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ABSTRACT. Let k be an algebraically closed field of characteristic p > 0. Let Z/pZ acts on
A := k[[u,v]] by k-linear automorphisms and let A%/PZ denote the ring of invariants. Let
m: X — Spec(AZ/ PZ) be a minimal resolution of this quotient singularity with an exceptional
divisor E consisting in n smooth irreducible components meeting with normal crossings. We
study in this article the properties of the intersection matrix N € M, (Z) associated with FE.
We show for instance that for any prime p, and for any n > p+ 3, there exists a Z/pZ-quotient
singularity with intersection matrix of size n. We also show that for a large class of Z/pZ-
quotient singularities, the matrix N is such that N~! has an integer coefficient on its diagonal,
and often even a full integer column. We exhibit two new classes of hypersurface quotient
singularities with A%/?Z given by explicit weighted homogeneous equations.

1. INTRODUCTION

Let p be a prime. Let k be an algebraically closed field of characteristic p. Let A := k[[u, v]]
denote the ring of formal power series in two variables. Assume that Z/pZ acts on A by k-linear
automorphisms, and let A%/PZ denote the ring of invariants. We will say that the closed point
of Spec(AZ/P) is a wild cyclic quotient singularity, where the term wild refers here to the fact
that the group acting on A has order divisible by the characteristic p.

Let 7 : X — Spec(A%/P%) be a resolution of the singularity, so that in particular X is a
regular scheme. Let C;, ¢ = 1,...,n, denote the irreducible components of the exceptional
divisor of 7, and form the intersection matrix

N = ((C; - Cj)x )1<ij<n € Myn(Z),

where (C; - C;)x denotes the intersection number of C; and C; computed on the regular surface
X. Attached to the resolution 7 is its dual graph I'y, with vertices vy, ..., v,, where v; and v;
are linked by (C; - C;) x distinct edges when i # j. Let Ad(I'y) denote the adjacency matrix of
the graph I'y. The matrix N has the form Diag(ciy, ..., cun) + Ad(T'y), where ¢; = (C; - C;) x
is the self-intersection number of C;. It is well-known that the matrix NV is negative-definite.
The following is also known about such matrices V:

(i) When the exceptional divisor of 7 has smooth components with normal crossings, the
components C; are smooth projective lines and the graph I'y is a tree ([20], Theorem 2.8).
(ii) The discriminant group ®y := Z" /Im(N) is an elementary abelian p-group ([20], Theorem
2.6), so that in particular |®y| = |det(N)| = p® for some integer s > 0.
(iii) The fundamental cycle Z € 72, of N is the minimal positive vector such that NZ is a
non-positive vector. The self-intersection Z - Z := ('Z)N Z is such that |Z - Z| < p ([20],
Theorem 2.4).

2000 Mathematics Subject Classification. 14B05, 14E15, 14J17, 14E20.
1



INTERSECTION MATRICES OF WILD CYCLIC QUOTIENT SINGULARITIES 2

Let p be any prime. Motivated by the above theorems, we call an intersection matrix N €
M, (Z) p-suitable if it satisfies the following linear algebraic properties:

(a) There exists a connected tree I' on n vertices, and integers ¢, ..., ¢, > 2, such that N =
Diag(—cy, ..., —c,) + Ad(D).

(b) The matrix N is negative definite and the group ®y is killed by p.

(¢) The fundamental cycle Z of N is such that |Z - Z| < p.

We will say that a p-suitable intersection matrix N arises from a quotient singularity if
there exists a Z/pZ-quotient singularity Spec(AZ/ PZ) with a resolution of singularities 7 : X —
Spec(AZ/P2) such that all irreducible components C; of the exceptional divisor E of 7 are
smooth, and such that up to a choice of the ordering of the irreducible components C;, the
intersection matrix associated with E' is equal to the given matrix N.

It is an open question to completely characterize the p-suitable intersection matrices which
arise from a Z/pZ-quotient singularity. Recent works on this question include [14], [25], [26],
[27], and [29]. In this article, we establish some general properties of p-suitable matrices, and
suggest some properties which might possibly be enjoyed by the matrices which arise from a
7./ pZ-quotient singularity but not necessarily by all p-suitable matrices.

Recall that the degree (or wvalency) of a vertex v of a graph I' is the number of edges of T'
attached to v. A vertex v with degree at least three is called a node, and a vertex v with degree
one is called terminal. A graph is called a chain or a path if it is connected and does not contain
any node. The graph is called star-shaped if it is a connected tree with a unique node.

We present in this article several constructions of p-suitable intersection matrices. Our first
two results in this introduction indicate that p-suitable matrices are abundant. In particular,
given any large prime p, there exist many p-suitable matrices N of every size n > 9.

Theorem (see for a more general statement). Given any connected tree I' on n > 9
vertices which properly contains the graph of the Dynkin diagram Eg, and given any prime p,
there exists a p-suitable intersection matriz N with associated graph I' and |®n| = p.

Theorem [5.5, For any prime p and any integer 6 > 2, there exists a p-suitable intersection
matriz N whose associated graph has § nodes and |®y| > p°.

Given a prime p and any integer 6 > 1, it is natural to wonder whether there exists a Z/pZ-
quotient singularity whose minimal resolution of singularities has a resolution graph which is a
tree with ¢ distinct nodes. Our current record is 6 = 5 when p = 2, found in (6.3

The families of Z/pZ-quotient singularities whose resolution graphs are currently known
have resolutions whose number of irreducible components increases with p. For instance, the
intersection matrix A,_; on the path on n = p—1 vertices arises as a Z/pZ-quotient singularity
(see [26], 9.4). For trees which have at least one node, we can prove the following theorem.

Theorem Let p be any prime. Let n > p+3 be any integer. Then there exists a p-suitable
intersection matriz of size n which arises from a Z/pZ-quotient singularity.

In view of Theorems and it is natural to ask whether there exist a lower bound n(p),
with liminfn(p) = oo, such that if N is a p-suitable matrix of size n arising as a quotient
singularity and whose graph is a tree with at least one node, then n > n(p).

An ample supply of p-suitable intersection matrices with star-shaped graphs is provided
by the resolutions of weighted homogeneous singularities of the form 2P — x%°(x¢ — y4) = 0
with a,b,c,d > 1 subject to certain mild conditions (see [26], Proposition 4.9). Some of
these hypersurface singularities are known to be quotient singularities, such as the Brieskorn
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singularities 2P + zP" ™! 4 yP*t1 = 0, and 2P + 27"y — xy?* = 0 ([26], Theorem 5.3). We provide
in this article two new classes of weighted homogeneous singularities which are Z/pZ-quotient
singularities. In the classification of [30], page 61, the Brieskorn singularities are of Type I, and
our next two singularities are of Type Il and Type III, respectively.

Theorem [7.6 Let k be an algebraically closed field of characteristic p. Let r,s € Z~o. Let
[ =20 +aP Ty 4 yPsth op f = 2P 4 oPHly 4Pz, Let B := k[[x,y]][2]/(f). Then there exists
a k-linear action of Z/pZ on A := k[[u,v]] such that B is isomorphic to A*/P”.

The Z/pZ-quotient singularities in Theorem have resolutions which are star-shaped. They
belong to a larger class of quotient singularities introduced in[7.2) which provides many examples
whose resolutions have graphs with more than one node.

