph of G if it can be obtained by removing
from G a non-empty set of vertices of G along with all the edges of G attached to any of
these vertices. We are now ready to state our main theorems.

Theorem 1.1. (proved in 2.9) Let G be a connected graph. Then

(a) VG(1) = Z≥0.
(b) Suppose that G contains an induced subgraph H such that 1 ∈ VH(2). Then

(i) VG(2) contains Z>0.
(ii) If G is obtained from H through a sequence of induced subgraphs H = H1 ⊂

H2 ⊂ Hk = G such that for each i = 1, . . . , k − 1, Hi+1 is constructed from Hi

by adding exactly one vertex of degree at least 2, then VG(2) = Z≥0.
As noted above, we always have 0 ∈ VdG(1) because the determinant of the Laplacian

L of G is 0. On the other hand, the critical group ΦL associated with L is not always
cyclic. The question of determining the proportion of connected graphs having cyclic
critical groups was raised for instance in [27], section 4, and progress on this question for
random graphs can be found in [35]. Part (a) of Theorem 1.1 implies in particular that
on any graph G, there always exists an arithmetical structure (M,R) whose associated
group ΦM is cyclic (in fact, even trivial, see 2.10).

Recall that a graph is simple if there is at most one edge between any two vertices of
G. The smallest simple graphs H with 1 ∈ VH(2) both have 4 vertices: the extended
cycle C+3 (see 3.1) and the cone C(A3) on the path A3 on 3 vertices (see 3.5). Part (b) of
Theorem 1.1 allows us to prove the following general theorem.

Theorem 1.2. (proved in 3.7) Let G be a connected simple graph. Then VG(2) ⊃ Z>0,
except possibly if G is a tree, a cycle Cn, a complete bipartite graph K(p, q), a complete
graph Kn, n ≤ 13, an extended cycle C+n , n ≤ 7, or the cone C(A3).

Whether the value 1 belongs to VG(2) when G is a tree was investigated in [8, 9, 10, 11,
12]. Corollary 11 in [10] gives a list of trees H such that if a tree G of diameter at least
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4 contains such H, then 1 ∈ VG(2). The smallest such trees have 8 vertices, starting with
the Dynkin diagram E8.

Recall that the star Sn on n ≥ 4 vertices is a tree with a vertex of degree n − 1. It is
shown in [9], Proposition 6, that 1 /∈ VSn(2) when n ≤ 59. No integer n ≥ 4 is known
such that 1 ∈ VSn(2).

Denote by S+
n the graph obtained by adjoining a single vertex to the star Sn and linking

it with a single edge to a vertex of degree 1 in Sn. The family S+
n , n ≥ 4, is another

family of graphs where none of its members are known to have 1 ∈ VS+n (2).
When Part (b) of Theorem 1.1 does not apply, the set VG(2) seems very difficult to

describe precisely. Theorem 4.2 can often be used to prove that, at least, VdG(2) is dense
in Z≥0 (the definition of dense in this context is recalled in 4.1). We state below an explicit
consequence of Theorem 4.2 which complements Theorem 1.2. It would be interesting to
determine whether VdG(2) is always dense in Z≥0.

Theorem 1.3. (proved in 4.4) Recall the list of graphs in Theorem 1.2 where it is not
known that VdG(2) contains Z>0. When G is one of the following graphs, the set VdG(2)
is dense in Z≥0:

(a) G is a Dynkin diagram, an extended Dynkin diagram, a star Sn, or an extended star
S+
n .

(b) G is a cycle Cn or an extended cycle C+n .
(c) G is the cone C(A3), the complete graph Kn, the complete bipartite graph K(2, n) or
K(3, n).

The only examples of graphs where the complement of VdG(2) in Z≥0 is known to be
infinite are the banana graphs, the graphs on two vertices linked by a ≥ 1 edges. Thus it
is also natural to wonder whether the complement of VdG(2) in Z≥0 is not only of density
0 but in fact is finite for most graphs.

Our study was motivated by considerations from algebraic geometry. In the next re-
mark, we give a brief exposition of how the results of this article pertain to this field of
research.

Remark 1.4. Matrices of the form MG(a1, . . . , an) with a1, . . . , an ≥ 1 arise in algebraic
geometry when considering a finite collection of curves {Ci, i = 1, . . . , n}, on a non-
singular surface S. Attached to each pair of distinct curves Ci and Cj is an intersection
number (Ci·Cj) ≥ 0 which counts (with multiplicities) how many times Ci and Cj intersect
(see, e.g., [24], 9.1). The dual graph G attached to the configuration of curves is the graph
on n vertices v1, . . . , vn such that when i 6= j, vi is linked to vj by (Ci · Cj) edges.

Each curve Ci on S has a self-intersection number (Ci · Ci), and these numbers are
known to be strictly negative when the configuration ∪ni=1Ci occurs as the exceptional
divisor of the resolution of a singularity. The intersection matrix ((Ci ·Cj))1≤i,j≤n is then
of the form −MG(a1, . . . , an) with a1, . . . , an ≥ 1, and is known to be negative-definite. It
is often the case that a minimal resolution of singularities leads to a matrix MG(a1, . . . , an)
with a1, . . . , an ≥ 2, which explains our interest in understanding the possible values of
the determinants of such matrices when a1, . . . , an ≥ 2.
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Matrices MG(a1, . . . , an) which are only positive semi-definite arise from configuration
of curves associated with a degeneration of a non-singular curve, and in this case minimal
special fibers of degenerating curves generally also lead to matrices MG(a1, . . . , an) with
a1, . . . , an ≥ 2.

The collection of curves {Ci, i = 1, . . . , n} attached to the resolution of a surface sin-
gularity, and its associated intersection matrix, play an important role in understanding
the singularity. It is still an open problem to completely characterize the matrices that
can occur as intersection matrices associated to Z/pZ-quotient surface singularities in
prime characteristic p. In previous works on such singularities, the author showed that
the intersection matrix M associated with the resolution of such quotient singularity can
only have determinant equal to a power of p, and that the finite group ΦM associated to
M is killed by p (see [29], 3.18, and [30], 6.3, 7.1, for examples). The results of this article
indicate that matrices MG(a1, . . . , an) of prime determinant p are plentiful.

Motivated by the problem of classifying resolutions of cyclic quotient singularities,
it is natural to wonder, given a graph G, whether, for all but finitely many primes p,
there always exists a set of diagonal elements a1, . . . , an ≥ 2 (depending on p) such that
MG(a1, . . . , an) has determinant p. The answer to this question would be positive if it
were possible to show, more generally, that the complement of the set VG(2) in Z≥0 is
finite.

Remark 1.5. It is a classical problem in number theory to study the integer values taken
by an integer polynomial f(x1, . . . , xn). When G is a graph, the polynomial dG(x1, . . . , xn)
is a polynomial of degree n in n variables consisting only of squarefree monomials. A fa-
mous polynomial in number theory, f := xn1 +· · ·+xnn, is also of degree n in n variables but
is indeed as far as having squarefree monomials as possible. The problem of determining
the set Vf (1) in this case is related to the classical Waring’s problem. When n = 2, the set
Vf (1) has positive density in Z≥0, but does not contain any integer that is congruent to
3 modulo 4. When n = 3, the set Vf (1) is infinite, but does not contain any integer that
is congruent to 4 or 5 modulo 9. It is an open problem in this case to determine whether
the set Vf (1) has positive density (see [16] for positive evidence towards this question).

Let us mention here another analogous question in number theory where the set Vg(1)
in this case misses only finitely many values, but where it is still an open question to
completely determine Vg(1). The polynomial g := xy+yz+zx consists only of squarefree
monomials. When i > 0 is any integer, the equation xy+yz+zx = i always has solutions
in positive integers except for at most 19 values of i ([6] Theorem 1.1). The first 18 such
values are known explicitly and are in the interval [1, 462]. If the Generalized Riemann
Hypothesis is assumed, the complement of the set Vg(1) in Z>0 consists exactly of these
18 known values.

This article exhibits many graphs G where the set VdG(2) misses some positive val-
ues, but computations nevertheless suggest that it contains all positive values except
for finitely many (see, e.g., 3.1, 5.4, 6.2). It would be interesting to determine if these
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polynomials dG(x1, . . . , xn) indeed have this property. The easiest example of such poly-
nomial is dA3(x, y, z) = xyz − x − z, associated with the path A3 on 3 vertices. Com-
putations suggest that the complement of the set VA3(2) in Z≥0 is contained in the set
[0, 1, 2, 3, 5, 6, 9, 11, 14, 15, 35, 105, 510] (see Proposition 6.3).

Acknowledgement. The author gratefully acknowledge funding support from the Si-
mons Collaboration Grant 245522. He also thanks Carlos Alfaro and Joshua Stucky for
bringing to his attention the references [19] and [13], respectively.

2. First Main Theorem

Let M ∈ Mn(Z). We will use the following standard notation. Let Mij denote the
submatrix obtained by removing from M its i-th row and its j-th column. Let M∗

denote the comatrix of M , with MM∗ = (M∗)M = det(M)Idn. By definition, (M∗)ij =
(−1)i+j det(Mji). The matrix M is a positive matrix if all the entries of M are positive.

The group ΦM is isomorphic by definition to the torsion subgroup of Zn/Im(M). If
0 < rank(M) = ρ < n, then there exist two matrices P and Q in GLn(Z) such that PMQ
is a diagonal matrix of the form Diag(0, . . . , 0, f1, . . . , fρ), with f1 | f2 | · · · | fρ. This
diagonal matrix is called the Smith Normal Form of M . The group ΦM is isomorphic to∏ρ

i=1 Z/fiZ, and thus ΦM is cyclic if and only if ρ = 1 or fρ−1 = 1.

2.1. Let G be a connected graph on n vertices. The matrices M = MG(a1, . . . , an) ∈
Mn(Z) with a1, . . . , an ≥ 1 have several very useful properties when they are positive
semi-definite.

