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Curves and Fields
Let K be any field (in this talk, mostly Q or a number field).

Let L/K be any finite field extension, of degree d .

Let X/K be a curve, of genus g .

Let X (L) := set of L-rational points.

If X is a plane projective curve defined by a homogeneous
polynomial F (x , y , z) ∈ K [x , y , z ] of degree D, then

X (L) = {(a : b : c) ∈ P2(L) | F (a, b, c) = 0}
The genus of X/K is bounded by (D − 1)(D − 2)/2, with
equality if X is smooth.

A new point of X over L is an element in

X (L) \ (∪K⊆F⊂LX (F )).

A new point is associated with a closed point P of X/K

whose residue field K (P) is isomorphic to L.
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Elliptic curves

An elliptic curve E/K is a curve of genus 1 with a choice of
a point P0 ∈ E (K ). For the purpose of this talk, one may
think of elliptic curves as smooth plane curves given by an
equation of the form

y2z = x3 + axz2 + bz3

with a, b ∈ K and ∆ := −16(4a3 + 27b2) ̸= 0.

When such
an equation is chosen, the chosen point P0 is (0 : 1 : 0).

Key fact: The set E (K ) can be endowed with the structure
of an abelian group, with P0 as neutral element.

Mordell-Weil Theorem: When K is a number field, E (K )
is a finitely generated abelian group.

In other words, E (K ) ≃ T × Zr , where T is a finite abelian
group called the torsion subgroup, and r ≥ 0 is called the
algebraic rank of E/K .
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Basic Questions

• Given a curve X0/K of genus g and an extension L0/K of
degree d , determine whether X0(L0) contains a new point.

This problem is in general very hard. Here are some variants:

(a) Given X0/K of genus g and d ≥ 1, determine whether
there exists an extension L/K of degree d such that X0(L)
contains a new point. Or: infinitely many extensions L/K
of degree d

(b) Given L0/K of degree d and g ≥ 1, determine whether
there exists a curve X/K of genus g such that X (L0)
contains a new point. Or: infinitely many curves X/K of
genus g

Most of the talk will be Question (a) and special points on the modular curves X1(N)/Q over number

fields L/Q.
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The question (b)

Given: a finite extension L/K of degree d .
Find a curve X/K of small genus g ≥ 1 such that X/K has
a new point over L.

Easy construction. Let α ∈ L such that L = K (α). Let
f (x) ∈ K [x ] denote the minimal polynomial of α over K .
Then (α, 0) is a new point on the hyperelliptic curve X/K
given by the equation y2 = f (x).

This curve has genus (d − 1)/2 or d/2− 1, and is a curve of
genus 1 only when d = 3, 4.

Open question. Let p be an odd prime. Let ζp denote a
primitive p-th root of unity. Let L := Q(ζp) denote the p-th
cyclotomic field, with [L : Q] = p − 1.

Can you find an elliptic curve E/Q with a new point over L?

Same question for the totally real subfield L := Q(ζp)
+.
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Some known theorems
Let K be a field of characteristic 0.

Theorem (Liu-L.) Let L/K be any finite extension of
degree d ≤ 10. Then there exist infinitely many elliptic
curves E/K such that E (L) contains a new point.

(For d ≤ 9, the result is due to Rohrlich in 1997.)

Theorem (Liu-L.) When [L : K ] = 12, 14, 15, 20, 21 or 30
and L/K is abelian, then there exist infinitely many elliptic
curves E/K such that E (L) contains a new point.

Theorem (Arvind Suresh) When L/K is Galois of degree
12, 14 and 16, then there exist infinitely many elliptic curves
E/K such that E (L) contains a new point.

In general, for L/K of degree d , Liu-L. find infinitely many
hyperelliptic curves X/K of genus about d/4, such that
X (L) contains a new point, and Suresh produces curves
where the genus is about d/8 when K ⊂ F ⊂ L with
[L : F ] = 2.
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Example of degree 17

Consider the field Q(ζ103), of degree 102 = 17 · 6.
Let L/Q denote the unique subfield of Q(ζ103) of degree 17.
The field L/Q is Galois with cyclic Galois group of order 17.