We prove in Theorem that a certain class of resolutions of quotient singularities arising
when constructing regular models of curves has associated intersection matrices N with the fol-
lowing additional property: The matriz N=' has at least one integer coefficient on its diagonal.
This naturally leads us to ask the following question: Assume that N is a p-suitable matrix
arising from a quotient singularity. Assume that the graph of N has at least one node. Is it
possible for the matrix N~! to have no integer coefficient?

Let p(Z) denote the arithmetic genus of the fundamental cycle Z of N (see[2.2). Proposition
10.6| exhibits a large class of matrices N with p(Z) = 0 where N~! does not have any integers
on its diagonal. However, often enough, a p-suitable matrix N not only is such that N~! has
an integer coefficient, but N~! also has an integer column, as in the following theorem.

Theorem [10.1L Let p be prime. Let N be an intersection matriz such that ®y s killed by p.
Assume that the graph T' associated with N is a star-shaped tree. If |Px|# p, then N~ has at
least one integer column.

In many examples of p-suitable matrices /N arising as quotient singularities presented in this
article and in [24], the fundamental cycle Z € Z2 of N is such that —Z is an integer column
of N1, This is the case for instance if @y is trivial (see[L1.1] (c)). When p = 2, we can show:

Theorem [11.2} Let p = 2. Let N be a p-suitable intersection matriz with fundamental cycle
Z. Then either —Z or —Z/p is a column of N1

When Z is a multiple of a column of N~! we obtain the following sharp bound for |®y]|.

Theorem (see [11.4). Let N be a p-suitable intersection matriz.

(a) Assume that —Z or —Z/p is a column of N~'. Then ord,(|®y|) <2+ %.
(b) Let p=2. Then |®y| divides p*P(?)+2,

It is natural to wonder whether ®, can always be generated by at most 2 + 2(Z) glements

14
p—1
when N is a p-suitable intersection matrix.

2. NOTATION

Let N € M,(Z) be a p-suitable intersection matrix whose associated graph is a connected
tree I' on n vertices vy, ..., v,. Thus by our definition, there exist integers c¢y,..., ¢, > 2, such
that N = Diag(—cy,...,—¢,) + Ad(I"). In this article, we will describe N using its tree I', and
adorn each vertex v; with the negative integer —c;. We follow the established custom and omit
to adorn v; if the integer —c¢; is —2.
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Example 2.1. We use the decorated tree I' on the left in (a) below to represent the 6 x 6-matrix
N on the right after having made a choice of ordering of the vertices of the tree I'.

2 1 1 1 1 0
—4 1 -2 0 0 0 0

1 0 -2 0 0 0

(a) N = 1 0 0 -4 0 0
* ~— 1 0 0 0 -2 1

o 0 0 o0 1 -2

Let N be any intersection matrix. Let Z € ZZ, denote the fundamental cycle of N. We
represent the vector Z with 'Z := (21,..., 2,) by adorning the vertex v; of I" with the positive
integer z;. In the case of the above matrix N, we have 7 := (4,2,2,1, 3,2), which we record
on the left below.

We found it efficient to record the vector NZ on the same drawing as we draw the vector Z.
We use the following convention. Let *(NZ) = (s1,...,8,), with s; <0 for alli=1,...,n. For
each index ¢ such that s; # 0, add a white vertex to the graph of I', and link it with a dashed
line to the vertex v;. Adorn the new white vertex with the coefficient |s;|. In the example of
the matrix N above, we find that {(NZ) = (0,...,0,—1), which we record in (b) on the right
below.

2 1 2 1 1
Q@

Z\I <b>\I |
@ *—O [ ] *—O
2 4 3 2 2 4 3 2

Note that the information provided in the diagram (b) above, namely, the graph I', the vector
7, and the vector NZ, allows the recovery of the diagonal elements of the matrix N, and thus
this data is sufficient to describe NNV itself. For the convenience of the reader, we will often
include the information of the diagonal of N explicitly, and will provide a pair of diagrams as
in (a) and (b) above to describe a matrix NV, even if only one diagram would suffice.

The drawing of Z and NZ allows for a quick computation of the self-intersection |Z?| :=
|(*Z)N Z| by simply multiplying the integers linked by dashed lines, and adding the results of
the multiplications together. In the example above, we find that |Z?| =12 = 2.

Note that in the given example, NZ is equal, up to a sign, to a standard vector of Z".
When such is the case and T is any tree, the drawing of 'Z = (z1,...,2,) allows for a quick
computation of |®y|. Indeed, let d; denote the degree in I' of the vertex v;. If NZ = —e;, then
|Dn| = 2 [[1y 2572 (use [20], Theorem 3.14). For instance, in the example above, we obtain
that |®y| = 2% = 4. When the order of ®y is not prime, the precise group structure of ¢y
needs to be determined using for instance the Smith Normal form of N.

2.2. When describing an intersection matrix N with diagonal elements not all equal to —2,
we also indicate whether N is numerically Gorenstein. Recall that this is a purely algebraic
condition which can be expressed as follows. Write N = Ad(I"y) — Diag(cy, ..., ¢,), with ¢; > 2
fori =1,...,n. Let 'H := (¢; — 2,...,¢, —2). Since N is invertible, the equation NK = H
has a unique solution K € Q". The vector K is called the canonical cycle of N.

The n X n intersection matrix N is numerically Gorenstein if K € Z". If a p-suitable inter-
section matrix arises from a hypersurface quotient singularity, then the matrix /N is numerically
Gorenstein (see [260], Lemma 10.3). In the explicit example introduced above, the matrix N is
numerically Gorenstein because every 2-suitable intersection matrix is numerically Gorenstein
([26], Proposition 10.5).
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Given any vector R € Z" with 'R = (ry,...,r,), we have 'RNK = > ri(¢; —2), and
the integer '/RNR + 'RNK is even. The integer p(R) := ('RNR + 'RNK) + 1 is called the
arithmetical genus of R. For instance, in Example 2.1} p(Z) = 1.

In later sections, we will title each paragraph describing a p-suitable intersection matrix
N by either Intersection Matrix or Quotient Singularity. By convention, we use the
title Intersection Matrix when we do not know whether the p-suitable intersection matrix
N described in that paragraph actually arises as a quotient singularity. This is the case in
particular for the matrix N described in When p = 2, this matrix N is the smallest 2-
suitable intersection matrix for which we do not know if it arises from a quotient singularityf]
When we know that a given p-suitable intersection matrix N arises as a quotient singularity, we
use the title Quotient Singularity and we include a description of the quotient singularity.

2.3. For later use in describing intersection matrices, we record here the following standard
construction. Given an ordered pair of positive integers r and s with ged(r,s) = 1 and r > s,
we construct an associated intersection matrix N = N(r,s) with vector R = R(r, s) and such
that (‘R)N = (—r,0,...,0).

Indeed, we can find an integer m > 1 and integers by,...,b,, > 1 and s; ;== 5 > s > --- >
S;m = 1 such that r = bys — s9, s = bysy — s3, and so on, until we get s,,_1 = b,,5,,. These
equations are best written in matrix form:

R | : :
0 ... 1 =b, Sm 0

We let N denote the above square matrix, and let R be the first column matrix above. It is
well-known that det(N) = £r (see, e.g, [19], 2.6). The matrix N is an intersection matrix
whose associated graph is a path of length m:

_bl _b2 _bm—l _bm

Similarly, starting with a matrix N represented by the above path with by,...,b, > 2 and
setting s, := 1, it is possible to sequentially solve for integers 1 < s,,_1 < --- < s7 such that
the associated vector ‘R = (sq,...,8m_1,1) is such that (‘R)N = (—1)™"!det(N)(1,0,...,0).

