Valuations, the linear Artin approximation theorem
and convergence of formal functions.

BY MARK SPIVAKOVSKY

§1. VALUATIONS.
Let T’ be an abelian group.

DEFINITION 1.1. I' is an ordered group if I' may be written as a disjoint union

(1.1) r=P[J(0}]]J(-P)

where P is a subset of I', closed under addition.

One should think of P as the set of “positive elements”.
Remark 1.2, If I' is an ordered group, (1) induces a total ordering on I, defined
by
a<b&eb-ael.

In other words, an ordered group is a group with an ordering which respects addi-
tion.

Examples of ordered groups. Z with the usual ordering is an ordered group.
There are infinitely many non-equivalent orderings which make Z" into an ordered
group. For example, we may take the lezicographical ordering, defined by

(ar,...,an) < (b1,...,bp) if there exists i, 1 £¢ < n such that
(1.2) aj=b;, 1<j<1 and
a; < b;.
Any additive subgroup of R with the usual ordering is an ordered group. More

generally, let T';, 1 < i € n be a collection of additive subgroups of R. Then the
direct sum

(1.3) I'= éf,‘

with lexicographical ordering (1.2) is an ordered group. All the ordered groups
appearing in this paper will have the form (1.3).

DEFINITION 1.3. Let I be an ordered group and A a subgrbup. We say that A is
an isolated subgroup if it is a segment in the ordering: fa € A and ~a < b<a
then b € A.

For example, the only isolated subgroups of Z are (0) and Z itself. On the
other hand, the ordered groups of (1.2) and (1.3) have exactly n non-zero isolated
subgroups (counting the group itself).

Now let K be a field and I an ordered group. Let K™* denote the multiplicative
group of K.
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DEFINITION 1.4. A valuation » of K with value group I' is a surjective group
homomorphism
v:K*—>T

such that for any z,y € K
v(z +y) 2 min(v(e),v(y))  and
v(z +y) =min(v(z),v(y))  if v(z) # v(y)
(here and below we adopt the convention that v(0) > a for any a € T'.

Example 1.5. Without doubt, the most important example of valuations are the
divisorial valuations. Let X be an integral scheme of finite type over a field or a
Dedekind domain, Let K denote the field of rational functions on X. Let D be an
integral subscheme such that the local ring Ox,p is regular. Naturally associated
to D is a valuation vp : K* — Z defined by

vp(f) = ordp(f),

where ordp(f) denotes the order of zero or pole of f at the generic point of D.
More precisely, if m denotes the maximal ideal of Ox p and f € Ox,p then

v(f) =max{n | f e m"}.

If f ¢ Ox,p, write f = £, where a,b € Ox,p. Then

v(f) = v(a) - v(b).

Of course, this definition works for any D such that ordp is additive on Ox,p

(equivalently, the graded algebra 69,;”.__03'%";1- is an integral domain). Valuations of
this type are called divisorial (if D is not a divisor, we can always blow it up to
make it into one). See Example 2.4 for a generalization of this definition to schemes
which are not of finite type over K.

Note. The condition of being divisorial is stronger than saying that the value group
is equal to Z. Below we give an example of a non-divisorial valuation with value
group Z (Example 2.7).

Example 1.6. More generally, given a flag of subschemes
DnCDn—-l C"‘C-Dl CDO=X

such that for each ¢, 1 < i < n, ordp, is an additive function on Op,_, p;, there
exists a unique valuation v : * — Z" (with lexicographical ordering) such that for
any f € mx,p; \ mx,p;_, the first ¢ entries in v(f) are given by

v(f) = (0,0,...,0,0rdp, f,...)

i—1 zeroes
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This valuation » is defined using the concept of composition of valuations (see
[20, §VI1.10, p. 43]).

Let K be a field and v : X* — I a valuation of v. Associated with v is a local
subring R, of I;
R, 1= {2z € K | v(z) > 0}.

The maximal ideal of R, is
m, = {z € K | v(z) > 0}.

We recall a well-known theorem from commutative algebra characterizing valuation
rings.

THEOREM 1.7. Let K be a field and R a local subring of K. The following four
conditions are equivalent:

(1) R is the valuation ring R, for some valuation v of K.

(2) For any z € K*, either € R or £ € R (or both).

(3) The set of ideals of R is totally ordered by inclusion.