Question (b) from earlier: Is it possible to find an elliptic
curve E/Q with a new point over L?

Answer: Yes, under the Birch and Swinnerton-Dyer
conjecture.
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Recall: The L-function and B-SD
For ease of exposition, assume that K = Q and consider an
elliptic curve E/Q defined by y2 = x3 + ax + b with
a, b ∈ Z. Let Ep denote the reduction of E modulo p. When
p ∤ ∆, the reduction is an elliptic curve.

Hasse’s Theorem:
p + 1− 2

√
p ≤ |Ep(Fp)| ≤ p + 1 + 2

√
p.

Packaging the |Ep(Fp)| together: the L-function L(E/Q, s).

Define ap := (p + 1)− |Ep(Fp)|, so that |ap| ≤ 2
√
p,

and

L∗(E/Q, s) :=
∏

p prime, p∤∆

1

1− app−s + p1−2s
.

Then

L(E/Q, s) = L∗(E/Q, s) ·
∏
p|∆

explicit term.
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The Birch and Swinnerton-Dyer conjecture (I)

Let K be a number field, and let E/K be an elliptic curve
with L-function L(E/K , s) and algebraic rank r . Then

Conjecture (Part 1). The function L(E/K , s) is
holomorphic around s = 1 and thus we can consider its order
of vanishing ran at s = 1. In other words, there is a power
series expansion

L(E/K , s) = ℓ0(s − 1)ran + ℓ1(s − 1)ran+1 + . . . .

The integer ran is called the analytic rank of E/K .

It is conjectured that ran = r .

The integer ran can often be computed directly. The integer
r is much more difficult to compute directly, since there are
no efficient methods for finding elements in E (K ).
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Example of degree 17 revisited

Consider the field Q(ζ103), of degree 102 = 17 · 6. Let L/Q
denote the unique subfield of Q(ζ103) of degree 17.

Question (b) from earlier: Is it possible to find an elliptic
curve E/Q with a new point over L?

For each elliptic curve E/Q in Cremona’s tables, compute
the analytic ranks ran(Q) over Q, and ran(L) over L.

If for some E/Q, we find that ran(Q) < ran(L), then
conjecturally, E (L) contains a new point of infinite order.

Conjectural such E/Q: 173883a1 (thanks to Bill
Allombert and gp-pari)
This is a semi-stable elliptic curve of rank 2 over Q with bad
reduction at p = 3, 149, and 389. The equation is
y2 + y = x3 − x2 − 310x + 1779. Can one find an explicit
new point over L? No similar examples found for prime
degrees ≥ 19.
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Gracias!

The Birch and Swinnerton-Dyer conjecture (II)

Let K be a number field, and let E/K be an elliptic curve
with L-function L(E/K , s) and algebraic rank r . Then

Conjecture (Part 2). The function L(E/K , s) is
holomorphic around s = 1 with a power series expansion

L(E/K , s) = ℓ0(s − 1)ran + ℓ1(s − 1)ran+1 + . . . .

The conjecture predicts an explicit formula for the leading
term ℓ0.

The following is sufficient for the rest of the talk:

ℓ0 =

∏
M cM

|E (K )tors |2
· other terms

For the rest of the talk, I will discuss the following question:
Assume that |E (K )tors | > 1. Are there often cancellations in

the ratio
∏

M cM
|E(K)tors |2 ?
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The Tamagawa numbers cM
For each maximal ideal M of OK , let kM := OK/M. Let
E/K be an elliptic curve.

There exists a finite abelian group ΦE ,M(kM) and a group
homomorphism

E (K ) −→ ΦE ,M(kM)

The Tamagawa number at M is cM := |ΦE ,M(kM)|.

When the elliptic curve has good reduction at M, then
cM = 1.