As usual, if XY € Z", we write X > 0 (resp., X > 0) if all coefficients of X are positive
(resp., if all coefficients are non-negative). We write X > Y if X —Y > 0, and we write X > Y
if X —Y > 0. In particular, the fundamental cycle Z of an intersection matrix N is such that
Z >0and NZ <0.

3. CONSTRUCTING NEW Pp-SUITABLE MATRICES FROM OLD ONES

In this section, starting with a p-suitable matrix N such that N~! has an integer column, we
construct in several instances a new p-suitable matrix of larger size. A similar result is obtained

IThe matrix —N defines an indecomposable positive definite quadratic form on Z° of determinant 4. Such
forms are classified and there is only one isomorphism class over Z, represented by the lattice 44 on page 20 of
[9], Table 1. The Dynkin diagram Dg also defines a quadratic form isomorphic to 4¢, and in its case it is known
that the intersection matrix N’ of the Dynkin diagram Dg arises from a Z/2Z-quotient singularity (see and
9.7). The isomorphism between the quadratic forms defined by —N and —N’ is easy to establish directly: If
we denote by {ey,...,es} the basis for —N, then the basis {ej, ez, e3, €5, 5, —Z } produces the matrix —N".
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in assuming the existence of a column of N~! which is not an integer column, but such
that the diagonal element on that column is an integer.

3.1. Let N be any symmetric integer matrix with negative integers on the diagonal, and non-
negative integers off the diagonal, and assume that its associated graph I' is connected. In
general, such a matrix need not be negative definite or semi-definite. However, as recalled in
[20] 3.3, if there exists any integer vector W > 0 such that NW < 0, then either NW =0 and
N is negative semi-definite, or NW < 0 and N is non-singular and negative definite.

Let N € M, (Z) be an intersection matrix with associated graph I'. We let e, ..., e, denote
the standard basis of Z". When v is a vertex of [' and no ordering of the vertices of I" has been
chosen, we let e, denote the standard basis vector of Z™ associated with v. We let U denote the
class of e, in the quotient @y := Z"/Im(N).

3.2. Let N € M,(Z) be an intersection matrix. Let (N~!); denote the i-th column of the
matrix N~'. Recall that each coefficient of the matrix N~' is negative ([34], Corollaire p.
387). Let p; > 1 denote the smallest positive integer such that the vector R; := —p;(N™1);
has non-negative integer coefficients. By minimality of p;, the greatest common divisor of the
coefficients of the integer vector R; is 1. By construction, we have NR; = —p;e;, showing that
the order of the class of e; in @ is p;. By definition of the fundamental cycle Z, we also have
Z < R;foreachi=1,... n.

Lemma 3.3. Let p be prime. Let N € M, (Z) be a p-suitable intersection matriz. Assume that

for some i, the integer vector R; (defined in is such that (‘"R;)NR; = —1. Let N' € M,(Z)

denote the matriz which differs from N only at the (i,1)-entry, with N}, = Ny — (p —1). Then

(a) N’ is p-suitable, and |Pn:| = p|Pn|.

(b) Assume that the canonical vector of N is 'K := (ki,...,ky,). Then the canonical vector of
N'is K' .= K + w&&. In particular, if N is numerically Gorenstein, then N’ is
numerically Gorenstein if and only if p divides k; + 1.

Proof. (a) Let N* denote the (n—1) x (n— 1)-matrix obtained from N by removing its i-th row
and i-th column. The hypothesis that (‘R;)NR; = —1 implies that NR; = —e; and that the
1th coefficient of R; is 1. Without loss of generality, we can assume that ¢ = 1. We now show
that the same row and column operations produce the Smith Normal Form of both N and N’.
Write 'Ry = (1,72,...,7,). Let N; denote the i-th column of N. Add the linear combination
> j—57iNj to the column N;. Similarly, add the linear combination )7, r; N} to the column
Ni. Proceed similarly with adding the same linear combination of the rows of N to the first
row of N, and do the same for N’. At the end of these operations, we find that IV is similar to
the matrix on the left below, and N’ is similar to the matrix on the right:

-1 0 --- 0 -p 0 -+ 0
0 0

: N ’ : N
0 0

It is clear then that &y = Z/pZ x O y.

Let Z (resp. Z') denote the fundamental cycle of N (resp. N’). It follows from [11.1}(b)
that R; = Z. Since N'R; = NR; — (p — 1)e; = —pe;, we find that Z’ < R;. In particular,
|("Z"YN'Z'| < |("R;)N'R;| = p, as desired.



INTERSECTION MATRICES OF WILD CYCLIC QUOTIENT SINGULARITIES 7

(b) Recall that by definition, 'KN = —(Ny; + 2,..., Npp + 2). Recall that K’ := K +
W&. It is easy to check that (‘K')N' = ('"K)N + (p — 1)e;, so that K’ is the canonical
cycle of N'. Since the i-th coefficient of R; is equal to 1, we find that the vector K’ has integer
coefficients if and only if p divides k; + 1. ([l

Let N be a p-suitable intersection matrix of size n. Suppose that the matrix N~! has an
integer column. We use below this column to create a new p-suitable matrix N of size n + 1.
Without loss of generality, we can assume that the first column of N~! is an integer vector. In
other words, the integer vector Ry € Z% is such that NR; = —e;. Let r € Z+( denote the
first coefficient of R;. Set

—(ri+1) 1 0 -+ 0
1
No— 0 N
0

Theorem 3.4. Let N be a p-suitable intersection matrix of size n. Suppose that the first column

of N~ is an integer vector. Then

(a) The matriz N is p-suitable of size n + 1, with |®w| = |®n|. The vector R :=*(1,'R,) is the
fundamental cycle of N and*R N R = —1.

(b) The matrix N’ constructed in using N and R is p-suitable of size n + 1, with |Dw| =
p|®Pnl.

Proof. (a) Label the standard basis of Z"™! as {eq,e1,...,¢e,}. It is immediate to check that

N-R = —ep. Write 'Ry := (r1,...,7,). To show that ® is isomorphic to ®, we proceed with

the following row and column operations. Add the sum of columns 2?21 r; N1 to the first

column of N. Similarly, add the same linear combination of the last rows to the first row of N.
After these operations, we find that NV is similar to

-1 0 --- 0
0

It is clear then that &y = Py. N
Since NR = —ey, we find that ‘RN = —1. It follows from Proposition (b) that R is
the fundamental cycle of N. The statement of (b) follows immediately from Lemma|3.3|(a). O

We illustrate below the constructions in Theorem when p = 3. An example when p = 2
and the Dynkin diagram D,, is found in [6.2]

Quotient Singularity 3.5. (n = 8) The following matrix is p-suitable for any prime p:
3 8 4

1

@

Diagonal of N Z :
® oo o — o

2

—4 6 9 12 7
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The associated group @y is trivial and Z? = —2, with K = —2Z and p(Z) = 2. This matrix
arises from the resolution of the hypersurface singularity given by f = 2% + 2* + 4" = 0. It is
shown to arise from a Z/3Z-quotient singularity in [26], Theorem 7.1, or Theorem 5.3.

Quotient Singularity 3.6. (n = 9) Let p = 3. Using the matrix N in[3.5and its fundamental
cycle, Theorem constructs the p-suitable matrices N and N’ below.