(4) R is a maximal element in the set of local subrings of R with respect to
the relation of domination (we say that a local ring (Ry,m,) dominates
(Rg,mg), denoted (R],ml) > (Rz,mz), if R CR; and mq =m; N Rg)

Remark 1.8. Let v be a valuation of the field X with value group I'. Then R, is
noetherian if and only if I' = Z. Indeed, we have an injection ¢ of the set

I'*:={a€l|a>0}

into the semigroup of ideals of R, under multiplication. Namely, if o € T't, we
define

#a) = go = {z € K |v(z) > a}.

¢ preserves the ordering and semigroup structure. (The complement of Im(¢) in
the set of ideals of R, is precisely the set of non-maximal, non-zero prime ideals
of R,.} If R, is noetherian, then any descending chain of elements of ['t must
stabilize. In other words, I't is a well-ordered set. But the set of non-negative
elements of an ordered group is well-ordered if and only if that group is equal to
Z (otherwise we could take the minimal element among those for which the set of
elements smaller than itself is infinite, subtract a non-zero element of I't and get a
contradiction). Conversely, if I' = Z then any ideal in R, is generated by a power
of an element ¢ such that v(t) = 1. In that case R, is a discrete valuation ring with
regular parameter .

We now digress to explain some of the motivation for studying valuations, coming
from the problem of resolution of singularities. Indeed, let X be a reduced and
irreducible projective variety over a field k£ and let K be the function field of X.
Let v be a valuation of KX which vanishes on k. Say, X C P® = Proj k[zo,...,zs)
and assume that X is not contained in any hyperplane in P™, Then f:- is a rational
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function on X. Renumbering the indices, if necessary, we may assume that V(i;-:) >
0 wheneveri > j. Let U 1= XNk[£L,22,... In]. Then Oy C R,. Let p:= m,NOy.

a2,
Then p is a well-defined (not necessarily closed) point on X. p is called the center
of v on X. pis the unique point in X such that Ox , < R,. Thus a valuation gives

a way of picking a point on every projective model of the field K.

Now condition (4) of Theorem 1.7 explains the geometric meaning of valuations.
Let X, K and v be as above. Consider the projective system of all the projective
models {Xq}aea of K which admit a proper birational morphism to X. The maps
in this projective system are birational proper morphisms 7ap : Xo — Xjg. Consider
a collection of points {£4 € Xa}aea such that for any @, 8 € A

wap(a) = &p-
Then we may consider the ring R := lim Ox, ¢, (4) of Theorem 1.7 implies that

o
R is & valuation ring for some valuation v. For each a € A, £q is the center of
v in X,. Thus giving a valuation » which vanishes on k is equivalent to giving a
collection of points £ € X4, @ € A, in a way which respects the maps 7qg.

DEFINITION 1.9. The abstract Riemann surface of the field K is defined to be
the set of all the valuations of K vanishing on k.

We denote the abstract Riemann surface of I by S. By the above discussion, we
have, set-theoretically,
S = lim X,.
atais
We define the Zariski topology on S to be the inverse limit topology induced by

all the Zariski topologies of the X,. We have the following beautiful theorem of
Zariski.

THEOREM 1.10. [20, §VL17, p. 113, Theorem 40]. S is compact.

Note that this does not follow automatically from the compactness of each of the
X, because the Zariski topology is not Hausdorff.

Zariski’s approach to the problem of resolution of singularities was to first prove
the local uniformization theorem: for any projective variety X over k¥ and any
valuation » of K, there exists a variety X', birational and proper over X such that
the center of ¥ on X' is non-singular. Zariski proved this theorem for char k = 0
in all dimensions (the question is still open for char k > 0). Since regularity is an
open condition, there exists then an open neighbourhood V of v in § such that
for any +' € V the center of +/ on X is also non-singular. By compactness, we can
cover S by finitely many such open neighbourhoods. Then resolution of singularities
reduces to the following problem. Consider two projective models X, and X of K,
birational and proper over X. Let V; and V, denote the preimages in S of the non-
singular points of X; and X3, respectively. The problem is to find a third projective
model X;; dominating both X; and X, such that for any » € V1 U V3, the center of
v in X1z is non-singular. Zariski solved this problem in dimensions two, and, with
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much greater difficulty, three. For higher dimensions, however, this problem seems
to be almost as hard as the resolution of singularity itself. The ebbedded resolution
in all dimensions (char k = 0) was later proved by Hironaka by an entirely different
method. However, one may still hope that Zariski’s valuation-theoretic approach, in
some modified form will be useful for future research in resolution of singularities,
particularly in the light of recent work on the formal path space of an algebraic
variety [7].