(a) Assume that det(M) 6= 0 and that M is positive definite. Then the inverse M−1 of
M is a positive matrix.

(b) Assume that det(M) = 0 and that M is positive semi-definite of rank n − 1. Then
there exists a unique vector R in Zn>0 with coprime coefficients and such that MR = 0.
We have M∗ = |ΦM |R(tR).

(c) Assume that MG(a1, . . . , an) is as in (a) or (b). For any non-zero vector (b1, . . . , bn) ∈
Zn≥0, the matrix MG(a1 + b1, . . . , an + bn) is positive definite, and

detMG(a1, . . . , an) < detMG(a1 + b1, . . . , an + bn).

Property (a) is F15, page 180 of [33]. Property (b) follows from Proposition 1.1 and
Theorem 1.4 in [25]. Property (c) is A3, page 179 of [33], when MG(a1, . . . , an) is positive
definite. If it is only positive semi-definite, show first that MG(a1, . . . , ai + 1, . . . , an) is
definite positive for any i, and apply A3 to these n positive definite matrices.

Remark 2.2. When M = MG(a1, . . . , an) is positive definite as in (a), there exists a
unique positive vector R minimal with the property that MR is positive ([3], page 132).
This vector is called the fundamental vector of the matrix M . The quantity (tR)MR
is an important numerical invariant associated with M . When M = MG(a1, . . . , an) is
positive semi-definite of rank n− 1, numerical invariants associated with the arithmetical
structure (M,R) described in (b) are discussed in [28], 2.1 and 4.1.
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Remark 2.3. Let w ∈ Z≥0. It is known that there are only finitely many points
(a1, . . . , an) ∈ Zn≥1 such that MG(a1, . . . , an) is positive semi-definite and has determi-
nant w. This statement is proved in [23], Theorem 1, when w > 0 and the matrix is
positive definite, and in [25], 1.6, when w = 0 and the matrix is positive semi-definite of
rank n− 1.

Counting explicitly the number of distinct arithmetical structures on certain graphs
is addressed for instance in [2], [7], and [15]. Counting the number of solutions to
dG(x1, . . . , xn) = 1 when G is the path An is found in [23].

Our next proposition shows that the existence of an arithmetical structure on G implies
that infinitely many values in VdG(1) are known explicitly. We denote by κ the number of
spanning trees of a graph G.

Proposition 2.4. Let G be a connected graph on n vertices.

(a) Suppose that every vertex in G has degree at least d. Then VdG(d) contains all positive
multiples of κ. Moreover, for each ` > 0, there exists a positive definite matrix
MG(a1, . . . , an) with ai ≥ d such that dG(a1, . . . , an) = `κ.

(b) More generally, let (M,R) be any arithmetical structure on G. Write tR = (r1, . . . , rn)
with gcd(r1, . . . , rn) = 1, M = Diag(a1, . . . , an)−AG, and let ΦM denote the associated
group. Let amin denote the minimum of the integers a1, . . . , an. Then VdG(amin)
contains every integer of the form `|ΦM |r2i for any integer ` ≥ 0 and any i = 1, . . . , n.

Proof. (a) Recall that MG(d1, d2, . . . , dn) is the Laplacian of G. It is well-known that
the determinant of any principal submatrix of size n − 1 of the Laplacian is equal to κ.
Consider the matrix MG(t, d2, . . . , dn) ∈ Z[t]. Its determinant is κ(t − d1). Indeed, it is
clear that this determinant is a linear polynomial in t. The coefficient of t is κ, and t = d1
must be a root of the polynomial.

For every value ` + d1 > d1 ≥ d, we have MG(` + d1, d2, . . . , dn) positive definite since
MG(d1, d2, . . . , dn) is positive semi-definite of rank n− 1 (2.1 (c)).

(b) Recall that for an arithmetical structure (M,R), we have M∗ = |Φ|R(tR) (2.1
(b)). Consider the matrix MG(t, a2, . . . , an). Its determinant is |ΦM |r21(t− a1). For every
value `+ a1 > a1 ≥ amin, we have MG(a1 + `, a2, . . . , an) positive definite of determinant
|ΦM |r21`. �

Remark 2.5. Let MG(a1, . . . , an) be a positive definite matrix with ai ≥ 2 such that
dG(a1, . . . , an) = `κ, as in Proposition 2.4 (a) with d = 2. It is not always possible to find
such matrix such that its associated group ΦMG

is cyclic. Indeed, in the case of the cycle
C2 on n = 2 vertices, which has κ = 2, the matrix

MC2(x, y) =

(
x −2
−2 y

)
has determinant xy − 4. When xy − 4 = 2`, and 2` + 4 is a power of 2 and x, y ≥ 2,
this equation has only solutions with both x and y even. In this case, ` is even, and the
associated group Φ = Z/2Z× Z/`Z is not cyclic.

In particular, G = C2 is an example where the complement of VG(2) in VdG(2) is infinite,
since this complement contains every integer of the form 2` with ` = 2m − 2.
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Corollary 2.6. Let G be a tree. Then VdG(1) = Z≥0.

Proof. The corollary follows immediately from Proposition 2.4 (a) since κ = 1 when G is
a tree. �

The following lemma is needed in the proof of our next proposition.

Lemma 2.7. Let N denote a n−1×n−1 square matrix with coefficients in a commutative
ring A. Let M denote the following n× n matrix in A[t, t2, . . . , tn]:

M =


t t2 · · · tn
t2
... N
tn

 .

Let tT := (t2, . . . , tn). Then

det(M) = det(N)t− (tT )(N∗)T.

Proof. Recall that by definition, (N∗)ij = (−1)i+j det(Nji). The lemma follows by ex-
panding det(M) using the first row of M . �

Given a vertex v of G, let Gv denote the subgraph of G obtained by removing from G
the vertex v and all the edges attached to v.

Proposition 2.8. Let G be a connected graph. Let v be a vertex such that Gv is connected
and 1 ∈ VGv(r). Then

(a) VG(r) ⊇ Z>0 when r = 1 or 2. In general, VG(r) ⊇ Z≥r−1.
(b) There exists on G an arithmetical structure such that the associated group Φ is trivial

and, hence, cyclic. In particular, 0 ∈ VG(1).
(c) If the degree of v is at least 2 and 1 ∈ VGv(2), then 0 ∈ VG(2). More precisely,

there exists on G an arithmetical structure (M,R) with M = MG(a1, . . . , an) and
a1, . . . , an ≥ 2 such that the associated group ΦM is trivial.

Proof. Without loss of generality, we may assume that v = v1. By hypothesis we can
find a2, . . . , an ≥ r such that the matrix N := MGv(a2, . . . , an) has determinant 1 and is
positive definite. Consider then the determinant of the matrix MG(t, a2, . . . , an), which
has N in its lower right corner. Since N is positive definite by hypothesis, we find that
N∗ is a positive matrix. Hence, Lemma 2.7 applied to MG(t, a2, . . . , an) shows that

detMG(t, a2, . . . , an) = t− a

with a > 0.
(a) Let a1 > a. Since N is positive definite and detMG(a1, a2, . . . , an) > 0, we find that

the matrix MG(a1, a2, . . . , an) is positive definite. In addition, its associated group Φ is
cyclic. Indeed, MG(a1, a2, . . . , an) contains the square submatrix N of size n− 1× n− 1,
which has determinant 1. It is well-known that the group Φ is cyclic if and only if the
greatest common divisor of all the minors of size n− 1 is equal to 1.
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Suppose that max(r, a+1) = r. Then VG(r) ⊇ Z≥r−a. Suppose now that max(r, a+1) =
a+ 1. Then VG(r) ⊇ Z≥1. This proves (a).

(b) Consider now the matrix M := MG(a, a2, . . . , an), of determinant 0. We claim that
this matrix is positive semi-definite. We prove this claim by exhibiting a positive vector
R, of the form tR = (1,tR0), with MR = 0. Recall that the matrix M has the form

M =


a −s2 · · · −sn
−s2

... N
−sn

 ,

for some non-negative integers s2, . . . , sn. Since the graph G is connected, one at least
of the integers s2, . . . , sn must be positive. Write tS = (s2, . . . , sn). Since det(N) = 1,
we can find an integer vector R0 such that −S + NR0 = 0. Since S is a positive vector
and N∗ is a positive matrix, we find that R0 is a positive vector. Lemma 2.7 shows that
det(N)a = (tS)N∗S. It follows that MR = 0, as desired. Since det(N) = 1 and the first
coefficient of R is 1, we find that the group Φ associated with M is trivial and, hence,
cyclic. This shows that 0 ∈ VG(1).

(c) Consider again the structure (M,R) introduced in (b). It is clear that when 1 ∈
VGv(2) and a ≥ 2, then 0 ∈ VG(2). The integer a is obtained as a = (tS)N∗S. The
hypothesis that the degree of v is at least 2 implies that if v is linked to only one vertex
w of Gv, then the number of edges between v and w is at least 2. Thus, since the matrix
N∗ is positive, we must have a = (tS)N∗S ≥ 2. �

2.9. Proof of Theorem 1.1.
In Part (a), the graph G contains an induced subgraph H on two vertices linked by

a ≥ 1 edges. The polynomial dH(x, y) = xy − a2 takes all non-negative values when
x, y ≥ 1. In particular, the value 1 is taken with x = a2 + 1 and y = 1 and so, 1 ∈ VH(1).

Let now H be any induced subgraph of G. Let w1, . . . , wk denote the vertices of G that
do not belong to H. For j ≤ k, let Hj denote the induced subgraph of G on the vertices
of H and {w1, . . . , wj}. We have H ⊂ H1 ⊂ · · · ⊂ Hk = G.

Assume that 1 ∈ VH(r), with r = 1 or 2. Then Proposition 2.8 (a) can be applied
successively to each pair H ⊂ H1, H1 ⊂ H2, . . . , Hk−2 ⊂ Hk−1 to show that 1 ∈ VHk−1

(r).
When 1 ∈ VHk−1

(1), we use Proposition 2.8 (a) and (b) to conclude that VHk
(1) = Z≥0.