6 9 12 7 2

The associated group @ is trivial, and 7" = —1 with p(Z) = 3. The matrix N arises from the
resolution of the hypersurface singularity given by f = 23 4+ 2* 4+ y'® = 0. It is shown to arise
from a Z/37Z-quotient singularity in [26], Theorem 5.3.

The associated group @5 has order 3, and (7)2 = —3 with p(?) = 3. We do not know if the

matrix N arises from a Z /3Z-quotient singularity. Note that the matrix N is not numerically
Gorenstein, even though the matrix N is.

Quotient Singularity 3.7. (n = 10) Given the matrlx N in and its fundamental cycle Z,
Theorem . below constructs the following matrix N

L0 U BTN A S D

The associated group ®5~ has order 3 and (Z")2 = —2 with p(Z") = 3. Note that in this

example, the fundamental cycle Z" is not a multiple of a column of (N)~L,

The matrix N in is associated with the resolution of f = 23 + 2% + ¢! = 0. Perform the
blow-up of the origin of the hypersurface f = 0. In the chart with coordinates z/y, z/y,y, the
strict transform is given by (2/y)% + (z/y)*y + y'® = 0. It turns out that the singularity given
by g = 2% + 2%y + y'® = 0 has resolution matrix equal to N”. Theorem shows that the
singularity ¢ = 0 is a Z/3Z-quotient singularity. This blow-up construction of a new quotient
singularity from an old one motivated our next theorem, which is purely linear algebraic.

— @----O
— @---Or

Theorem 3.8. Let p > 3. Let N € M,(Z) be a p-suitable intersection matriz. Assume that
for some i € [1,n], the i-th column of N~ is an integer column. Let r := |[(N71);| and
assume in addition that r < (p — 1)/2. Then there exists a new p-suitable intersection matrix
N" € Myip—r—1(Z) with the following properties:

(a) |Pnn| = p|Pn].

(b) Let Z and Z" denote the fundamental cycles of N and N”. Then |Z?| <r, and |Z"*| < 2r.
(c) When p = 3, then r = 1, Z is a column of N=', |Z"| = 2, and Z" is not a column of

(N//)—l

Proof. Let A,_,_; denote a chain of p —r — 1 consecutive vertices wy, ws, ..., wy,_r—_1, With w;
being a vertex of degree 1 on the chain. Set all self-intersections of A,_,_; to be —2. Let I'n»
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denote the union of the graphs I'y and A,_,_; with an additional edge linking v; € I'y to
wy € Ap,_,_1. The diagonal element of the matrix N at vertices of I'y are those of N, except
at v;, where we set NI := N;; — 1. The diagonal elements of N” at vertices of A, ,_; are all
—2.

(a) Without loss of generality, we may assume that ¢ = n and that the vertex v := v, is
the last vertex in the chosen ordering of the graph I'y and of the columns of N. We let NV
denote the matrix obtained from N by deleting the row and the column of N corresponding to

v. To show that |®y~| = p|P x|, we compute det(N”) as a sum of two determinants, as follows.
Write
NV :
o Npp—1 1
N — 1 -2 1
1 -2 1
1 -2
Then
NV NY 0
N, 1 211
— 1 -2 1
det(N") = det 0 21 + det
1 ——é 1 1 -2 1
1 -2 L =2
Hence

det(N”) = det(N)(=1)P""1p — r) 4+ det(NV)(=1)P"".
By construction, (N71),,, = det(N?)/det(N) = —r. It follows that det(NV) = —det(N)r.
Therefore

det(N") = (=1)P""Ipdet(N) — (=1)P""Irdet(N) — (=1)P~"det(N)r
(_1)1)_7"_117 det<N)7

as desired.

(b) We continue to assume that i = n. Since the n-th column of N~! is an integer column
by hypothesis, the positive vector R, introduced in is such that NR, = —e,. Also by
hypothesis, (‘R,)NR,, = —r. It follows that |Z%| < |R2| = r (see proof of Proposition[L1.1] (b)).
By hypothesis, 7 <p—1—r. Set *Z" := ("R, r,...,r,r —1,r —2,...,2,1), to obtain

(tZN/,)N”: (07”'707_170?""07_1707""())

and (*Z")N"Z" = —2r. Tt follows that N” is negative definite (3.1, and that Z” < Z”, so that
|(tZ//)N//Z//| < ‘(tZ”)N”Z//’ — 9.

To finish the proof that N” is p-suitable, it remains to show that ®y~ is killed by p. For this,
we will show that the class of every vertex of I'y~ is killed by p. Let us start with the class of
wp—r—1. Consider the vector 'R, = (Rp,r+ 1,7 +2,...,p—1). Tt is easy to check that

p—r—1
N"R =
Wp—r—1 ~ _pewp—r—l'

Since r is a coefficient of R,, and ged(r, 7 + 1) = 1, this equality shows that the class of w,_,_;
in ®x» has order p. Using this fact and Lemma [10.2] we conclude that the classes of v,
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Wi, ..., Wp—r—2 also have order p. Consider now a vertex v; of I'y with j < n, with the relation
NR; = —p,e; and p; € {1,p}. Let r; denote the coefficient of R; at the vertex v = v,,. Let

tSj = (tRj, Tjyenn ,T’j).
We have the relation
(3.1) (S;)N" = (0,...,-p;,...,0,0,...,0,—7;).

Since the matrix N1 is symmetric and we assume that the n-th column has integer coefficients,
we find that either (1) p; = p, in which case r; is divisible by p, or (2) p; = 1.

In case (1), the relation (3.1]) shows that the order of e; in @y~ is equal to p; = p. In case
(2), we have two possibilities. Either (2)(i): r; is divisible by p, in which case again shows
that the order of e; in ®x» is equal to p; = 1, or (2)(ii): r; is not divisible by p, in which case
shows that the order of e; in ®y» is equal to the order of e,_,_;, which we showed above
to be p.

(c) Let p = 3. Then ‘R,NR, = —1 by hypothesis. It follows from Proposition (b) that
Z =R,. Set 'Z" := ('Z,1). Then ‘(N"Z") = (0,...,0,—1,—1) and 'Z"N"Z" = —2. We claim
that Z” = Z". Indeed, if Z" < Z", then it follows from the proof of Proposition m (b) that
|Z"| < |Z"|. This is not possible because the coefficients of Z” at v, and w are equal to 1,
and this implies that the coefficients of Z” at v, and w also have to equal 1. Then |Z"?| > 2,
which is a contradiction. ([l

Remark 3.9. It may happen that the initial matrix /N in Theorem is numerically Goren-
stein, but the larger matrix N” is not. Such an example occurs in [24], |6.16] where p = 5 and
N is the intersection matrix of the resolution of 2° 4 2% + y® = 0.

4. EXISTENCE OF p-SUITABLE MATRICES OF SMALL SIZES

Fix a finite connected tree I' on n vertices. For a given prime p, one may wonder whether
there exists a p-suitable matrix N with associated graph I'. We show in this section that such
matrix might not exist when p is small (see Proposition . On the other hand, it is likely
that for most graphs I', and for all primes p large enough (depending on T'), such a p-suitable
matrix does exist. We will not attempt in this article to exhibit evidence for this expectation
beyond Theorem (see, e.g., [23] Remark 1.4). We show then in Proposition [4.6|a) that for
any given p, the number of p-suitable matrices N with graph I' is always finite.