§2. INEQUALITIES ON DIMENSION AND RANK.

Let K be any ficld and v : K'* — T a valuation of . We define the basic
non-negative integer invariants associated with v.

DEFINITION 2.1. The rank of v is defined to be
rk v = dim It,,
the Krull dimension of R,. Rational rank is
rat.1k v = dimgI' @z Q.

Remark 2.2. rk v cquals the number of non-zero isolated subgroups of I' (counting
T itself). Indeed, there is a bijection between the set of isolated subgroups of I' and
the set of prime ideals of It given by

Aep={zeR, |viz)¢ A}

This bijection reverses inclusions.
It is easy to sce that &k v < rat.rk v. For instance, in Example 1.5

rthk v =rat.tk v =1.
In Example 1.6
rk v = rat.tk v = n.
In (1.3) we have rk v = n and rat.tk v = Sobratrk Ty

We now fix the situation which we shall study for most of the paper. Let (R, m, k)
be a local noetherian domain with ficld of fractions K. Let v : K* — T be a
valuation of I{ such that R < R,. In this case there is another integer invariant we
can associate to v. Namely, the condition R < R, implies that we have a natural

injection k «— L. We define
v

I,
tr. degv = tr. dcg(;;—/k).
v

The starting point of this work is an old theorem of Abhyankar. Let n = dim R.
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THEOREM 2.3. [1, Theorem 1, p. 330].
(1)

(2.1) rat.rk v + tr.deg,v < dim R.

(2) If equality holds in (2.1) then I" & ZI" and -I-?-ﬁ- is finitely generated over k.
(3) I, moreover,
rk v + tr.degyv = dim R

then I' @ ZI™ with the lexicographical ordering.

We gave a sketch of a simple proof of Abhyankar’s Theorem in [15] (full details,
as for most of the new results stated here, will appear in {17]). Also in [15] we
give an example of a rank 2 valuation centered in a local non-noetherian domain
of dimension 1, so that the noetherian hypothesis is necessary even for the weaker
inequality (2.1) with rational rank replaced by rank.

Example 2.4. If v is a divisorial valuation, then tk v = rat.rk » = 1 and
tr.deg,v = n — 1 (the transcendence basis of {}f: over k is given by the tran-
scendence basis of the field of rational functions on D in the case dim D =n — 1,
i.e. when D is a divisor; blowing up D, if necessary, we can always reduce to this
case). Hence for a divisorial valuation equalities hold in (1) and (3). We can now
generalize our definition of divisorial valuations to mean any valuation centered in
an n-dimensional local noetherian domain (R, m, &), having value group Z and such
that tr.degv =n — 1.

Example 2.5. Let u,v be independent variables and let R = k[u, v](4,y). Consider
the valuation of K = k(u,v) with value group (1,v/2) (i.e. the additive subgroup

of R generated by 1 and v/2), defined by

v(v) =1

v(u) = V2.
Then rk v = 1, rat.tk v = 2 and tr.deg,v = 0, so that v satisfies equality in (1) of
Theorem 2.3, but not in (3).

Example 2.6. Let R and I be as in Example 2.5. Let T' = 7Z? in lexicographical
ordering and let v : K* — I" be defined by

v(v) = (0,1)
v(u) = (1,0).

Then rk v = rat.tk v = 2 and tr.deg, v = 0, so that v satisfies the equality in both
(1) and (3) of Theorem 2.3.

Note that in both Examples 2.5 and 2.6 v is completely determined by v(u)
and v(v). This is true precisely because in the cases considered v(u) and v(v)
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are linearly independent over Z. In general, v(u) and v(v) determine the value of
every monomial in k{u,v]. If »(u) and »(v) are integrally independent, then all
the monomials have distinct values, so by the axioms of valuations the value of
each polynomial equals the minimum value of its monomials. Then v is completely
determined on k[u, ], hence on all of I{. Next, we give two examples of valuations
for which strict inequality holds in (1) of Theorem 2.3.

Example 2.7, Let R and I be as in the preceding Example. Let R denote the
completion of R and I the field of fractions of R. Write R = k[[u,v]]. Consider a
formal power series

o0
t=u+ Zc.-v‘ € ft‘.\K, where ¢; € k*.
i=1
Let I' = Z2 with lexicographical ordering and define & : I :— I by
V(v) = (01 1)
v(t) = (1,0).