This proves Theorem 1.1 (a).
When 1 ∈ VHk−1

(2), we use Proposition 2.8 (a) to conclude that VHk
(2) ⊇ Z>0. We

then use Proposition 2.8 (c) to conclude the proof of Theorem 1.1 (b). �

Corollary 2.10. Let G be a connected graph. Then there exists on G an arithmetical
structure (M,R) such that its associated group ΦM is trivial.

Proof. In the proof of Theorem 1.1 (a) above in 2.9, we find that the graph G is such
that 1 ∈ VHk−1

(1). Proposition 2.8 (b) applied to Hk−1 ⊂ G immediately implies the
corollary. �
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Remark 2.11. While 0 ∈ VG(1), it may happen that 0 /∈ VG(2). Indeed, 0 /∈ VdG(2) when
G is a Dynkin diagram (Proposition 5.3). Three additional such examples, the extended
cycles C+n for n = 2, 3, 5, are found in Remark 3.4, and it would be interesting to classify
the graphs where 0 /∈ VdG(2).

It is also possible to have 0 ∈ VdG(2) but 0 /∈ VG(2). Indeed, this happens for instance

for the extended Dynkin diagram D̃n with n even: This graph has only one arithmetical
structure, with matrix MD̃n

(2, . . . , 2), and its associated group Φ is Z/2Z × Z/2Z when
n is even.

One may wonder whether it is possible to have 0 ∈ VG(2), but no arithmetical structure
MG(a1, . . . , an) with a1, . . . , an ≥ 2 such that the associated group Φ is trivial. One such
example might be C+6 (see Remark 3.4). Another example might be the bipartite graph
K(4, 4).

Remark 2.12. Modified appropriately, the proof of Theorem 1.1 does produce some
information on the set VG(3) when 1 ∈ VH(3). We do not investigate the properties of
the sets VG(r) any further in this article when r ≥ 3.

3. Second Main Theorem

Let us denote by C+n the graph on n+ 1 vertices obtained by attaching a single vertex
using a single edge to the cycle Cn on n vertices. Such graph is sometimes called a pan,
and is a type of tadpole graph.

Example 3.1. Let G = C+n . Computations indicate that the complement of VdG(2) in
Z≥0 is always finite. In the table below, we provide a set L which computations indicate
contains the complement of VdG(2) in Z≥0.

n L
2 [0] (see 6.5)
3 [0, 2, 14, 20, 26, 38, 44, 68, 254]
4 [2, 3, 7, 10, 19, 39, 79, 154 ]
5 [0, 2, 8, 12, 18 ]
6 empty
7 [6, 66, 94 ]

With the choice of labeling as below, we find that detMG(t, 2, . . . , 2) = (n+1)t−(3n+2),
so that choosing t = 3 produces 1 ∈ VG(2) when G = C+n .

t 2 2

2 2

Proposition 3.2. Let G = C+n . Then 1 ∈ VG(2), and if n ≥ 8, then VG(2) = Z≥0.
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Proof. The computations in Example 3.1 show that 1 ∈ VG(2) when n ≤ 7. The tree E8

v w

has 1 ∈ VE8(2) (see 5.3). The graph G = C+8 is obtained by attaching a new vertex v0 to
both v and w with one edge. To get all graphs C+n with n > 8, we first lengthen the chain
at v, so that the resulting graph has n − 1 vertices, and then add a vertex v0 as above.
Theorem 1.1 (b) then implies that VG(2) ⊇ Z>0. To prove that 0 ∈ VG(2), we use the
following lemma. �

Lemma 3.3. Let G = C+n with n ≥ 7. Then G has the following arithmetical structure
(M,R). There are k ≥ 0 white vertices in the graphs below. The vertices of the left graph
are adorned with the corresponding coefficient of the diagonal of M , and the vertices of
the right graph are adorned with the corresponding coefficient of R:

2 2 2 2 3 2

2 2 3 2 2

2 4 3 2 1 1

3 2 1 1 1

The associated group Φ is cyclic of order 2k + 5.

Proof. We leave it to the reader to verify that (M,R) is an arithmetical structure. Con-
sider the submatrix M ′ of M obtained by removing the row and column corresponding to
the unique vertex v of degree 3. Its determinant is 16(2k+5). This shows that |Φ| = 2k+5
since the coefficient of R corresponding to v is 4 and M∗ = |Φ|R(tR) (see 2.1 (b)).

To show that Φ is cyclic, it suffices to compute the determinant of a well-chosen n−2×
n− 2 submatrix, and show that it is coprime to |Φ|. For this, one can use the submatrix
of M ′ where the row and column corresponding to a vertex of degree 2 adjacent to v have
been removed. Its determinant is 2(12k + 29). We leave the details to the reader. �

Remark 3.4. When n = 4 and 6, the following are arithmetical structures on G = C+n ,
with groups Φ of order 1 and 3 (the vertices are adorned with the corresponding elements
on the diagonal of the matrix).

2 2 2

2 3

2 2 2 2

2 2 4

It is likely that 0 /∈ VdG(2) when n = 3, 5. When n = 2 this statement is proved in
Proposition 6.5. Preliminary computations did not find any arithmetical structure (M,R)
on C+4 and C+6 where all coefficients of the diagonal of M are at least 2, other than the
ones given above.

Example 3.5. Consider the cone G = C(A3) on the path A3 (sometimes called the
diamond graph). Computations suggest that the complement of VG(2) in Z≥0 is finite, and
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contained in the set L := [5, 17, 29, 71, 77, 101, 137, 551]. Note that detMG(2, 2, 5, 3) = 1,
and the graph G below is adorned with the corresponding coefficients of the diagonal.

2 3

5

2

Theorem 3.6. Let G be a connected simple graph which is not isomorphic to either C+n ,
n ≥ 3, or to the cone C(A3), and does not contain an induced subgraph H isomorphic to
either C+n , n ≥ 3, or C(A3). Then G is either a tree, or a cycle Cn, n ≥ 3, or a complete
graph Kn, n ≥ 4, or a complete bipartite graph K(p, q), p, q ≥ 2.

Proof. Assume that G is neither a tree nor a cycle. Let m denote the length of the shortest
cycle in G. Since we assume that G is simple and not a tree, m ≥ 3. Consider such a
cycle C of length m in G, with consecutive vertices w1, . . . , wm. For i = 1, . . . ,m − 1,
the vertex wi is linked to the vertex wi+1 by exactly one edge, and wm is linked to w1

be one edge. This cycle has to be an induced subgraph of G. Indeed, if there existed an
edge between two vertices of C that are not consecutive, the graph G would have a cycle
of length smaller than m. We show below that the case m ≥ 5 is impossible, that when
m = 4, the graph G is of the form K(p, q), and that when m = 3, the graph G is of the
form Kn.

Since G 6= C, let w be a vertex of G not contained in C, but connected by an edge to a
vertex of C. Without loss of generality, we can assume that w is connected to w1. If w is
not connected to any other vertices of C, then G is equal to C+m, or contains C+m as induced
subgraph, contradicting our hypothesis. Let us then assume that w is also connected by
an edge to a vertex wi with i > 1. This is not possible if m ≥ 5. Indeed, if m ≥ 5, then
G would contain a cycle of length smaller than m.

Assume now that m = 4, with the cycle C having vertices w1, w2, w3, w4, and with a
vertex w of G not on C connected to w1. In order for G not to have cycles of length 3, the
vertex w can only be connected to w3. Let w′ be any other vertex of G connected to a
vertex of C. We claim that w′ is then only connected to both w1 and w3. Indeed, assume
that w′ is connected to w2. Then it must be connected to w4, otherwise G contains a cycle
of length 3 or has C+4 as induced subgraph. But now we again find a contradiction by
considering the cycle {w2, w

′, w4, w3} with w attached to w3. This is an induced subgraph
isomorphic to C+4 , contradicting our hypothesis. We have shown so far that G contains a
bipartite graph K(2, q) for some q ≥ 3, with {w1, w3} being the first set of 2 vertices in
the partition, and {w2, w4, w, w

′, . . . } the second set of q ≥ 3 vertices.
Consider now a maximal subgraph of G of the form K(r, s), with r ≥ 2 and s ≥ q.

By maximal we mean that G does not contain a subgraph of the form K(r + 1, s) or
K(r, s+1). We claim then that G = K(r, s). For convenience, let us denote by {u1, . . . , ur}
and {t1, . . . , ts} the vertices of the bipartite graph K(r, s), so that in K(r, s), there are no
edges between vertices in {u1, . . . , ur} and no edges between vertices in {t1, . . . , ts}.

Suppose that G 6= K(r, s). There cannot exist an edge of G that links two vertices of
K(r, s) that is not already an edge of K(r, s), since otherwise the graph G would contain
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a cycle of length 3. Thus there exists a vertex v of G that is not a vertex of K(r, s), and
is linked by at least one edge to a vertex of K(r, s). Without loss of generality, we can
assume that v is linked to u1. If v is not linked to any other vertex of K(r, s), then G
contains an induced subgraph of the form C+4 , which is a contradiction. If v is linked to
any of the vertices {t1, . . . , ts}, then G contains a cycle of length 3, again a contradiction.
Suppose now that v is linked to u2, but that for some i ≤ r, v is not linked to ui. Then
{v, u1, t1, u2} are the vertices of a 4-cycle, and adding ui to it gives an induced subgraph
of G of the form C+4 , again a contradiction. Thus we find that G contains a graph of the
form K(r, s + 1), and this is not possible by maximality of the graph K(r, s). Therefore,
G = K(r, s).

Let us consider now the case m = 3, with the cycle C having vertices w1, w2, w3, and
with a vertex w of G not on C connected to w1. Since G is not equal to C+3 , and does
not contain C+3 as induced subgraph, w is connected to a second vertex of C, say, without
loss of generality, w2. If w is not connected to w3, then G contains the cone C(A3) as
induced subgraph, contradicting our hypothesis. Hence, w is also connected to w3, and
so G contains K4 as induced subgraph.