Theorem 4.1. Let I'y be a finite connected tree such that for some prime £, there exists an
(-suitable matriz Ny with associated graph Ty such that |®y,| = 1. Let T' be any finite connected
tree which strictly contains I'y as an induced subgraph. Let p be any prime. Then there exists
a p-suitable matriz N with associated graph T' such that |® x| = p.

Proof. Since both I'y and I" are connected trees, our hypothesis implies that there exists at least
one terminal vertex of I' which is not contained in I'y. In fact, if I" has s more vertices than Iy,
we can consider a sequence of connected trees

Iyclhc---cly;,cliy=r~
such that for each j =1,...,s, I'; is obtained from I';_; by adding a single vertex to I';_; and
linking it by a single edge to an already existing vertex of I';_;.
For each j = 1,...,s, use Theorem (a) to produce an intersection matrix N; with graph

I'; such that |®y,| = 1. Then use Theorem [3.4f (b) to modify the matrix Ny to obtain a new
p-suitable matrix with graph I'; = T" such that |®y| = p. O
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Corollary 4.2. Given any connected tree I' which properly contains the graph of the Dynkin di-
agram Eg, and given any prime p, there exists a p-suitable intersection matrix N with associated
graph I and |® x| = p.

Proof. Corollary [4.2] follows immediately from the more precise Theorem [4.1] since it is known
that the Dynkin diagram Eg has ®g, = (0). O

Remark 4.3. Using [35], Corollary 3.11, we find that a graph as in Corollary cannot be
associated with the resolution of a rational singularity.

Remark 4.4. For further information on the intersection matrices N such that |®y| = 1, we
refer the reader to [5], [6], [7], and [§]. There are nine known such intersection matrices of
minimal size n = 8, and they are listed in [24], Section [} One such example is exhibited in 3.5

Intersection Matrix 4.5. The graph I' displayed below on n = 9 vertices contains the graph
of the Dynkin diagram Eg. The proof of Theorem [.1]leads to the following explicit intersection
matrix:

—(p+4) 2 5 P 1

) S U (R gy SURED S

. °
4 6 8 10 7 4

The associated group ®y has order p and |Z?| < p since Z"* = —p. The case p = 1 gives the
intersection matrix of the resolution of 22+ x'34y® = 0. The case p = 2 gives the matrix of the
resolution of the blow-up 2? + 2% + ¥z = 0. Both of these matrices arise from Z/2Z-quotient
singularities (see [26] Theorem 5.3 (i), and Theorem [7.6). When p > 3, the matrix N is not
numerically Gorenstein. When p > 11, the matrix N~! has no integer column.

Proposition 4.6. Let I' be a connected graph on n vertices.
(a) Fiz a prime p. Then there ezist only finitely many intersection matrices of the form N =

Diag(—cy, ..., —c¢n) + Ad(T) with ¢y, ..., ¢, € Z>y and such that @ is killed by p.
(b) Assume that T' is a tree. Let t denote the length of the longest path in I'. Let N =
Diag(—cy, ..., —c,) + Ad(T), with ¢1,...,¢, € Z. Then the group ®x can be generated by

n—t+1 elements.

Proof. (a) It is proved in Theorem 1 of [I7] that for a given integer d, there exist at most
finitely many matrices —N = Diag(cy,...,¢,) — Ad(I") which are positive definite and have
det(—N) =d.

In our case, the matrix /N has size n, so that the group ®y5 can be generated by n elements.
Hence, when @y is killed by p, |®y| divides p™. It follows that for any given prime p, there are
only finitely many possibilities for the values taken by det(N).

(b) Suppose that the vertices vy, ..., v, are the consecutive vertices of I" on a path of longest
length in I'. The top left ¢t x ¢ submatrix M of N is a tridiagonal matrix. Let M’ denote
the submatrix of M obtained by removing its first row and last column. Every coefficient of
the diagonal of M’ is equal to 1. Since I is a tree, every coefficient of M’ below the diagonal
of M" is 0. Hence, M has a (t — 1 x t — 1)-submatrix with determinant equal to 1. This
shows that the Smith Normal Form D := Diag(dy,...,d,) of N (with d; | ... | d,,) must have
dy = -+ =d;_y = 1. Thus ®y, which is isomorphic to ®p, can be generated by n — (¢t — 1)
elements. 0
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Proposition 4.7. Consider the graphs

Us
r ,F’.II..andF”

U1 V4 Vg VU7

(a) There exist no 2-suitable intersection matrices with graph I'.
(b) There exist no 2-suitable or 3-suitable intersection matrices with graph T" or T

Proof. (a) Consider the matrix N := Diag(—x1, ..., —xg)+Ad(I"), where xy, . .., x4 are variables
and Ad(T") is the adjacency matrix of I". Then det(N) is a polynomial f(z1,...,x¢). The set
of integer values taken by this polynomial when z, ..., 2 > 2 is discussed in [23], 5.3 (c). The
smallest value is | f(—2,...,—2)| = 3. When exactly one of the variables is increased to 3 and
the others are left at 2, we obtain the values |f(z1,...,26)] = 7,9,13, Thus this polynomial
does not take any value in {1,2,4} when x,...,26 > 2. This suffices to prove Part (a), since
I" has a path of length 5, so that when ®y is killed by 2, we have |®y| € {1,2,4} by [4.6] (b).

(b) Consider the matrix N(—z1, ..., —x7) := Diag(—z1,..., —x7) + Ad(I"), where x1, ..., 27
are variables. Then det(NN) is a polynomial f(z,...,27). Since I has a path of length 5, we
must have [®y| € {1,2,3,4,8,9,27} by [L.6] (b).

For any z7 > 2, the matrix N(—2,...,—2, —x7) is not positive definite since its determinant
is constant, equal to —4. The tuple (z1,...,27) = (2,2,2,2,3,2,2) produces a matrix N of
determinant 0 which is positive semi-definite of rank 6. The tuple (2, 3,2,2,2,2,3) produces a
positive definite matrix N with &y = Z/37Z. The tuple (2,4,2,2,2,2,2) produces a positive
definite matrix N with ®y = Z/2Z. This information suffices to produce an explicit effective
bound B such that, if N(—x,...,—x7) is positive definite with determinant at most 27, then
2 < xy,...,x7 < B. We leave the details to the reader, using [23] 2.1(c). We also need in
addition that @ is killed by p = 2 or 3. There are three examples of such N, with &y = Z/27Z
and Z/37Z given above, and with (zy,...,27) = (2,2,2,2,3,2,3) producing a matrix N with
Oy = Z/27Z x ZJ2Z. In each case, we leave it to the reader to check that we have |Z%| > p,
where Z denotes the fundamental cycle of N. Thus these matrices are not p-suitable.

Consider now the matrix N := Diag(—x1, ..., —z¢) + Ad(I"”), where 1, ..., x¢ are variables.
Then det(N) is a polynomial f(z1,...,zs). We leave it to the reader to show that this poly-
nomial does not take any value in {1,2,3,9,27} when x1,...,26 > 2. Since I' has a path of
length 4, we have |®y| € {1,p,p?, p*} by 4.6| (b). The values |®y| = 4 or 8 both occur, but the
reader will check that in all occurrences, the group ®5 has exponent 4. Hence, these matrices
are not p-suitable. O

5. GLUING TWO GRAPHS TO OBTAIN NEW p-SUITABLE MATRICES

We show in this section how to start with two p-suitable intersection matrices and build a
third one. This construction will let us build in Theorem p-suitable matrices whose graphs
have any number of nodes. Let us start with the following example.