Let v denote the restriction of 7 to K. Then v has value group Z, so that rk v =
rat.tk ¥ = 1. It is not hard to see that tr.deg,v = 0, so that v satisfies the strict
inequality in (2.1). We have

v(v)=v(u)=1

v(u + cv) =2

v(u+tcv+ cv?) =3
etc.

Geometrically, we are considering the algebroid curve in the plane Spec kfu,v]
defined by ¢ = 0. Corresponding to the embedding of this curve into the plane we
have an injective map k[u,v] — k[[v]] which sends u to (— Y g, civ'). Then v is
the natural v-adic valuation of k[[v]] pulled back to R.

Example 2.8. Let R and K be as above. Let I' = Q and define a valuation v with
value group Q as follows.

viv) =1
1
=1=
vw) =17
v(u? +v°) = 3%
1

v((u? +v*)P 40" = IOZ

etc.

Again, rk v = rat.tk » = 1 and tr. deg v = 0, so we have a strict inequality in (2.3).
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§3. FINITE GENERATION OF VALUATIONS AND
LINEAR EQUIVALENCE OF TOPOLOGIES.

In the last two examples of §2 v is not determined by its values on any finite
subset of R. This fact motivates all the subsequent investigation: equality in (2.1)
is equivalent to saying that v is determined by a finite amount of data. Most of the
present paper is devoted to the theory of valuations satisfying equality in (2.3). It is
related to several different topics in commnutative algebra and singularity theory, and
we shall briefly discuss these connections Lere. First, we introduce some definitions
and notation. Let

& := v(R\ {0}) C T+,

® is an additive semigroup containing 0. For a € @, let

pa:={$€R|V(-’B)20‘}
(3.1) Pat i = {z € R| v(z) > al.

Associated to the pair (R,v) we have two graded algebras:

Gr,R: = P po
acd

gr,lt: = @ Lo

agcd Dot

Qur intuitive idea of a valuation determined by a finite amount of data corresponds
to the noetherian property of gr, R and Gr,R. A good, if somewhat optimistic,
model for the subsequent theory is the case when R is a regular local ring of dimen-
sion 2.

THEOREM 3.1. [14, Theorem 8.6] Let R be a regular 2-dimensional local ring with
Beld of fractions I and let v be a valuation of I such that R < R,. Assume that
the residue field k of R is algebraically closed. Then equality holds for v in (2.1) if
and only if Gr, R is finitely gencrated over R. If that is the case, any minimal set
of generators of gr,R over k, pulled back to R in an arbitrary way, has the form
Qo,Q1,...,Qg+1, where (Qo, Q1) are regular parameters for R and Qg1 defines
a plane curve singularity one of whose branches C' has g Puiseux exponents. For
1<:<g+1, Q; defines an analytically irreducible plane curve singularity with
i — 1 Puiseux exponents and having maximal contact with C.

Theorem 3.1 may be viewed as a structure thcorem for valuations centered in a
regular 2-dimensional local ring with algebraically closed residue field. It can also
be used to establish the “equivalence of categories” between valuations centered in
R, plane curve singularities in Spec R, complete ideals in R and sandwiched sur-
face singularities—the normal singularities of surfaces which birationally dominate
Spec R. In particular, Theorem 3.1 contains the classical theory of plane curve
singularities and maximal contact, done in greater generality: we need not assume
that R is Henselian (we do not use the Weierstrass preparation theorem, nor the
fact that char k = 0, nor even that k C R). Sce {14] and [16, Chapter II] for details
and proofs.
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Remark 3.2. A contraction of an ideal of R, to IR is called a v-ideal. By Theorem
1.7 (3) the set of v-ideals in R is totally ordered by inclusion. All the p, and pa+
are v-ideals and the set {pq}acas gives the complete list of v-ideals in R. The way
to think of the statement that the natural images of Qo,...,@Q4+1 in Gr, R generate
Gr, R as an R-algebra is that any v-ideal po is generated by the set

g+1 g+1

{IIer 1Y n=>a}

§=0 =0

To give an analogue of Theorem 3.1 in higher dimensions we need a few more
definitions.

DEFINITION 3.3. We say that the semigroup ® is archimedian if for any a, 8 € @,
a # 0, there exists r € N such that ra > f.