Consider now a subgraph of G that is of the form Kr for some r ≥ 4 and which is
maximal, in the sense that G does not contain a subgraph isomorphic to Kr+1. We claim
then that G = Kr.

Assume that G 6= Kr. Since G is simple, there must then exist a vertex v of G that is
not a vertex of Kr. For convenience, let us denote by {u1, . . . , ur} the vertices of Kr, and
assume that v is linked to u1. If v is not linked to any other vertex of Kr, then G contains
an induced subgraph of the form C+3 , which is a contradiction. Suppose then that v is
linked to u2, and that there exists some ui which is not linked to v. Then {v, u1, u2, ui}
are the vertices of an induced subgraph of G of the form C(A3), again a contradiction.
Suppose then that v is linked in G to all vertices of Kr. This is impossible since G would
then contain a subgraph of the form Kr+1, contradicting the maximality of Kr. Hence,
G = Kr. �

3.7. Proof of Theorem 1.2. Let G be a connected simple graph that is neither a tree, a
cycle, a complete bipartite graph K(p, q), a complete graph Kn, nor C+n , n ≥ 3, or the
cone C(A3). Theorem 3.6 shows then that G has to contain an induced subgraph H of
the form C(A3) or C+n for some n ≥ 3. All these graphs H are such that 1 ∈ VH(2) (see
Proposition 3.2 and Example 3.5). We can thus apply Theorem 1.1 (b) to obtain that
VG(2) contains Z>0 for such G.

When n ≥ 14, the graph Kn has the property that VKn(2) contains Z>0 (see Corollary
8.3 (b)). When n ≥ 8, the graph C+n has the property that VC+n (2) contains Z>0 (see
Proposition 3.2). �

Let K+
n denote the graph obtained from the complete graph Kn on n vertices by adding

one vertex and linking it to Kn by exactly one edge. Such graph is a type of lollipop
graph. Recall that the wheel Wn is the cone on the cycle Cn. In particular, W3 is the
complete graph K4 on 4 vertices.

Corollary 3.8. Let n ≥ 4. We have VG(2) = Z≥0 when G is one of the following graphs:
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(a) G = K+
n .

(b) G is the cone C(An) on the path An on n vertices.
(c) G is the wheel Wn.
(d) G is the graph on n ≥ 5 vertices obtained from the cycle Cn by adding a new edge

linking two vertices which are not already connected in the cycle.

Proof. We can apply Theorem 1.2 to each graph in the statement of the corollary to obtain
that VG(2) ⊃ Z>0. In each case, we can further strengthen this result by showing that
0 ∈ VG(2) as follows.

(a) Since Kn is the cone on Kn−1, Theorem 1.1 (b) (ii) can be used to show that
0 ∈ VG(2).

(b) and (d) To show that 0 ∈ VG(2), we take the usual Laplacian of G, and note that
its associated critical group is always cyclic ([27], Corollary 6.7).

(c) The wheel Wn is the cone on the cycle Cn. By removing a vertex v on the wheel
that belongs to the original cycle, we obtain an induced subgraph isomorphic to the cone
C(An−1). We have shown above that 1 ∈ VC(An−1)(2) when n − 1 ≥ 3. It follows then
immediately from Theorem 1.1 (b) (ii) that VG(2) = Z≥0. �

Example 3.9. Let G = Wn. The critical group Φ associated to the Laplacian of Wn

is not cyclic (see [5], 9.2). Starting with the extended cycle C+3 , Theorem 1.1 (b) lets
us construct on G a different arithmetical structure (M,R) whose associated group Φ is
trivial.

We note below on the example of W6 that the coefficients of the diagonal of M quickly
become very large with this construction. In the wheel W6 on the left below, the vertices
of the original C+3 are indicated in white. We then constructed W6 by adding in sequence
three vertices, whose corresponding coefficients on the diagonal are 46, 1478, and 1548583.

2 2 2

3

1478

46

1548583

2 28 2

2

3

2

3

We describe in Lemma 3.10 a different arithmetical structure onW2k, where Φ is cyclic
of order 6k − 1, and where the coefficients on the diagonal do not grow as fast. We have
illustrated the case k = 3 on the right above.

Arithmetical structures on the wheelW6 are plentiful. For instance, looking only among
structures with MG(a1, . . . , a7) having ai ∈ [2, 30] for all i = 1, . . . , 7, we found structures
with 198 different group orders for their associated group Φ. Among the orders found, 94
are squarefree, so that the corresponding groups are cyclic.

Lemma 3.10. Order the vertices of W2k as follows. The first vertex in our enumer-
ation is u, the unique vertex of degree 2k. Then we let v1, . . . , vk, wk, wk−1, . . . , w1 de-
note the consecutive vertices on the cycle, all of degree 3. The transpose of the vec-
tor R is (1, r1, . . . , rk, sk, . . . , s1), with ri = si for all i = 1, . . . , k. We set sk = k,
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sk−1 = k+ (k− 1), and so on, until we get to s1 = k+ · · ·+ 2 + 1 = k(k+ 1)/2. Note that

a := 2
∑k

i=1 si = 2
∑k

i=1 i
2 = k(k + 1)(2k + 1)/3. The diagonal of the matrix M of the

structure is (a, 2, . . . , 2, 3, 3, 2, . . . , 2). Then (M,R) is an arithmetical structure on W2k

whose associated group Φ is cyclic of order 6k − 1.

Proof. It is easy to check that MR = 0. The computation of Φ can be done as follows.
First, since the first coefficient of R is 1, we can find an integer linear combination of the
columns to add to the first column so that the resulting first column is the zero-column.
The same operations on the lines produces a new matrix whose first line is the zero-line
and whose first column is the zero-column. Let M ′ denote the bottom right 2k × 2k
square submatrix of this matrix. The group Φ is obtained by doing a row and column
reduction of the matrix M ′. In particular, the determinant of this matrix gives us |Φ|. It
follows that |Φ| = dC2k(2 . . . , 2, 3, 3, 2, . . . , 2) = 6k − 1. Choose now a row and column of
M ′ where the diagonal element is 3. To show that the group is cyclic, we consider the
submatrix M ′′ of M ′ obtained by removing the chosen row and column. The matrix M ′′

has determinant 4k − 1. Since 6k − 1 and 4k − 1 are always coprime, we find that Φ is
cyclic. We leave the details to the reader. �

Remark 3.11. We note here an arithmetical structure on W2k+1 very similar to the
structure described in Lemma 3.10, with the exception that this new structure has its
group Φ isomorphic to (Z/(2k + 1)Z)2.

Order the vertices ofW2k+1 as follows. As before, the first vertex in our enumeration is
u, the unique vertex of degree 2k + 1. Then we let v1, . . . , vk, u

′, wk, wk−1, . . . , w1 denote
the consecutive vertices on the cycle, all of degree 3. The transpose of the vector R is
(1, r1, . . . , rk, 1, sk, . . . , s1), with ri = si for all i = 1, . . . , k. We set sk = 1 + k, sk−1 =
1+k+(k−1), and so on, until we get to s1 = 1+k+ · · ·+2+1 = 1+k(k+1)/2. Note that

a := 1 + 2
∑k

i=1 si = 1 + 2k+ 2
∑k

i=1 i
2 = 1 + 2k+k(k+ 1)(2k+ 1)/3. The diagonal of the

matrix M of the structure is (a, 2, . . . , 2, 2k+3, 2, . . . , 2). It is easy to check that MR = 0.
We can obtain in a similar way that |Φ| = dC2k+1

(2 . . . , 2, 2k + 3, 2, . . . , 2) = (2k + 1)2.

4. Third Main Theorem

4.1. Let us now recall the following definitions needed for the proof of Theorem 4.2. Let
S ⊂ Z≥0 be any subset. Let S(`) := {0, 1, 2, . . . , `} ∩ S and s(`) := |S(`)|. Recall that the
lower density d(S) of S is defined as

d(S) := lim inf
`→∞

s(`)

`
.

Similarly, the upper density d(S) of S is given by d(S) := lim sup`→∞
s(`)
`

. If both d(S)

and d(S) exist and are equal, the natural density d(S) of S is defined as d(S) := d(S).
We say that S is dense in Z≥0 if d(S) = 1. When S is dense, its complement in Z≥0

has density 0. Any finite set has density 0. Let a, b ∈ Z≥0, a 6= 0. A set of the form
{am+ b | m ≥ 0} is called an arithmetic progression and has density 1/a.
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For later use, we note here the following facts. Consider a set S of positive integers
which contains a union

U :=
k⋃
i=1

(
ri⋃
j=1

{ait+ bij | t ≥ 0}

)
of arithmetic progressions. Then the lower density d(S) of S satisfies d(S) ≥ d(U). When
the ai are pairwise coprime, and for each i, the ri arithmetic progressions are distinct, we
find that

d(U) = 1−
k∏
i=1

(
1− ri

ai

)
.

Theorem 4.2. Let G be a connected graph. Let v ∈ G be a vertex such that the subgraph
Gv has one of the following properties:

(a) The complement of VdGv
(2) in Z≥0 is finite.

(b) Up to possibly reordering the vertices of Gv, there exist a2, . . . , an−1 ∈ Z≥2 such that
dGv(t, a2, . . . , an−1) = αt− β with α ∈ Z>0, β ∈ Z, and gcd(α, β) = 1.

(c) VdGv
(2) contains an infinite subset of pairwise coprime values {u1, u2, . . . } such that

limj→∞
∏j

i=1(1− 1/ui) = 0.

Then VdG(2) is dense in Z≥0.