Quotient Singularity 5.1. (n = 14) We describe below the smallest known Z/37Z-quotient
singularity to date having a graph with at least two nodes and a 3-suitable resolution matrix.
(Because the matrix N has a unique coefficient on the diagonal which is smaller than —2, we
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only give below the vectors Z and NZ.)

3 1 6 3 3 4 2
---0 I—o I *—eo

Z I
L 4 L @ L 4 L J
5 7 9 5 1(-11) 6 4 2

The associated group ®y has order 32 and Z? = —3. This intersection matrix is the resolution
matrix of the singularity f := 2P —(abzy)P~'z—aPzy+b’x = 0 with a := y*+xy and b := 22 +y3x
It follows from Theorem that this is a Z/3Z-quotient singularity.

The graph above with two nodes is obtained by gluing together the graphs of the 3-suitable
intersection matrices N7 and Ny below. The left matrix N; arises from a Z/3Z-quotient sin-
gularity ([24], p.19(a2), 2* + 2y + y* = 0, blow up of 3.5). The right matrix arises from
the desingularization of 23 + 2* + y** = 0, which is not known to arise from a Z/3Z-quotient
singularity.

Intersection Matrix 5.2. (n = 15+ m,m > 0) Starting with the two intersection matrices
N; and N,, one can construct the infinite family of 3-suitable matrices below. Theorem
generalizes this construction.

3 1 6 3 3 4 2

----0 I o —O
24+m
Z I
. . . ....... . ....... .. . .

5 7 9 5 1(=6) 1 1(-7) 6 4 2

The associated group ®y has order 3% and Z? = —3.

5.3. To generalize the construction in[5.2 we need to introduce the following notation. Let N,
be a p-suitable matrix of size n; with fundamental cycle Z;. Assume that

(i) There exists a vertex v of I'y, such that the coefficient of Z; corresponding to v is 1.
(ii) The coefficient of the vector N;Z; corresponding to the vertex v is 0.

Let Ny be a p-suitable matrix of size ny with fundamental cycle Z,. Assume that

(iii) ("Zy)NyZy = —1, so that in particular there exists a vertex w on the graph I'y, such
that the coefficient of Z5 corresponding to this vertex is 1, and such that —NyZs is
the standard basis vector of Z"* corresponding to w (see proof of (a)).

Fix a positive integer m. We now describe a new intersection matrix N of size ny +m + no.
If m = 0, then the graph I'y is simply the union of the graphs I'y, and I'y, joined by a single
edge linking v and w. If m > 0, let uq, ..., u, denote the consecutive vertices on the graph of
a chain A,, of length m. All the self-intersections of the matrix A,, are equal to —2. Since the
vertices are consecutive, we will assume that u; and w,, have degree 1. Then the graph I'y is
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the union of the graphs I'y,, A,, and I'y, with one added edge linking v to u; and a second
added edge linking u,, to v.

If —c = (N1),, denotes the diagonal element of N; corresponding to the vertex v, then we
set to —c — 1 the diagonal element of N corresponding to v in I'y. All other diagonal elements
of N are those found already in Ny, A,,, or Ns.

Theorem 5.4. Let p be prime. Let Ny and Ny be two p-suitable matrices satisfying the condi-
tions above. Then the matriz N introduced in[5.3] is p-suitable with @ = Py, X Py,. If Z
denotes the fundamental cycle of N, then |(‘Z)NZ| < |("Z1)N1Z,|.

Proof. Let Z' denote the vector in Z25™" where Z' restricted to Ny is Z;, where Z’ restricted
to Ny is Z, and where Z' restricted to A, is *(1,...,1). The vector Z’ has strictly positive
coefficients. By our construction, the vector NZ' has non-zero coefficients exactly where the
vector NyZ; has non-zero coefficients. In fact, the non-zero coefficients of NZ’ equal the non-
zero coefficients of N1Zy, so that (‘Z")NZ' = (*Z;)N,Z;. Tt follows that N is negative definite
(3.1), and that the fundamental cycle Z of N is such that Z < Z'. Since |Z}| < p, we find that
2% < p.

To show that NV is p-suitable, it remains to show that ®y is killed by p. Since both ®y, and
®y, are killed by p, it suffices to show that &y = &, x $p,. For this we proceed with a row
and column reduction of the matrix V.

Recall that the coefficient of Z5 is 1 at w by hypothesis. Moreover, —N Z5 is the standard
basis vector corresponding to w. We use this fact and add the following linear combination
of columns of N to its column corresponding to w: multiply each column of N corresponding
to a vertex in ['y, by the corresponding coefficient of Z,, and add everything to the column
corresponding to w. This operation almost clears out that column, leaving a —1 at the w-row,
and a 1 at the u,,-row. A similar linear combination of the rows will almost clear out the w-row,
leaving on the w-row a coefficient —1 in the w-column, and a coefficient 1 in the w,,-column.
After this operation, we find that the group ®y is the product of two groups. It is easy to
check one of them is ®y,, and the second one can be determined to be ® ;. U

Theorem 5.5. Let p be prime. Let 6 € Z>y. Then there exists a p-suitable intersection matriz
N whose associated graph is a tree with § nodes and with |®y| > p°.

Proof. There are many ways of obtaining a p-suitable matrix whose graph is a tree with ¢ nodes.
We exhibit below one such convenient way. Let N; and N, be two p-suitable matrices with
star-shaped graphs as in Lemma 5.6l Let m = § — 2 and apply the construction of Theorem
to the matrices N; and N, using this m. We obtain in this way a new graph I'y with
two nodes and a chain of m vertices uq, ..., u,, linking the graphs of N; and N,. It is easy to
check that the matrix NV satisfies Conditions (i) and (i7) at the vertex u;. We can thus apply
Theorem [5.4|to the pair (N, u;) and the matrix Ny to construct a new matrix N whose graph
has three nodes and is obtained as the union of the graphs of N and N, linked by one edge.
We can continue this process with the vertex uy associated with the matrix N to obtain a
new matrix N whose graph has four nodes. Repeating this process § — 4 times, we obtain a
matrix N©~2) whose graph has § nodes. In each step in our process, Theorem describe the
associated finite group, and we find that since we chose |®y, |, |Pn,| > p, the group ® -2 has
order at least p°. 0

Lemma 5.6. Let p be prime. Then there exist a p-suitable matriz Ny satisfying Conditions (i)
and (i) in and a p-suitable matriz Ny satisfying Condition (iii). Moreover, Ny and N
can be chosen so that their graphs are star-shaped and | Py, |, |Pn,| > p.
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Proof. When p = 2, the matrix N, (r > 1) in[8.4 satisfies all three conditions. When p > 3, the
matrix N in Remark [8.6satisfies Conditions (i) and (ii). The construction (a) in Theorem [3.4]
applied to the pair (N, Z) in produces a new matrix N which satisfies Condition (iii). O

Remark 5.7. Using [35], Theorem 5.1, we find that a graph as in Theorem cannot be
associated with the resolution of a rational singularity as soon as § > |Z?| — 2 when |Z?| > 3.