Let 1 denote the smallest non-zero element of ® (such an element exists because
I is noetherian). For ! € N, lct

l:=1-1€d.

Thus we think of N as a subset of ®. In particular, we may talk about the v-ideals
pi for I € Ni. Note that by definition, m! C p; for any ! € N.

DEFINITION 3.4, We say that the m-adic and the v-adic topologies in R are lin-
early equivalent if there exists r € N such that p,y C m! for any l € N.

DEFINITION 3.5. Let A = @qeeAa be a B-graded k-algebra with Ay = k. We say
that A is weakly noetherian of dimension d if the following two conditions hold:

(1) A contains d algebraically independent clements over k;
(2) there exists a polynomial F(I) € N[i] such that for any l € N

Z dimg Ay < F(1).

acd
o<l

This definition means that in terms of the growth of dimg o, A behaves like a
finitely generated k-algebra of transcendence degree d. In particular, if A is weakly
noetherian of dimension d, we have dim A < d. If, in addition, A is an integral
domain (as will be the case in our applications) then the field of fractions of A is
finitely gencrated over k. We can now state the main theorem.

THEOREM 3.6. Let (R,m,k) be a local noetherian domain with field of fractions
K. Let v be a valuation of K centered in R. Then the following two conditions are
equivalent:

(1) R is analytically irreducible (i.e. the m-adic completion R of R has no zero
divisors), ® is archimedian and '

rat.rk v + tr. deg,v = dim 1L

(2) gr, ! is weakly noetherian and the m-adic and the v-adic topologies in R are
linearly equivalent.
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Remark 3.7. Let n = rat.rk v + tr.deg;v. It is not hard to show that for eny v
centered in R we have rat. rk v + tr. deg, v = tr. deg,gr, R. Hence, if gr, R is weakly
noetherian, it is weakly noetherian of dimension n.

Remark 3.8. It is an easy exercise to prove that if the m-adic and the v-adic
topologies are equivalent (linearly or not) then @ is archimedian and R is analytically
irreducible. The only hard part of the theorem is to prove linear equivalence of
topologies from (1).

Theorem 3.6 is proved by reducing to the case of divisorial valuations, which we
state as a separate proposition because of its importance for the applications below.

PROPOSITION 3.9. Let v be a divisorial valuation centered in an analytically irre-
ducible local noetherian domain (R, m, k). Then the m-adic and the v-adic topolo-
gies in R are linearly equivalent.

To motivate Proposition 3.9, we recall some old results of David Rees on ideal-
adic topologies in R. Given an ideal I in any ring R, the I-adic order on R is defined
by

I(f) :=max{neN| felI"} for feR.

A more invariant notion is the reduced order:

I(f) = lim 2670
n—oo n
A priori, it is not obvious that I(f) is a rational number for every f, or even that
it is finite. However, the following theorem of David Rees implies that I(f) is a
rational number whose denominator is bounded uniformly for all f € R. In the
statement of the theorem below, the reader may either take R to be a domain or
extend the definition of valuations to non-domains to be valuations on I modulo
one of the minimal primes.

THEOREM 3.10 (DAVID REES [13]). Let R be a noetherian ring and I an ideal.
Then there exists a finite collection vq,...,v, of divisorial valuations on R and
positive integers e;,...,e, such that for any f € R

I{f) = min M

1<i<r ¢
I(f) = co if and only if f is nilpotent.

A geometric proof of David Rees’s theorem may be obtained by first reducing
to the case when R is a Nagata domain. Then we may consider the normalized
blowing up 7 : X — Spec R along I. Let E;,...,E, be the irreducible components
of #=1(m). We may take v; to be the divisorial valuation associated with E; as in
Example 1.5. Letting e; = vi(J) (the minimum of v; on I), David Rees’s theorem
follows easily.

By Theorem 3.10, proving that any divisorial valuation v centered in a local
noetherian domain defines a topology linearly equivalent to the m-adic one is the
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same as proving that all the v-adic topologies for divisorial v are linearly equivalent
to each other.

The rest of the paper is devoted to applications of Theorem 3.6 and related topics.
The first one is really a lemma on the way to proving Theorem 3.6 (it is needed to
reduce to the divisorial case).