Proof. We claim that Assumption (a) implies Assumption (c). Indeed, since the comple-
ment of VdGv

(2) is finite, it must contain all but finitely many prime numbers. Listing

the prime numbers in the complement as {pi}∞i=1, we find that limj→∞
∑j

i=1 1/pi diverges,
since by Euler’s theorem the sum of the reciprocals of all primes diverges ([22], page 21),
and our set of primes misses only finitely many primes by hypothesis. Lemma 5.1.1 in [1]

can be used to deduce that limj→∞
∏j

i=1(1− 1/pi) = 0, as desired.

We claim that Assumption (b) also implies Assumption (c). Indeed, our assumption
that gcd(α, β) = 1 allows us to use Dirichlet’s Theorem on primes in arithmetic progres-
sion: The set P of primes in the arithmetic progression {αt − β | t ∈ Z≥0} is infinite
because the Dirichlet density of the primes in P is equal to 1/α. This in turn implies that∑

p∈P 1/p is infinite (see [22], page 251). As before, we conclude using Lemma 5.1.1 in [1]

that limp∈P
∏

p(1− 1/p) = 0, as desired.

Let us now prove the theorem when Assumption (c) holds. Without loss of general-
ity, we can assume that v = v1. For each value ui, choose ai,2, . . . , ai,n ≥ 2 such that
dGv(ai,2, . . . , ai,n) = ui. Consider the polynomial dG(t, ai,2, . . . , ai,n). By hypothesis, the
matrix MG(t, ai,2, . . . , ai,n) has a lower right n − 1 × n − 1 submatrix MGv(ai,2, . . . , ai,n)
of determinant ui. Thus dG(t, ai,2, . . . , ai,n) = uit− wi for some wi ∈ Z.

Let Ui denote the set of positive values taken by uit − wi when t ≥ 2 if wi ≤ 0, and
when t ≥ 2 + wi/ui if wi ≥ 0. It is clear that, since up to finitely many values the set
Ui is an arithmetic progression, the density of Ui is 1/ui. By construction, Ui ⊆ VdG(2).
Since the elements of the set {u1, u2, . . . } are pairwise coprime, we find that the union

∪ji=1Ui has lower density equal to 1 −
∏j

i=1(1 − 1/ui). Clearly, VdG(2) contains ∪∞i=1Ui,
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and taking now the limiting value as j →∞, we find that d(VdG(2)) ≥ 1. It follows that
d(VdG(2)) = 1 and VdG(2) is dense in Z≥0. �

In our next corollary, the symbols An and Dn denote Dynkin diagrams, whose definition
is recalled in 5.1.

Corollary 4.3. Suppose that a graph G on n + 1 vertices contains an induced subgraph
H on n vertices of the form Gv such that H is either An, Cn, Dn, Sn, Kn, or K(2, n− 2).
Then VdG(2) is dense in Z≥0.

Proof. We exhibit for each graph H a choice of diagonal elements (t, a2, . . . , an) with
ai ≥ 2 such that dH(t, a2, . . . , an) = αt−β with gcd(α, β) = 1. We can then use Theorem
4.2 (b) to conclude that VdG(2) is dense in Z≥0.

(i) H = An. Assume that v1 is a vertex of degree 1. We find that

dH(t, 2, . . . , 2) = nt− (n− 1).

Clearly gcd(n, n− 1) = 1.

(ii) H = Cn. Label the vertices consecutively along the cycle. Recall that n is the
number of spanning trees of H, and it follows from the proof of Proposition 2.4 (a) that
dH(t, 2, . . . , 2, 2) = n(t− 2). We find that

dH(t, 2, . . . , 2, 3) = n(t− 2) + (n− 1)t− (n− 2) = (2n− 1)t− (3n− 2).

Again, we find that gcd(2n− 1, 3n− 2) = 1.

(iii) H = Dn. This star-shaped graph has a single vertex of degree 3, and three terminal
chains, each ending with a vertex of degree 1. Assume that v1 is the vertex of degree 1
on the chain of length n− 3 in H, and that vn is another vertex of degree 1. We find that

dH(t, 2, . . . , 2, 2, 3) = (n+ 3)t− (n+ 2),

and clearly gcd(n + 3, n + 2) = 1. To compute the coefficient of t in this expression,
note that it equals dHv1

(2, . . . , 2, 3), which is 4 + (n − 1), with 4 = dDn−1(2, . . . , 2) and
n− 1 = dAn−2(2, . . . , 2). The constant coefficient is similarly obtained as 4 + (n− 2).

(iv) H = Sn. Assume that the vertex v1 has degree n − 1. We use (t, a2, . . . , an) with
a2 = 2 and ai+1 = i-th prime number. We find that

dH(t, a2, . . . , an) = (a2 · · · an)t− (a2 · · · an)(
1

a2
+ · · ·+ 1

an
).

Since a2, . . . , an are distinct primes, we find that (a2 · · · an)( 1
a2

+ · · · + 1
an

) is coprime to

(a2 · · · an).

(v) H = Kn. Set ai + 1 = bi and choose a2 + 1 = 3, and ai + 1 = i-th prime number.
We find using (8.2) that

dH(t, a2, . . . , an) = (t+ 1)(b2 · · · bn)− (t+ 1)(b2 · · · bn)(
∑n

i=2
1
bi

)− (b2 · · · bn)

= t(b2 · · · bn)(1−
∑n

i=2
1
bi

)− (b2 · · · bn)(
∑n

i=2
1
bi

).

Since b2, . . . , bn are distinct primes, (b2 · · · bn) is coprime to (b2 · · · bn)( 1
b2

+ · · ·+ 1
bn

).



THE CRITICAL POLYNOMIAL OF A GRAPH 18

(vi) H = K(2, n− 2). We compute the determinant of

M = MH(t, x, y1, . . . , yn−2) =


t 0 −1 . . . −1
0 x −1 . . . −1
−1 −1 y1 0 0
...

... 0
. . . 0

−1 −1 0 yn−2

 .

Subtracting the second row from the first, and the resulting second column from the first,
we obtain 

t+ x −x 0 . . . 0
−x x −1 . . . −1
0 −1 y1 0 0
...

... 0
. . . 0

0 −1 0 yn−2

 .

Expanding the determinant along the first row gives

det(M) =

(
xy1 · · · yn−2 − y1 · · · yn−2(

n−2∑
i=1

1

yi
)

)
t− xy1 · · · yn−2(

n−2∑
i=1

1

yi
).

We choose y1, . . . , yn−2 to be the first n − 2 prime numbers. We choose x to be coprime
to y1 · · · yn−2(

∑n−2
i=1

1
yi

). �

4.4. Proof of Theorem 1.3. We proceed with a case-by-case verification.
(1) Let G be a Dynkin diagram, an extended Dynkin diagram, or the cone C(A3). Then

G contains an induced subgraph of the form Gv = An for some n. Corollary 4.3 applies.
(2) Let G be a complete graph Kn, or an extended complete graph K+

n . Then G contains
an induced subgraph of the form Gv = Kn−1 (resp. Kn). Corollary 4.3 applies. Let G be a
cycle Cn, an extended cycle C+n , or the wheel Wn. Then G contains an induced subgraph
of the form Gv = An (resp. An+1, resp. Cn). Corollary 4.3 applies.

(3) Let G be a star Sn, an extended star S+
n , or the complete bipartite K(2, n) or

K(3, n). Then G contains an induced subgraph of the form Gv = Sn−1 (resp. Sn, resp.
Sn+1, resp. K(2, n)). Corollary 4.3 applies.

It is natural to wonder whether a vertex v such that Hypothesis (b) in Theorem 4.2
holds might exist for all graphs. We have not been able to answer this question beyond
the following extension result.

Lemma 4.5. Suppose that G is a graph on n vertices such that for some choice of
a2, . . . , an ≥ 2, we have dG(t, a2, . . . , an) = αt− β with gcd(α, β) = 1. Let G+ denote the
graph obtained by attaching a new vertex v0 with e ≥ 1 edges to the vertex v1. Let q ≥ 1
denote any integer coprime to eαβ. Then dG+(q, t, a2, . . . , an) is of the form α′t− β′ with
gcd(α′, β′) = 1.

Proof. An explicit computation shows that dG+(q, t, a2, . . . , an) = q(αt − β) − e2α =
qαt− (qβ + e2α). It follows from our hypotheses that qα is coprime to (qβ + e2α). �
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Remark 4.6. The connected simple graphs on four vertices consist of the path A4, the
star D4, the two graphs C+3 and C4 with Betti number equal to 1, the cone on A3, and
the complete graph K4. Theorem 1.3 and Corollary 4.3 show that for such graph G,
the set VdG(2) is dense in Z≥0. Computations suggest that except possibly for K4, the
complement of VdG(2) in Z≥0 might be finite.

5. Dynkin diagrams

5.1. Recall the following terminology.

An, n ≥ 2: the chain on n vertices.

D̃n, n ≥ 4: a chain on n− 1 vertices, with two additional vertices, attached to the two
vertices of degree 2 of the chain that are linked to a vertex of degree 1 (when n = 4, there
is only one such vertex, and in this case both new vertices are attached to this vertex).
The graph Dn, n ≥ 4, is obtained from D̃n by removing one of the two additional vertices.
Such vertex is indicated in white below.

D̃n

Ẽn, n = 6, 7, 8: a tree on n + 1 vertices described below. Removing one vertex from
Ẽn produces the tree En on n vertices. The vertex that needs to be removed is marked
in white below.

Ẽ6 Ẽ7

Ẽ8

The graphs An (n ≥ 2), Dn (n ≥ 4), and En, n = 6, 7, 8, are called Dynkin diagrams and
have n vertices. The graphs D̃n, n ≥ 4, and Ẽn, n = 6, 7, 8, are called extended Dynkin
diagrams or affine Dynkin diagrams, and have n + 1 vertices. In the context of elliptic
curves, they are called Kodaira types, and are denoted by I∗n, n ≥ 0, and IV∗, III∗, and
II∗, respectively (see for instance [34], page 46). The notation In refers in this context to
the cycle Cn.