6. TREES WITH MORE THAN ONE NODE IN CHARACTERISTIC 2

In view of Theorem [5.5] it is natural to wonder, given a prime p and any integer § > 1,
whether there exists a Z/pZ-quotient singularity whose minimal resolution of singularities has
a resolution graph which is a tree with ¢ distinct nodes. Our record below is a family of 2-
suitable intersection matrices whose graphs are trees with 5 nodes, and which are likely to arise
from a Z/27Z-quotient singularity. A family with 3 nodes is discussed in . The equations
given for these singularities can be checked to arise from a Z/2Z-quotient singularity using (7.1
and Theorem [Z.5

Remark 6.1. We used Magma [4] to compute explicitly the resolutions in this section. We
include a generic code below.

p = 2; k:= FiniteField(p®); A < x,y,z >:= Af fineSpace(k, 3);

a:=z%b =1y f = 2P — (abxy)P~ 'z — aPry + ybP;

S := Surface(A, f); P:= Scheme(A,[x,y, z]);

R := ResolveSingByBlowUp(S, P);

D := IntersectionMatrixz(R); a; b; f; D; ElementaryDivisors(D);

nn := NumberO f BlowUpDivisors(R);nn; for i:=1 to nn do

B := BlowUpDivisor(S, R,1); i, [sSingular(B); Genus(B); end for;

When n = 6, there exists only one tree with two nodes, and it is not associated with any
2-suitable intersection matrix (see Proposition [£.7(c)). When n = 7, there exist three trees
with two nodes. One such tree is not associated with any 2-suitable intersection matrix (see
Proposition [4.7(b)). The other two occur with 2-suitable intersection matrices in [24] and
in [24] 4.25] The matrix [24] is known to arise from a Z/2Z-quotient singularity. When
n = 8, there are already ten different connected trees with two nodes.

Quotient Singularity 6.2. (n = 4/ +1 > 9 and two nodes) It is well-known that the
Dynkin diagram D,, on m vertices is a 2-suitable intersection matrix only when m is even, in
which case we have ®p = Z/27 x Z/2Z. When m is odd, ®p, = Z/AZ. We represent below
D,,, with its fundamental cycle.

1 1
@
m—>5 \
Dm ——N— :
................. *—o—o
1 2 2 2 2 1

Let m = 2r. It is known that Ds, arises as a Z/2Z-quotient singularity (see [2], [31)).
We represent below the two extensions of D,, obtained from Theorem [3.4] using its fundamental
cycle. We let n := 2r 4+ 1 denote the number of vertices of the two extensions. We denote these
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matrices by N® and N,

e . 1 12
----0
3 ) n—6
Né or 4) /_n/L 7 ——
................. 1 2 2 2 2 1

The group (IDN(g) has order 22 and Z? = —1. The group P @ has order 23 and Z? = —2. In

both cases, K = —Z and p(Z) = 1. These graphs are denoted A, ..., 7 > 2, in Tables 1 and
2 of [16], pages 1290-1291. Computations suggest that we always have the following quotient
singularities when n =4/ + 1 and ¢ > 2:
e The matrix N$¥ occurs as the resolution matrix of the Z/27Z-singularity given by the
equation f = 0, where f = 27 — (ab)?~'z — aPx — bPy with a = x and b = y*™ + 2y.
e The matrix N\" occurs as the resolution matrix of the Z/27Z-singularity given by the
equation g = 0, where g = 2% — (abzy)? 'z — aPxy — WPy with a = x and b = y**2 + 2y.
In the case ¢ = 1 and n = 5, the analogues of the matrices N and NV have graphs with one
node only, and occur in [8.4] (case r = 1) and in [24]
(3)

Surprisingly, we have not been able to provide evidence that the 2-suitable matriz Ny»™' arises
from a Z/27-quotient singularity when n = 2r + 1 and r > 3 is odd. On the other hand,

the matrix N7(4) is the intersection matrix associated with the resolution of the Z/2Z-quotient
singularity f := 2P — (abxy)?~ 'z —aPry — Py = 0 with a := 23+ 2y and b := 3+ 2?y. Similarly,
when n = 11 (resp. n = 15), the matrix N is the intersection matrix associated with the
resolution of f with a := 2% + xy and b := y® + xy? (resp. b := y?).

Quotient Singularity 6.3. (n = 18 + 8/ and five nodes)

1 2

V
A

1

1

The associated group ®y has order 2, and Z? = —2 with p(Z) = 2. This matrix occurs as
the intersection matrix in the resolution of the hypersurface singularity f = 0, where f :=
2P — (ab)P12 — aPy — WPz with a := 2% + y(23 + 2y) and b := y(23 + 2y +y*) when £ = 0,1, 2.

7. EXPLICIT QUOTIENT SINGULARITIES

We first recall in this section a family of Z/pZ-quotient hypersurface singularities introduced
n [25], section 7. We then discuss a variation that allows for new parametrized families, as in
[26], section 8.

7.1. Let k be an algebraically closed field of characteristic p > 0. Fix a system of parameters
a,bin k[[z,y]]. Let u € k[[z,y]], and consider the equation

(7.1) 2P — (pab)’ 'z — aPy + WP = 0,
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and the associated ring
By = B = K[,y 2]}/ (=" — (uab}" 'z — oy + b'z).

(a) Assume that p is a unit in k[[z,y]]. It is shown in [25], 7.1, that B is isomorphic to the
ring of invariants A%/PZ of an explicit wild action of Z/pZ on A := k[[u,v]] ramified precisely
at the origin. More precisely, after identifying A with the ring

kllz, yllfu, v/ (u” = (pa)’'u — 2, 0" = (ub)" v — ),

the action is determined by the automorphism o with o(u) = w + pa and o(v) = v 4+ ub. The
morphism Spec A — Spec AZ/P% is ramified only at the maximal ideal m. Such actions are
called moderately ramified in [25], and we refer the reader to [25] for further information on
these actions.

(b) Assume that w is not a unit in k[[z,y]], that u # 0, and that it is coprime to both a and
b. Then B is again isomorphic to the ring of invariants AZ/?Z for the action on A := k[[u, v]]
described above. However, in this case the morphism Spec A — Spec A%/PZ is ramified in
codimension 1

7.2. Consider now the following variation. Assume that a,b, u € k[[z,y]] \ {0} and that xy
divides p. Set

Ao = k[[z,y[J[U V]/(UP — (pa)"™'U — 2, VP — (ub)""'V — ).

Define 1 : Ay — A with 7y(U) := U + pa and 1y (V') := V. Similarly, define 7y : Ag — Ay
with 7(U) := U and (V) := V 4 ub.

Proposition 7.3. Assume that a,b,u € k[[z,y]] \ {0} and that vy divides pu. Then the ring

Ap is a domain. The maps Ty and 1y are k[[z, y|]-automorphisms of Ay generating a group H
isomorphic to Z/pZ x Z/pZ. We have k[[z,y]] = A¥.

Proof. The polynomial U? — (ua)P~'U —x is irreducible in k[[x, y]][U] because of our assumption
that = divides p and the Schénemann-Eisenstein Criterion applied to the prime ideal (x). The
ring R = k[[z,y]][U]/(UP — (pa)?"*U — z) is then a domain, with a unique maximal ideal
generated by y and U. Since R is finite of rank p over k[[z, y]], we find that its dimension is 2.
Since the maximal ideal of R is generated by two elements, we find that the noetherian local
ring R is regular.

Consider now V? — (ub)P~'V — zy € R[V]. This polynomial is irreducible in R[V] because of
our assumption that y divides p and the Schonemann-Eisenstein Criterion Theorem applied to
the prime ideal (y). Hence Ag = R[V]/(V? — (ub)P~'V — zy) is a domain with maximal ideal
(y, U, V).