Easily explained cancelation: Suppose that E (K ) contains
a point P of prime order N and that for some maximal ideal
M, the image of P under the map E (K ) → ΦE ,M(kM) is not
trivial. In that case, N divides cM .

Néron class group:
∏

M ΦE ,M(kM)/Im(E (K )) (C. Gonzalez-Aviles)
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Elliptic curves over Q

The product c(E/K ) :=
∏

M cM is called the global
Tamagawa number.

Initial Motivation. I learned from Amod Agashe that he
had verified for all optimal elliptic curves in Cremona’s table,
that if E/Q has a Q-point of order 5 or 7, then 5 or 7 divides
c(E/Q). He conjectured that this statement always holds.

This conjecture is true in full generality.

Theorem (L.) Let E/Q be an elliptic curve with a
Q-rational point of order N. If N = 7, 8, 9, 10, or 12, then N
divides c(E/Q).

If N = 5, then N divides c(E/Q), except when E = X1(11).

How does this theorem generalize to higher degree number fields?
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Elliptic curves over Q and small torsion

Can a similar statement be conjectured when E/Q has a
Q-rational point of order 2, 3, 4 or 6?

Yes, but one needs to consider the full leading term of the
L-function of E/Q. (Conjecture of Agashe and Stein)

For instance:

Theorem (Mentzelos Melistas). Let E/Q be a
semi-stable optimal elliptic curve of rank 0. Then
|E (Q)tors | divides

c(E/Q) · |X(E/Q)| · number of components of E (R).
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Elliptic curves over number fields
Let K/Q be a number field of degree d . Let E/K be an
elliptic curve with a K -rational point of prime order N.

Hoped-for-theorem Assume that N > 2d + 1. Then N
divides

∏
M cM , except for finitely many exceptions over

finitely many fields of degree d .

Theorem (L.) Assume d = 1 and N ≥ 5. Then N divides∏
M cM , except when N = 5 and E/Q = X1(11)/Q.

Theorem (L.) Assume d = 2 and N ≥ 7. Then N divides∏
M cM , except for four explicit exceptions when N = 7 over

K = Q(ζ3) and K = Q(ζ5)
+.

Theorem (L.) Assume d = 3 and N ≥ 11. Then N divides∏
M cM , except for one exception when N = 13 over

K = Q(ζ7)
+.

The j-invariant of the exception is j = −28672/3. It has
prime conductor (3)OK , with split multiplicative reduction of
type I1 at that prime.
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Elliptic curves over quartic fields
Let K/Q be a number field of degree d = 4. Let E/K be an
elliptic curve with a K -rational point of prime order N ≥ 11.

Theorem (L.) Assume that O∗
K has rank 1 or 2. Then N

divides
∏

M cM , except for the following exceptions:

N field K r(K) disc(K)

11(2), 13(j = 0) x4 − x3 − x2 + x + 1 1 117

11(4) x4 − x3 + 2x − 1 2 −275

11(2) x4 − x − 1 2 −283

Conjecture (L.) Assume that O∗
K has rank 3. Then N

divides
∏

M cM , except for the following exceptions:

N field K r(K) disc(K)

11(2), 13, 17 x4 − x3 − 3x2 + x + 1 3 725

The curve with the point of order 17 was found by David
Krumm around 2013 using his algorithm (with John Doyle)
for listing elements of small heights in number fields.
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N field K r(K) disc(K)

11(2), 13, 17 x4 − x3 − 3x2 + x + 1 3 725

The curve with the point of order 17 was found by David
Krumm around 2013 using his algorithm (with John Doyle)
for listing elements of small heights in number fields.
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Exceptional units
Let R be any ring. An exceptional unit in R is a unit r such
that 1− r is also a unit. (Terminology by Nagell in 1969)

Theorem (Siegel 1929, S. Lang 1960, S. Chowla 1961)
There are only finitely many exceptional units in any ring of
integers OK .