LEMMA 3.11. Let (S,mo) C (R,m) be a finite extension of two analytically irre-
ducible local noetherian domains. Let L C K be the fields of fractions of S and I,
respectively. Then there exists r € N such that for any f € R

mo(Ngy(f)) < rm(f).

The corollary of Proposition 3.9 needed to prove the theorems of the next section
is
THEOREM 3.12. Let (R,m) be an analytically irreducible local noetherian domain.
Let R C I be a finitely generated R-algebra and let m' be any prime ideal of

R' lying over m. Then the m-adic and the m'-adic topologies on R are lincarly
equivalent. That is, there exists r € N such that for anyn € N

(m'Y"NnRCm".

To prove Theorem 3.12, observe that any finitely generated extension can be
obtained by composing three basic types of extensions: purely transcendental, finite
and birational. In the purely transcendental case the theorem is trivial, the finite
case is easy and the birational case follows from Proposition 3.9 and Theorem 3.10.
In §5 we shall see that even if ' is not a finitely generated R-algebra, there is a
class of situations (namely, when the Gabrielov rank condition is satisfied) in which
one can guarantee linear equivalence of topologies.

§4. THE LINEAR ARTIN APPROXIMATION TIEOREM.

First, we state some corollaries to Theorem 3.12 having to do with approximate
(in the Krull topology) factorization of polynomials.

COROLLARY 4.1. Let R be a noetherian ring and Ty, ... ,T,, independent variables.
Let m be a maximal ideal of R and p C (m,T) a prime ideal of R{[T]] such that

RHT]}""'T is analytically irreducible. Let R be a finitely generated extension of IR
and let

(4.1) PR(T]l=q N Ng
be a primary decomposition of p in R[[T]]. Let p; := /g;. Let m C R{[T]] be a
prime idcal such that i N R{[T}] = (m,T). m must contain one of the p;. Assume

that py C m. Then there exists r € N such that for anyn € N

(™ +p) 0 R[T)} C (m, T)" + p.
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Remark 4.2. This is a special case of the linear Artin approximation theorem,
stated below. In particular, we can apply this corollary to the case when R is a
UFD, p is gencrated by one power series F € R[[T]], and (4.1) corresponds to a
factorization F' in R[[T]). Say, F = F1F; in R{[T]]. Then Corollary 4.1 says that
there exists r € N such that if

ﬁ = FIFQ mod "™,
where F, € R[[T]), F € R[[T}]], then

F, &2 F,g mod m" and

F&~Fg mod m"

for some g € R[[T]]. In other words, approximate factorization of an element of
R[[T]] in R[[T}]] is close to the actual factorization, and the estimate is linear in n.

Remark 4.3. Corollary 4.1 can be strengthened as follows. Let I? be a noetherian
ring, T, ...,Tn independent variables and A a noetherian ring such that

R[T) C A ¢ R[[T]).

Let m be a maximal ideal of R and p a prime ideal of A such that p C m and 4}?—

is analytically irreducible. Let R be a finitely generated R-algebra and let B be a
noetherian R-algebra such that

A®p R c Bc R[T).

Assume that (m,T) is a maximal ideal of A and that both A ® g R and B have
R[[T]] as their T-adic completion. Let {p;}1<i<s be the associated primes of p in
B. Let m be any prime ideal of R lying over (m,T). Assume that p; C . Then
there exists-r € N such that for any n € N

(m™ + p) N R[T]) C (m,T)" + p.

The next Corollary has to do with the notion of superficial element (cf. [26, Chapter
VIII, §8, p. 285)).

COROLLARY 4.4. Let R be a noetherian ring without nilpotents and I an ideal of
R. Let z be an element of R. Assume that for any minimal prime p of R, such that
I+ p# R, we have z ¢ p. Assume also that the degree over GriR of any element
of the Integral closure of GryR in its total ring of fractions is uniformly bounded
(this condition always holds when R is Nagata). Then there exists r € N such that
for any k,n € N

Ik e C Ik—rn

(here we adopt the convention that I" = R if n < 0).

Now we state the linear Artin approximation theorem.
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THEOREM 4.5. Let (R, m, k) be one of the following:

(1) an excellent Hensclian local ring containing Q

(2) the henselization of the ring Elzy,. .. sTnl(z,..,zn) Where k is a field or an

excellent Dedekind domain .