The following proposition is well-known. Part (a) is found in [18], Lemma 3.1, with
proof and a reference to [21], Satz page 219. Part (b) is stated in [21], page 228.

Proposition 5.2. Let G be a connected graph on n vertices.

(a) If MG(2, . . . , 2) is positive definite, then G is either An with n ≥ 2, Dn with n ≥ 4,
or En, n = 6, 7, 8.

(b) If MG(2, . . . , 2) is positive semi-definite and detMG(2, . . . , 2) = 0, then G is either Cn
with n ≥ 2, D̃n with n ≥ 4, or Ẽn, n = 6, 7, 8.
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When G is a Dynkin diagram, computations indicate that the complement of VdG(2) in
Z≥0 is finite, except when G = A2. We present below some data for the Dynkin diagrams
Dn and En. The data for the chains An is presented in Example 6.2.

Proposition 5.3. (a) If G = An, n ≥ 2, then VdG(2) ⊆ Z≥n+1.
(b) If G = Dn, n ≥ 4, then VdG(2) ⊆ Z≥4.
(c) If G = E6, then VdG(2) ⊆ Z≥3. Computations indicate that the complement of VdG(2)

in Z≥0 is contained in the following set

LE6 :=
[0, 1, 2, 4, 5, 6, 8, 10, 12, 14, 16, 17, 20, 24, 26, 28, 30, 32, 34, 38,

44, 46, 48, 56, 60, 64, 74, 80, 88, 92, 98, 132, 158, 170].

(d) If G = E7, then VdG(2) ⊆ Z≥2. Computations indicate that the complement of VdG(2)
in Z≥0 is contained in the following set

LE7 := [0, 1, 3, 4, 7, 12, 15, 25, 28].

(e) If G = E8, then VdG(2) ⊆ Z>0. Computations indicate that the complement of VdG(2)
in Z≥0 is contained in the following set

LE8 :=
[0, 2, 3, 4, 6, 8, 10, 11, 14, 16, 18, 22, 23, 24, 28, 34, 38, 40,

46, 58, 60, 62, 88, 94, 134, 178].

Proof. Since each of the graphs G = An, Dn, and En, is such that MG(2, . . . , 2) is positive
definite (see 5.2 (a)), we find from 2.1 (c) that the smallest value taken by dG(x1, . . . , xn)
when xi ≥ 2 is dG(2, . . . , 2). It is classical that dAn(2, . . . , 2) = n + 1, dDn(2, . . . , 2) = 4,
dE6(2, . . . , 2) = 3, dE7(2, . . . , 2) = 2, and dE8(2, . . . , 2) = 1. �

Remark 5.4. (a) Let G = D4. Computations indicate that the complement of VdG(2) in
Z≥0 is contained in the following set

LD4 :=

[0, 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 17, 18, 19, 21, 23, 25, 26, 30, 31, 34, 35, 37, 38, 41,
45, 47, 49, 53, 58, 61, 65, 66, 67, 74, 77, 79, 83, 86, 91, 93, 97, 101, 103, 109, 110,

114, 115, 121, 125, 126, 129, 130, 131, 143, 145, 153, 167, 173, 178, 181, 187, 199,
206, 210, 223, 229, 247, 251, 258, 265, 301, 325, 343, 391, 417, 426, 437, 451,

517, 593, 595, 606, 633, 637, 649, 671, 763, 823, 859, 871, 937, 977,
1027, 1087, 1330, 1517, 1661, 4477, 4585, 5273].

(b) LetG = D5. Computations indicate that the complement of VdG(2) in Z≥0 is contained
in the following set

LD5 := [0, 1, 2, 3, 5, 6, 7, 10, 11, 13, 15, 21, 22, 30, 31, 37, 43, 46, 55, 58, 75, 91, 102, 165, 330].

(c) LetG = D6. Computations indicate that the complement of VdG(2) in Z≥0 is contained
in the following set

LD6 :=
[0, 1, 2, 3, 5, 6, 7, 9, 11, 13, 14, 15, 17, 18, 23, 25, 27, 29, 33, 35, 38,

45, 47, 49, 50, 53, 69, 71, 78, 95, 97, 105, 133, 203, 245].
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(d) LetG = D7. Computations indicate that the complement of VdG(2) in Z≥0 is contained
in the following set

LD7 :=
[0, 1, 2, 3, 5, 6, 7, 9, 10, 13, 14, 15, 17, 19, 22, 23, 26, 27, 30,

33, 38, 42, 43, 49, 55, 57, 62, 78, 79, 110].

(e) LetG = D8. Computations indicate that the complement of VdG(2) in Z≥0 is contained
in the following set

LD8 :=
[0, 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 25, 26, 29, 30,
31, 33, 35, 37, 41, 43, 46, 49, 50, 54, 55, 58, 59, 61, 63, 65, 71, 73, 90,

91, 94, 101, 105, 118, 121, 138, 169, 183, 205, 250].

Let now G be an extended Dynkin diagram. The data below for Ẽn, n = 6, 7, 8,
suggests that the complement of the set VG(2) in Z≥0 might be finite. The available data

for G = D̃n, n = 5, 6, 7, seems to support the same assertion for these graphs. The data
in the case of G = D̃4, the star on 5 vertices, is less clear.

Let G be the cycle Cn, n ≥ 3. The available data when n = 4, 5, 6 also seems to suggest
that the complement of the set VG(2) is finite. The case of G = C3 is less clear. The data
is further discussed in Examples 7.1 and 7.3.

Proposition 5.5. (a) If G = Cn, n ≥ 2, then VdG(2) ⊆ {0} t Z≥n, and VdG(2) contains
all positive multiples of n.

(b) If G = D̃n, n ≥ 4, then VdG(2) ⊆ {0} t Z≥4. Moreover, VdG(2) contains all positive
multiples of 4.

(c) If G = Ẽ6, then VdG(2) ⊆ {0} tZ≥3. Moreover, VdG(2) contains all positive multiples
of 3. Computations indicate that the complement of VdG(2) in Z≥0 is contained in the
following set

LẼ6
:=

[1, 2, 4, 5, 7, 8, 11, 13, 14, 16, 19, 20, 22, 23, 26, 29, 32, 34, 35, 37, 41, 44, 46, 49,
53, 56, 58, 62, 71, 74, 82, 89, 95, 104, 106, 118, 128, 137, 140, 167, 172, 184, 188,

212, 218, 271, 287, 302, 386].

(d) If G = Ẽ7, then VdG(2) ⊆ {0} t Z≥2. Moreover, VdG(2) contains all even positive
integers. Computations indicate that the complement of VdG(2) in Z≥0 is contained in
the following set

LẼ7
:=

[1, 3, 5, 9, 11, 13, 15, 19, 21, 23, 25, 29, 33, 43, 45, 49,
51, 59, 75, 81, 115, 121, 141, 145, 159, 189].

(e) If G = Ẽ8, then VG(2) = Z≥0.

Proof. Since each of the graphs G = Cn, D̃n, and Ẽn, is such that MG(2, . . . , 2) is definite
semi-positive, the smallest value taken by dG(x1, . . . , xn) when xi ≥ 2 is dG(2, . . . , 2) = 0.

(a) When G = Cn, the matrix MG(2, . . . , 2) is the usual Laplacian. Recall that
dG(t, 2, . . . , 2) = n(t − 2). We conclude from Proposition 2.4 (b) that every multiple
of n is in the set VdG(2) and that n is the smallest non-zero value in VdG(2). Since the
critical group of Cn is known to be cyclic, we find that 0 ∈ VG(2).
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(b) When G = D̃n, the matrix MG(2, . . . , 2) is the matrix associated with an arithmeti-
cal structure with |Φ| = 4. The group is cyclic of order 4 when n odd, and it is (Z/2Z)2

when n is even. The matrix MG(2, . . . , 2) is the unique arithmetical structure on G of the
form MG(a1, . . . , an) with a1, . . . , an ≥ 2. Thus 0 ∈ VG(2) when n is odd, and 0 /∈ VG(2)
when n is even. Proposition 2.4 (b) shows that every multiple of 4 is in VdG(2)

(c) and (d) When G = Ẽn, n = 6 (resp. 7), the matrix MG(2, . . . , 2) is the matrix
associated with an arithmetical structure with |Φ| = 3 (resp. 2). Proposition 2.4 (b) can
be applied again.

(d) Since 1 ∈ VE8(2), Theorem 1.1 (b) implies that VẼ8
(2) = Z≥0. �

Remark 5.6. In view of Proposition 5.2, it is natural to wonder whether it is possi-
ble to list all the graphs G such that MG(3, 2, . . . , 2) is either positive definite or posi-
tive semi-definite. Examples of such graphs which are not Dynkin diagrams and where
MG(3, 2, . . . , 2) is positive definite can be found among the rational triple points described
in [3], page 135. We note below two constructions that use the classical extended Dynkin
diagrams and produce infinite families of graphs G where MG(3, 2, . . . , 2) is positive semi-
definite with determinant 0. A more sporadic example on 5 vertices is presented in Remark
3.4. One may wonder whether, in the positive semi-definite case with determinant 0, all
such graphs have to appear in the list given in [32].

Let H be an extended Dynkin diagram on n + 1 vertices, or a cycle. Denote by
(MH , RH) its associated arithmetical structure. Thus, MH = MH(2, . . . , 2). Fix a vertex
v of H, and without loss of generality, assume that v is the first vertex of H. If the
coefficient of RH associated with v is 1 or 2, we construct a graph G on n + 3 vertices
by attaching two new vertices to v, each by a single edge. Label the vertices of G by
w,w′, v1, . . . , vn+1. We claim that MG(2, 2, 3, 2, . . . , 2) has determinant 0. To show this,
note the following. If RH = (2, . . . ), then consider the vector tRG := (1, 1,tRH). It is
easy to check that MG(2, 2, 3, 2, . . . , 2)RG = 0. If RH = (1, . . . ), then consider the vector
tRG := (1, 1, 2(tRH)). It is easy to check that in this case also, MG(2, 2, 3, 2, . . . , 2)RG = 0.