Theorem (Beukers-Schlickewei, 1996) In any ring of
integers OK , the number of exceptional units is bounded by
28(1+rank(O∗

K )).
Example In Q(ζp)

+, the number of exceptional units grows
rather fast. For instance, when p = 13, 17, 19, and 23, there
are respectively 1830, 11700, 28398, and 130812 exceptional
units (Wildanger 2000, available in Magma). The quadratic
fields with exceptional units are Q(ζ3) and Q(ζ5)

+.
Theorem (L.) (weak version) Let K be a number field.
Suppose that E/K is an elliptic curve with a K -rational
point of prime order N ≥ 7 such that N does not divide∏

M cM . Then OK contains an exceptional unit.
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The Lenstra constant

Let R be any ring. An exceptional sequence in R is a
sequence u1 := 0, u2 := 1, u3, . . . , um, such that each
difference ui − uj (i ̸= j) is a unit in R.

It follows from the definition that 0, 1, r is an exceptional
sequence if and only if r is an exceptional unit.

If 0, 1, u3, . . . , um is an exceptional sequence in R, then for
each maximal ideal M, the sequence reduces to distinct
elements in R/M. In particular, m ≤ |R/M|.

The Lenstra constant M(K ) of K is the largest integer m
such that there exists an exceptional sequence of length m in
OK (defined by H. Lenstra in 1977).

If K is a number field of degree d , then M(K ) ≤ 2d .

If K = Q(ζp), then M(K ) = d + 1 (Lenstra).
If K = Q(ζp)

+, then M(K ) = 2d or 2d + 1
(Leutbecher-Nicklash, 1987).
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The Lenstra constant and torsion

The Lenstra constant M(K ) of K is the largest integer m
such that there exists an exceptional sequence of length m in
OK .

M(K ) ≥ 3 iff O∗
K contains an exceptional unit.

Theorem (L.) Let K be a number field. Suppose that E/K
is an elliptic curve with a K -rational point of prime order
N ≥ 11 such that N does not divide

∏
M cM . Then

• If N = 11, then M(K ) ≥ 6.

• If 13 ≤ N ≤ 23, then M(K ) ≥ (N − 1)/2.

We expect that M(K ) ≥ (N − 1)/2 for all primes N.

• If 23 ≤ N ≤ 101, then M(K ) ≥ 11.

This theorem is due to Mestre (1981) when E/K has
everywhere potentially good reduction (with the bound
M(K ) ≥ 5 when N = 11).
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The Lenstra constant M(K ) of K is the largest integer m
such that there exists an exceptional sequence of length m in
OK .

M(K ) ≥ 3 iff O∗
K contains an exceptional unit.

Theorem (L.) Let K be a number field. Suppose that E/K
is an elliptic curve with a K -rational point of prime order
N ≥ 11 such that N does not divide

∏
M cM . Then

• If N = 11, then M(K ) ≥ 6.

• If 13 ≤ N ≤ 23, then M(K ) ≥ (N − 1)/2.

We expect that M(K ) ≥ (N − 1)/2 for all primes N.

• If 23 ≤ N ≤ 101, then M(K ) ≥ 11.

This theorem is due to Mestre (1981) when E/K has
everywhere potentially good reduction (with the bound
M(K ) ≥ 5 when N = 11).
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Question on the Lenstra constant

Find a low bound c = c(d) such that the following is true:

There only finitely many number fields K/Q of degree d
such that M(K ) > c .

For instance, can one take c = d when d is prime?

Application. Recall

Theorem (L.) Let K be a number field. Suppose that E/K
is an elliptic curve with a K -rational point of prime order N
such that N does not divide

∏
M cM . Then

• If 11 ≤ N ≤ 23, then M(K ) ≥ (N − 1)/2.

If there are only finitely many fields such that M(K ) > d
then as soon as (N − 1)/2 > d (i.e., N > 2d + 1), we get
that there can exist only finitely many elliptic curves as in
the theorem.
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Algorithm

The modular curve X1(N)/Q admits an equation
FN(r , s) = 0 called the raw form equation. We have
FN(r , s) ∈ Z[r , s].