(3) a convergent power series ring in the scnse of [11, §45]

(4) a complete local ring.
Consider a system of algebraic (resp. analytic in (3), resp. formal in (4)) equations
over R. By a system of equations we mean a finitely generated R-algebra of the
form EJT—‘T—’—E (resp. -Iﬂﬁ-rﬂl, resp. M}, where I is a radical ideal
such that TN R = 0. Then there exists r € N such that for any | € N and any
th,...,th € R such that

Ic(y-t,....Tn — ')+ m"
there exist t,...,t, € R such that ,
IC(Ty~ti,....,Tn—ta) and ti—t e m!

for 1 <i < n. In other words, any approximate solution can be linearly approxi-
mated by an exact solution.

In [7] this theorem is proved for isolated hypersurface singularities. It is shown
that in that case r may be taken to be the multiplicity of the singularity times its
Milnor number. :

Example 4.6. Many of the results stated here were motivated by Izumi’s “nearness
to p-powers” [3, §5]. Let R be as in Theorem 4.5. Let p € N and consider u € R\ I(?,
where K denotes the sct of p-th powers of clements of the field of fractions I{ of
R. Then there exists » € N such that for any t,t2 € R and any ! € N with
tf —uth e m", we have t;,t; € m'.

§5. CONVERGENCE OF FORMAL FUNCTIONS.

Finally, we discuss the following problem of M. Artin and A. Grothendieck, solved
by Gabriclov in 1974. Let ¢ : (R,m) — (I',m') be an injective local homomor-
phism of complex-analytic local rings. That is, cach of R and R' is the quotient of
a convergent power scrics ring of the form C{zy,. .. ,tn} by an ideal. Consider the
induced homomorphism ¢ : R — I?' on the formal completions of R and R'. The
question is: is  injective?

Gabrielov gave an example showing that ¢ need not be injective in general. He
also gave a sufficient condition, now known as the Gabrielov’s rank condition, for ¢
to be injective.

Example 5.1. Recall the example of Osgood of an injective local homomorphism
from C{z;,z2,23} into C{yi,y2}:

<f)(-’l*1) =Y

$(r2) = y1y2

Y13
|

21

#as) =y =y + iy + 4.
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Consider the following scquence of functions in Clzq, z2, z3].

2
Yiya
f1:=1'3—$1-—$2~———+...
2!
f-—-'r(m — 31 — .....%ém@.*.
2 . = &1 3 1 &2 2! 3! .

For a power series f € C{z1,...,2n}, [ = 24 Caz®, let size( f) denote

size(f) := max{|ca] | ca # 0},

where we allow size to be infinite. Then size(fi) = 1 for all i € N, while size(4(fi))
goes rapidly to zcro as ¢ — oo. Hence, there exist ¢;, ¢ € N such that

o0
Ty = Z cifi
i=1

is divergent as a power scrics in & but convergent as a power series in y. Extending
¢ to x4 in an obvious way, we gct an example of an injective local analytic map
¢ : C{x1,72, 23,24} — C{y1,¥2} such that  is not injective. That is, we produced
four convergent power series such that there are no analytic rclations between them,
but there is a formal rclation.

Next, we state Gabriclov’s rank condition. Asswme for simplicity that R’ is a
domain. Write

_ C{.’Bl,. . ,.IT"_}

R
I
5.1
& o Clu )
J
Then the rank of ¢ is defined to be
dTi 1<i<n
tk ¢ =1k (‘5;/;)@1‘—51’

where rank means rank over the the ficld of fractions of R'. To use Gabrielov’s
notation, we put

ry =1k ¢

ro = dim @(R)
ry := dim R.

It is easy to see that
(52) ™ S 72 S r3.

The condition r; = rg is called Gabriclov’s rank condition. Gabrielov’s famous
theorem is
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THEOREM 5.2 [2]. Ifry = ry thenry =r;.

The above equality implies, in particular, that ¢ is injective. The converse is not
true: consider Example 5.1. We haver; = 2, rp = 3, r3 = 4. The restriction of ¢ to
C{z1,22,23} is injective, the induced map C[[z1,z2,x3]] = C|[y1,v2]] is injective
but it docs not satisfy Gabriclov’s rank condition.