We illustrate this construction with two examples. First on the left below, we use H =
D̃6 to obtain a graph G1 on 9 vertices. The old vertex of D̃6 chosen for the construction
is indicated in white.

G1

4 2

15

2

5

2

2

3

4

G2

The graph G1 is denoted (15) in Table 1, page 521 in [8]. It is minimal in the sense
that 1 ∈ VG1(2) but 1 /∈ VT (2) if T is any subtree of G1. Computations indicate that
VdG1

(2) = Z≥0. We have labeled the graph with a set of coefficients on the diagonal that
give detMG1(a1, . . . , a9) = 1.

The graph G2 above on the right has 8 vertices and is obtained from the construction
with H = D̃5. The old vertex of D̃5 chosen for the construction is indicated in white. The
graph G2 is a subgraph of G1. Computations indicate that the complement of VdG2

(2) in
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Z≥0 is contained in

LG2 =
[1, 5, 23, 25, 31, 53, 61, 71, 73, 145, 163, 199,

211, 229, 275, 289, 365, 379, 383, 421, 451, 493, 799, 1153].
.

A different construction is as follows. Start with an extended Dynkin diagram H = D̃n

with n ≥ 4. Fix a pair of vertices of degree 1 attached to the same vertex in H. Without
loss of generality, we can assume that these vertices of degree 1 are v1 and v2, attached to
a vertex v3. Consider the graph G obtained by linking a new vertex w to v1 by a single
edge. Order the vertices of G as w, v1, v2, v3, . . . . Then we claim that MG(2, 2, 3, 2, . . . , 2)
has determinant 0. The vector tRG := (2, 4, 2, 6, . . . , 6, 3, 3) is such that MGRG = 0. Here
we have ordered the vertices of H such that the last two vertices again have degree 1,
and the ante-penultimate vertex has degree 3 in H. When n = 4, note that all vertices of
degree 1 are linked to the same vertex of degree 4. The construction produces the graph
S+
5 in this case (see 7.4).
We illustrate this second construction with the example of H = D̃5, obtaining a graph

on 7 vertices. The old vertex of D̃5 chosen for the construction is indicated in white:

G3

The graph G3 is a subgraph of the previous examples. Computations indicate that the
complement of VdG3

(2) in Z≥0 is contained in LG3 = [1, 21, 25, 37, 75].

6. The graphs An and small variations

We discuss in this section the paths An, n ≥ 3, and some graphs A3(e, f) on three
vertices generalizing A3. Let us note here again that when G = An, then 0 /∈ VdG(2) since
the matrix MG(2, . . . , 2) is positive definite. We also note that the group Φ associated
to any matrix of the form MG(a1, . . . , an) with a1, . . . , an ≥ 2 is always cyclic (see [29],
Lemma 3.13). Thus we have VG(2) = VdG(2) when G = An.

Theorem 4.2 shows that the complement of VAn(2) in Z≥0 is dense. The data below in
Example 6.2 suggests that this complement might always be finite. The smallest values
in the complement can be explicitly described using the next lemma, and there are at
least 4n− 6 such values.

Lemma 6.1. Let G = An, n ≥ 3. The set VG(2) starts with the following values:

[n+ 1, 2n+ 1, 3n− 1, 3n+ 1, 4n− 5, 4n, 4n+ 1, 5n− 11, 5n+ 1, . . . ].

Proof. We have dAn(t, 2, . . . , 2) = n(t−1) + 1. This shows that VG(2) contains n+ 1, 2n+
1, 3n+ 1, . . . . We have dAn(2, . . . , 2, 3, 2) = 3n− 1 and dAn(3, 2, . . . , 2, 3) = 4n. Moreover,
dAn = (2, 2, . . . , 3, 2, 2) = 4n − 5. More generally, placing 3 on the i-th column from the
end (with 2i ≤ n): the determinant is n+ 1 + i(n− i+ 1) = (i+ 1)n− (i2− i− 1). With
i = 4, we obtain 5n− 11. �
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Example 6.2. (a) Let G = A3. Computations indicate that the complement of VG(2) in
Z≥0 is contained in the following set

LA3 := [0, 1, 2, 3, 5, 6, 9, 11, 14, 15, 35, 105, 510].

(b) Let G = A4. Computations indicate that the complement of VG(2) in Z≥0 is contained
in the following set

LA4 :=
[0, 1, 2, 3, 4, 6, 7, 8, 10, 12, 14, 15, 20, 22, 24, 26, 28, 38, 40, 42, 48, 52, 68,

104, 132, 150, 188, 314].

(c) Let G = A5. Computations indicate that the complement of VG(2) in Z≥0 is contained
in the following set

LA5 := [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 17, 18, 19, 27, 28, 34, 40, 52, 63, 88].

(d) Let G = A6. Computations indicate that the complement of VG(2) in Z≥0 is contained
in the following set

LA6 :=
[0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 23, 26, 29, 30, 32, 36, 38,
42, 44, 48, 52, 54, 56, 62, 70, 80, 81, 86, 96, 102, 108, 110, 122, 126, 140, 180, 236].

It is natural to wonder whether dA3(x, y, z) = xyz − x − z takes every non-negative
value when x, y, z ≥ 2, except for the values listed in LA3 . We have not been able to
answer this question beyond the following remarks.

Proposition 6.3. The set VA3(2) contains:

(a) All even positive integers n, except possibly those of the form n = 2m − 2 with m odd
or m = 2, 4.

(b) All odd positive integers n such that n+ 2 is not prime.
(c) All odd positive integers congruent to 1 modulo 4 and congruent to 2 or 8 modulo 9.

Proof. We claim that the complement of VA3(2) in Z≥0 consists only of integers n such
that (i) either n + 2 is prime or n + 2 is a power of 2, and (ii) such that n + 4 is prime,
or n+ 4 is not divisible by a prime p ≥ 7 congruent to 3 modulo 4.

Indeed, writing xyz − x− z = n, we find that when z = 2, we have x(2y − 1) = n+ 2.
This can be solved with x, y ≥ 2 when n + 2 is not prime, and not a power of 2. When
z = 4, we have x(4y − 1) = n + 4. This can be solved with x, y ≥ 2 when n + 4 is not
prime and when at least one divisor of n+ 4 is congruent to 3 modulo 4 and greater than
3.

Suppose now that m > 4 is even. Set x = 4, z = 6, and y = (2m−3 + 1)/3 ≥ 2. It is
clear that xyz − x− z = 2m − 2. When m ≥ 4 is even, 2m−3 + 1 is always divisible by 3.

Suppose now that n is congruent to 1 modulo 4 and congruent to 2 or 8 modulo 9.
Then in particular n is not divisible by 3. Hence, one of n+ 2 or n+ 4 has to be divisible
by 3. Suppose that n+ 2 is divisible by 3. Then n is in VA3(2) since n+ 2 is neither prime
nor a power of 2. Suppose now that n + 4 is divisible by 3. Then n is in VA3(2) unless
(n + 4)/3 is only divisible by primes congruent to 1 modulo 4 and by a power of 3. Our
hypothesis implies that n + 4 is congruent to 3 or 6 modulo 9 and so is exactly divisible
by 3. Since the power of 3 is odd in n+4, then n has to be congruent to 3 modulo 4 when
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(n+ 4)/3 is only divisible by primes congruent to 1 modulo 4. Since we assume that n is
congruent to 1 modulo 4, we find that n ∈ VA3(2). �

Remark 6.4. The first values of 22m+1−2 are 0, 6, 30, 126, 510, 2046, 8190, . . . . The values
0, 6, and 510 are not achieved by xyz − x− z with x, y, z ≥ 2. The values 30 and 126 are
achieved exactly once, with (x, y, z) = (3, 4, 3) and (12, 2, 6), respectively.

Consider more generally the polynomial f(x, y, z) = xyz − ax− bz with a, b ∈ Z≥1. It
is clear that Vf (1) = Z≥0 since f(1, N + a+ b, 1) = N for any integer N .

If an integer p divides a, then Vf (2) contains all non-negative multiples of p. Indeed,
assume that p divides N . Set z = p, y = a/p + 1, and x = N/p + b ≥ 2. Then
xyz − ax− bz = N .

Proposition 6.5. Let f(x, y, z) = xyz − ax− bz with a ≥ b ≥ 1. We have Vf (2) ⊇ Z>0

in the following cases:

(a) a+ 1 or b+ 1 is not prime.
(b) a is divisible by 4 and b = 1.

Moreover, 0 ∈ Vf (2) when (a, b) 6= (1, 1), (2, 1), and (4, 1).

Proof. (a) Without loss of generality, we can assume that b + 1 is not prime. Consider
the equation xyz − ax − bz = N , which we rewrite as (xy − b)z = N + ax. Under
our hypothesis, the equation xy − b = 1 can be solved with x, y ≥ 2, and so setting
z = N + ax ≥ 2 shows that N ∈ Vf (2).

(b) Assume now that b = 1. If N is even, we use the case p = 2 just above to conclude
that since 2 divides a, xyz − ax− z takes all possible even values when x, y, z ≥ 2. If N
is odd and a = 4c, set y = 2 and z = 2c + 1 ≥ 2. Since z is then odd and N is odd, we
can set x = (N + z)/2 ≥ 2, to get xyz − 4cx− z = N .