Theorem (L.). Let K be a number field. Let 11 ≤ N ≤ 23
be prime. Suppose that E/K is an elliptic curve with a
K -rational point P of prime order N such that N does not
divide

∏
M cM . Let (r0, s0) ∈ K 2 denote the point on the

curve FN(r , s) = 0 corresponding to (E/K ,P).

Then r0 and s0 are both exceptional units in O∗
K .

Better: Then 0, 1, r0, s0,
r0−1
s0−1 is an exceptional sequence in

O∗
K .

Algorithm Given a field K , to find all E/K with a
K -rational point of prime order N such that N does not
divide

∏
M cM , it suffices to find all solutions to FN(r , s) = 0

with both r and s exceptional units in K .
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The case of septic fields
Conjecture: Let N ≥ 17 be prime. Then there exist only
finitely many fields K/Q of degree d = 7 with an elliptic
curve E/K having a K -rational torsion point of order N and
such that N does not divide

∏
M cM .

The list of known such elliptic curves over septic fields:

N field K (degree 7) ex(K) M(K) discr(K)

11(6), 13, 25 x7 − x6 − x5 + x4 − x2 + x + 1 366 ≥ 12 −184607 (first)

11(2), 13, 19 x7 − x6 + x3 − x + 1 336 ≥ 10 −199559 (fifth)

11(2), 13, 17 x7 − 2x6 + 4x5 − 4x4 + 3x3 − x2 − x + 1 270 ≥ 8 −250367(sixteenth)

11(6), 23 x7 − 3x5 − x4 + 3x3 + 1 960 ≥ 11 612569 (second)

11(6), 23 x7 − x6 − x4 + 3x2 − 1 906 ≥ 11 649177(fourth)

11(2), 17 x7 − x6 − x5 + 2x3 + x2 − 2x − 1 882 ≥ 10 661033

11(2), 23 x7 − 3x6 + 5x5 − 6x4 + 3x3 − x2 − x + 1 864 ≥ 11 674057

13(3), 19 x7 − x6 − x5 + 3x4 − 2x3 + 2x − 1 768 ≥ 9 788857(sixteenth)

11(6), 17 x7 − x6 − 4x3 + 2x2 + 2x − 1 1908 ≥ 13 −2932823 (seventh)

17∗∗ x7 − x6 − 2x5 + 5x4 − 6x2 + x + 1 1464 ≥ 8 −3998639 (twentieth)

Finitely many septic K/Q with M(K ) > 7? M(K ) ≤ 15?
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Abelian surfaces over Q
Let A/Q be an abelian surface with a Q-rational point of
prime order N.

Such an abelian surface is known to exist
for N = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29.

Over K = Q(ζ7)
+, an abelian surface A/K exists with

N = 31 or 37.

Recall the situation for an elliptic curve E/Q.
Theorem (L.) Let E/Q be an elliptic curve with a
Q-rational point of order N. If N = 7, 8, 9, 10, or 12, then N
divides c(E/Q).
If N = 5, then N divides c(E/Q), except when E = X1(11).

Theorem (L.) Let A/Q be an abelian surface with a
Q-rational point of prime order N. If N = 17, or N ≥ 23,
then N divides c(A/Q).
If N = 11, 13, 19, there are cases where N does not divide
c(A/Q).
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Known examples where N does not divide
c(A/Q)

For N = 11, 13, and 19, there exist abelian surfaces A/Q
with a Q-rational point of prime order N where N does not
divide c(A/Q). In all known examples, c(A/Q) = 1.

N = 19: the only known example is J1(13).

N = 13: only one known example.

N = 11: only four known examples: one is conjecturally
isogenous to J0(23), one is conjecturally a quotient of
J1(67).

Question. Are there only finitely many such abelian surfaces
with c(A/Q) = 1? (i.e., such that the Néron model of A has
connected fibers)
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