Valuation-theoretic ideas discussed in this paper provide a relatively simple proof
of Gabrielov’s theorem. This proof is purely algebraic in nature and can be gener-
alized to a wider class of rings than the complex-analytic rings. In order to state
Gabrielov’s theorem we need the notion of rank of ¢. To define that in a general
context, we need to know that our ring behaves in a reasonable way with respect
to derivations and differentials. In particular, there arises the problem of finding
a good substitute for Kahler differentials: the usual Kahler differentials, even for
very reasonable local rings, are too large to deal with. More precisely, we would like
to have a notion of differentials such that the module of differentials of a formal or
convergent power series ring IR over a field k in n variables is a free R-module of rank
n. We therefore propose the notion of separated Kahler differentials, which should
play the analogous role for the study of local rings as the usual Kéhler differentials
do in the global study of algebraic varieties.

DEFINITION 5.3. Let R be a ring, I an ideal and M an R-module. We say that M
is [-adically regular if for any finitely generated submodule My of M,

(Mo + I'M) = M.
=0
For example, if It is a local ring with maximal ideal I then any finitely generated
R-module is I-adically regular.
Now let (R, m, k) be a local noetherian ring containing a field. Then R contains
a quasi-coefficient field ko (that is, k is separable algebraic over kg). Consider the
module gy, of Kahler differentials of R over ko.

DEFINITION 5.4. The separated Kahler differentials, denoted QR/ko, are de-
fined by

QRr/ke
nioiomiQR/ku .
DEFINITION 5.5. We say that R is formally Jacobian if Qn/ko is m-adically
separated.

ﬁR/ko =

Remark 5.6. The canonical derivation d : R — Qp/i, induces a derivation d :
R — Qpji,. If R is formally Jacobian, d is characterized by the following universal
property. For any m-adically regular R-module M and any derivation d' : R — M
vanishing on ko, there exists a unique homomorphism

f . QR/ko — M
such that d’ = f o d. In other words, for an m-adically regular R-module M
Der,(R, M) = Homp(Qg/k,, M).

One also has the analogues of the first and second fundamental exact sequences.
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Example 5.7. Let R = k{[z1,...,24]} (tesp. k{zi,...,2n} when k is equipped with
a multiplicative valuation in the scnse of [11, §45]). Then R is formally Jacobian
and

QR/ko = @ Rdz;.
=]

If char & = 0, any localization of the ring of the form k{z1,...,@a }{[y1s- - willlz1, - - 2]
at a maximal ideal is formally Jacobian.
We give two equivalent characterizations of formally Jacobian rings.

THEOREM 5.8. Let (R,m,k) be a local noethcrian ring, containing a field. Let kg
be a quasi-coefficient field of R and let I denote the m-adic completion. Then the
following conditions are equivalent.
(1) R is formally Jacobian
(2) Qryx, is a finite R-module
3) h
Qg = Qe Or A2

Let R be an n-dimensional regular local ring. Then R is formally Jacobian if and
only if Derg, (R) is a frec R-module of rank n. In particular, when char ko =0, R is
formally Jacobian if and only if the weak Jacobian condition (WJ) of [8] holds in
R.

Now let ¢ : (R,m, k) — (R',m', k') be an injective local homomorphism of for-
mally Jacobian local rings. Assume that @ C R, that I¥' is an analytically ir-
reducible domain and that k' is algebraic over k. Then we may use the same
quasi-coefficient field kg for R and for R'. We have a natural map

A : Qrsre @n B — Qe pro-

We define
r1 :=rk ¢ = rk(Im(d¢)),

where rank means the dimension as a vector space after tensoring with the field of
fractions of R'. (5.2) holds, as before. We now state the more general “Gabrielov’s
theorems” (many of the formulations given below come from the papers of Izumi

[3-6]).
THEOREM 5.9. The following conditions are equivalent.

(1) 1y =79
(2) =13
(3) the m-adic and the m'-adic topologies on It are linecarly equivalent,.

Assume, furthermore, that 12 and R’ are complex-analytic local rings. Say, R and
R’ are given by (5.1). Cloose ¢ > 0 such that the power series ¢(z;) converge in
the neighbourhood of the polydisc |y:| < e.
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THEOREM 5.10. Each of the equivalent conditions of Theorem 5.9 is also equivalent
to each of the following.

(1) ¢ is a closed embedding in the Krull topology
(2) Im(@) is closed in R' in the Krull (i.e. the m'-adic) topology

(3) (I (R’)=R |
(4) there exists a positive constant § € R such that for any f € C[z1,...,2,]N

Ha

fany

T o

10.

11,
12,

13,

14.

15.

(m! \ ml+1),

. {
size(f) < B masflqs(f)(y)l
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