The equation xyz − ax − bz = 0 always has the solution (x, y, z) = (b, 2, a), so that
0 ∈ Vf (1), and when a, b > 1, 0 ∈ Vf (2). Suppose now that b = 1, and let us show that
we can solve xyz − ax − z = 0 with x, y, z ≥ 2 if and only if a 6= 1, 2, 4. If we can solve
this equation, then (xy − 1)z = ax and x must divide z. Write z = cx. We need to solve
(xy − 1)c = a, so c divide a. This equation can be solved if we can find integers x, y ≥ 2
such that xy = 1 + a/c. We claim that given any integer m > 1, m 6= 2, 4, we can find
a divisor d of m such that d + 1 is not prime. This is clear if m is divisible by an odd
prime. When m is a power of 2, this is true as soon as 8 divides m. We apply this claim
to a, and we find c which divides a such that 1 + a/c is not prime, unless a = 1, 2, 4, as
desired. �

Example 6.6. Computations indicate that in the case of f = xyz−2x−z, the complement
in Z≥0 of the set Vf (2) might be reduced to {0, 1, 3, 7, 15}.
Remark 6.7. Fix e1, . . . , en−1 ≥ 1. Consider the graph An(e1, . . . , en−1) with multiple
edges obtained as follows. Given n vertices v1, . . . , vn, link vi to vi+1 by ei edges, for each
i = 1, . . . , n− 1.

The matrix MAn(e1,...,en−1)(x1, . . . , xn) is a tridiagonal matrix, and such matrices occur
in the following context. Recall that two symmetric matrices M and N in Mn(Z) are
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congruent if there exists T ∈ GLn(Z) such that N = (tT )MT . Newman ([31], Theorem 1)
showed that any positive definite matrix M ∈Mn(Z) is congruent to a tridiagonal matrix
with certain specified properties. When det(M) = 1, the tridiagonal matrix is of the form
MAn(1,...,1,en−1)(a1, . . . , an). Such matrices are further studied in [17] and [20].

In the case n = 3, the graph G = A3(e, f) has matrix MA3(e,f)(x, y, z) with determinant
dG(x, y, z) = xyz − f 2x− e2z. As we saw in Proposition 6.5, the determination of VdG(2)
is not immediate when both e2 + 1 and f 2 + 1 are prime.

Let G = A3(2, 1), with dG(x, y, z) = xyz − x− 4z, and dG(3, 2, 2) = 1. The graph G is
the graph with the fewest vertices and edges such that 1 ∈ VG(2). See Examples 3.1 and
3.5 for examples on 4 vertices. Proposition 6.5 shows that VdG(2) = Z>0.

Let G = A3(2, 2), with dG(x, y, z) = xyz − 4x − 4z. The set VdG(2) contains all even
positive integers, but it is not immediately clear from computations that the complement
of VdG(2) in Z≥0 is finite. The situation is similar for Vh(2) when h := xyz− 2x− 2z. The
integer N = 538641 belongs to the complement of both VdG(2) and Vh(2).

7. Further Examples

Example 7.1. Consider the cycle G = C3 on n = 3 vertices. Then

dG(x, y, z) = xyz − x− y − z − 2.

It is not computationally clear in this example that the complement of VdG(2) in Z≥0 is
finite. This complement is likely to contain 2201 values in the interval [1, 2 · 106].

Theorem 1.1 shows that VdG(1) = Z≥0. The recent preprint [13] studies the set Vf (1) of
values taken by the related polynomial f(x, y, z) = xyz + x+ y + z. The authors suggest
on page 3 that the complement of Vf (1) in Z≥0 is infinite.

Example 7.2. Consider the graph G on n = 3 vertices with matrix

MG =

 y −2 −1
−2 z −1
−1 −1 x

 and dG(x, y, z) = xyz − 4x− y − z − 4.

We have dG(2, 3, 3) = 0 and dG(2, 5, 2) = 1. Computations indicate that the set of values
missed by dG is very small and might consists only of [8, 56, 248].

Example 7.3. Consider the cycle G on n = 4 vertices. Computations produced a set of
325 positive integers up to 106 which contains the complement of VdG(2) ∩ [1, 106]. The
four largest values in that set are 86899, 184549, 204997, and 858811. The paucity of large
values in this set suggests that the set of missing values might be finite.

Consider now the cycle G on n = 5 vertices. Computations produced a set of 123 values
up to 105 which contains the complement of VdG(2) in [1, 105]. The largest two values in
this set are 5422 and 12489. This data suggests that the set of missing values might be
finite in this case also.

Example 7.4. The stars Sn on n vertices are such that VdSn (2) is dense in Z≥0 (see
Theorem 1.3). The case of S4 (the Dynkin diagram D4) is discussed in Example 5.4,
where computations indicate that the complement of S4 in Z≥0 is finite. In the case of the
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star S5 (which is equal to the extended Dynkin diagram D̃4), computations leave open
the possibility that the complement of VdS5 (2) in Z≥0 might not be finite.

The extended stars S+
n , defined in the introduction, are also such that VdS+n

(2) is dense

in Z≥0. The graph S+
4 is equal to the Dynkin diagram D5, and Example 5.4 suggests that

the complement of VdS+4
(2) in Z≥0 is finite. On the other hand, computations leave open

the possibility that the complement of VdS+5
(2) in Z≥0 might not be finite. Indeed, the

complement in this case seems substantial, and its intersection with [1, 105] might contain
as many as 6000 elements.

Example 7.5. Consider the complete bipartite graph G = K(2, 3), with n = 5. Compu-
tations show that dG might fail to represents a set C of 693 values in [1, . . . , 105].

8. Complete Graphs

Proposition 8.1. Let G = Kn, the complete graph on n ≥ 2 vertices. Then 1 ∈ VG(2) if
and only if the equation

(8.1)
n∑
i=1

1

yi
+

1

y1 · · · yn
= 1

can be solved with positive integers y1, . . . , yn ≥ 3.

Proof. Consider the square matrix

M ′ :=


1 0 . . . 0
0
... MG(x1, . . . , xn)
0


This matrix clearly has the same determinant as MG(x1, . . . , xn), and is row and column
equivalent to the matrix

M ′′ :=


1 −1 . . . −1
−1 x1 + 1 0 0
... 0

. . . 0
−1 0 0 xn + 1

 .

Indeed, letting

T :=


1 0 . . . 0
−1 1 0
...

. . .
−1 0 1

 ,

we find that M ′′ = TM ′(tT ). Note that if H denote the star on n+ 1 vertices w0, . . . , wn,
then the matrix M ′′ is MH(1, x1 + 1, . . . , xn + 1). It is clear that M is positive definite
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if and only if M ′, and hence M ′′, is positive definite. Expanding the determinant of M ′′

using its first row, we obtain that

(8.2) det(MG(x1, . . . , xn)) =
n∏
j=1

(xj + 1)−
n∑
i=1

∏n
j=1(xj + 1)

xi + 1
.

Assume now that 1 ∈ VG(2). Then we can find integers x1, . . . , xn ≥ 2 such that, setting
` :=

∏n
j=1(xj + 1), we have

1 = `−
n∑
i=1

`/(xi + 1).

Setting yi = xi + 1, so that ` =
∏n

i=1 yi, we find that 1/` = 1−
∑n

i=1 1/yi with yi ≥ 3 for
all i, as desired.

Reciprocally, assume that there exist y1, . . . , yn ≥ 3 such that 1 =
∏n

j=1 yj−
∑n

i=1(
∏n

j=1 yj)/yi.

Setting xi = yi−1, we obtain x1, . . . , xn ≥ 2 such that det(MG(x1, . . . , xn)) = 1. To show
that 1 ∈ VG(2), it remains to show that MG(x1, . . . , xn) is positive definite. For this,
it suffices, as noted above, to argue that M ′′ is positive definite. This is clear since
det(M ′′) = 1 > 0 in our case, and all the diagonal elements except for the one in the top
left corner are positive. �

Remark 8.2. In a solution (y1, . . . , yn) to Equation (8.1), the integers yi are pairwise
coprime. In particular, they are all distinct. When n is odd, any solution (y1, . . . , yn) to
Equation (8.1) must have at least one yi even.

When n = 13, one finds in [11], page 8, a solution to Equation (8.1) in pairwise coprime
integers obtained by Girgensohn with 3 = y1 < 4 < 5 < 7 < 29 < · · · < yn. The integer
y13 has 172 digits. This solution has exactly one even entry, y2 = 4. Note that the same
solution is given in [10], page 393, but in that article the given solution has typos.

Once we have a solution (y1, . . . , yn) to Equation (8.1), it is easy to extend it to a
solution (y1, . . . , yn, x) satisfying

n∑
i=1

1

yi
+

1

x
+

1

y1 · · · ynx
= 1,

by setting x = (y1 · · · yn) + 1.

Corollary 8.3. Let G = Kn be the complete graph on n ≥ 2 vertices.

(a) If n = 13, then 1 ∈ VG(2).
(b) If n ≥ 14, then VG(2) = Z≥0.
(c) If n ≤ 7, then 1 /∈ VG(2).

Proof. (a) In view of Proposition 8.1, it suffice to show that the equation (8.1) can be
solved with y1, . . . , yn ≥ 3. When n = 13, we use the solution provided in [11], page 8,
and mentioned in the previous remark.

(b) The graph Kn+1 is the cone on the graph Kn. Therefore, Theorem 1.1 (b) shows
that if 1 ∈ VKn(2), then VKn+1(2) = Z≥0.
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(c) It is mentioned in [11], page 8, that all solutions y1 ≤ · · · ≤ yn to Equation (8.1)
with n ≤ 9 have y1 = 2. We have not been able to retrieve the list of known solutions for
n = 8, 9 to verify this claim. The list of solutions with n ≤ 7 is provided in [9], page 50
and Appendix. The claim (c) then follows from Proposition 8.1. �

Remark 8.4. Let G = Kn be a complete graph with 3 ≤ n ≤ 13. Corollary 4.3 shows
that the complement of VdG(2) in Z≥0 has density 0. It is natural to wonder whether
the complement is finite. We discussed already the case n = 3 in 7.1. Computations in
the case n = 4 also seem to indicate that the complement in this case might be quite
substantial and maybe is not finite.

References

[1] S. Aletheia-Zomlefer, L. Fukshansky, and S. Garcia, The Bateman-Horn conjecture: heuristic,
history, and applications, Expo. Math. 38 (2020), no. 4, 430–479. 16
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