It is clear that when abu # 0, the maps 7y and 7y are automorphisms of order p of Ag which
generate a subgroup H of automorphisms of Ay of order p?. Let L denote the field of fractions of
Ap and let K be the field of fractions of k[[z,y]]. Then the extension L/K is Galois with group
H. Since Ay is integral over k[[z,y]], any element of Ay fixed by H is in K and is integral over
k[[x,y]]. Since k[[z,y] is integrally closed because it is regular, we find that k[[z,y]] = Af. O

Let L denote the field of fractions of Ag. Let A’ denote the subring Ao[%] of L.

Proposition 7.4. Assume that a,b, n € k[[x,y]] \ {0} and that xy divides p. The ring homo-
morphism A" — A := k[[u,v]], which sends U to uw and V/U to v, is a k-isomorphism.
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Proof. The equation UP — (pua)?~'U — x = 0 first shows that x/U is in the maximal ideal of Ay,
and then that z/U? is in Ay and is a unit. The ring Ay is not integrally closed, since it is clear
from the equation V? — (ub)P~'V — zy = 0 that

(-8 (7)o

is an integral relation for % over Ay since x divides p and x/U is in Ay. The ring A’ := AO[%],
viewed as a subring of L, is a local ring of dimension 2 with maximal ideal generated by
(y,U,V,V/U). Since y and V can be expressed in terms of U and V/U, we find that the maximal
ideal can be generated by two elements and, hence, A’ is regular, and is thus isomorphic to the
power series ring k[[u, v]], with v := U and v := V/U. O

Consider the automorphism 7y o 7y = 0 : Ag — Ag of order p with
oU):=U+pa, and o(V):=V + pub.
The group (o) acts on A’, since
c(V/U) = (V/U + ub/U)(1 + pa/U)~*

and 1+ pa/U is a unit in Ay.
Let z :=aV — bU. Then o(z) = z, and we find that

(7.2) 2P — (uab)’ 'z — aPzy + WPz = 0.
Consider the ring
B' = k|[z,y]][Z]/(Z" — (uab)*™" Z — aPxy + V'x),

and let B denote the subring k[[z,y]][2] of Ay, image of the natural map ¢ : B — B C A
which sends Z to z.

Theorem 7.5. Assume that a,b, pu € k[[z,y]] \ {0} and that zy divides u. Assume also that
(x,y) is the radical of the ideal (a,b) in k[[x,y]]. Then the ring B' is a domain and the map ¢
is injective. This map induces an isomorphism between the field of fractions of B’ and the field
of fractions of A, The homomorphism ¢ : B' — A% is an isomorphism if B’ is regular in
codimension 1. This latter condition is satisfied for instance if either a = x" and b = y*, or if
a=1y" and b= x°, for some integers r,s > 1.

Proof. The ring B’ is a domain because the polynomial f := ZP — (uab)P~'Z — aPzy + bPx is
irreducible in k[[z,y]][Z]. Indeed, we assume that x divides u, and it is easy to check that z
cannot divide a”y + bP under our hypotheses. We can then apply the Schonemann-FEisenstein
Criterion. One checks then that (f) is the kernel of the map k[[z,y]][Z] — A’, so that the
homomorphism ¢ is injective. By degree considerations, we find that the field of fractions of B’
is isomorphic, under the natural extension of ¢, to the field of fractions of A}, The ring B’ is
Cohen-Macaulay since it is free as a module over the regular ring k[[z, y|]. Thus B’ is normal
as soon as it is regular in codimension 1.

Because of the special forms of @ and b in the Theorem, we can show that B’ is regular in
codimension 1 by using the Jacobian criterion of Nagata ([12], IV.22.7.3). We claim that if a
prime ideal p of B’ contains the classes of f and of the partial derivatives f,, f,, fz, then p
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contains (x,y, Z). Let us assume first that p > 2. Then

5% = —(uab)r—.
9 = Z(pab)r=228eb _ qry + bP.
g—?’; = Z(uab)p_wg—;b — aPr.

We conclude that p contains a factor of pab, a factor of aPx and a factor of —aPy + bP.

If a = 2", then p contains z. If then b = y*, then p either contains y or a factor of —z"?+yP*~1.
But if it contains —2"” + yP*~! and z, it always also must contain y, as desired.

If a = y", then p contains x or y since it contains aPx. If then b = z* and p contains x, then
since it contains —aPy + OP, it must contain y also. If b = 2° and p contains y, then since it
contains —a”y + b” it must contain x also. Once the ideal p contains = and y, the relation f =0
shows that it must contain Z.

We now consider the case where p = 2. We have in this case

%: Z(a b8“+a,ua —i—bu <) — aPy + P

g_i;: Z(aba“—i-a,uay—l—bu 4y —aPx.

Since p contains at least one of a, b, i, and since p is divisible by zy by hypothesis, we find that
we need only consider two cases, when x € p and when y € p. In both cases, we find that p
contains a factor of —aPy + P and a factor of —aPx. Suppose first that x € p. Then p contains
a factor of —aPy + bP. Then using the expression —aPy + P, we find that either a = 3" and
y €p,ora=2z", and again y € p.

Suppose now that y € p. Using the expression —aPy + bP, we find that p contains a factor of
b, and thus contains x when b = x°. If @ = 2", then the expression —aPx shows that x € p, as
desired. 0

We provide now two new classes of weighted homogeneous singularities which are Z/pZ-
quotient singularities. The method of proof of Theorem below follows the same argument
as in the proof of Theorem 5.3 in [20].

Theorem 7.6. Let k be an algebraically closed field of characteristic p. Let r,s € Z~g. Let
g=2P+ 2Py +yPsx or g = 2P + yP o + 2Pt Let B := k[[x,y]][2]/(g). Then there exists
a k-linear action of Z/pZ on A := k[[u,v]] such that B is isomorphic to A%/PZ.

Proof. Fix a,b in k[[x,y]] such that either a = 2" and b = y*, or a = 3" and b = z*, for some
integers r, s > 1. Consider the family of hypersurface singularities Spec B, p € (zy)k[[z,y]],
with

By i= k[ y, 1)/ (27 — (uab) ™1z — aPay + 1),
Theorem (7.5 shows that when u # 0, the ring B, is isomorphic to the ring of invariants AZ/PZ
of an explicit action of Z/pZ on A = k[[u, v]].

Set = 01in 27— (puab)P~'z—aPxy+bPx with @ = 2" and b = y*, to obtain f = 2P —zP"Hly+yPsz.
Similarly, setting 1 = 0 with a = 4" and b = 2°* produces f = 2P —y? T lx + 2P+t We now claim
that it is possible to find a polynomial p of large enough degree such that B := k[[z,y, z]]/(f)
is isomorphic over k to B,,. To prove the existence of a k-isomorphism from B := k[[z, y, z]]/(f)
to B, we use the Lemma in [T1], 2.6, page 345. For the details of the proof of this Lemma,
the authors of [I1] refer the reader to the paper [3]. Recall that the Tjurina ideal of f is
Ji(f) = (f, %, g—i, %), and that there exists an integer n > 0 such that (z,y, z)" C j(f) if and
only if the Tjurina number 7 := dimy(k[[z, y, z]]/7(f)) is finite. This is indeed the case for our



INTERSECTION MATRICES OF WILD CYCLIC QUOTIENT SINGULARITIES 20

polynomials f. Then the Lemma in [11], 2.6, implies that if deg(ph) > 27 (with h € k[[z, y, 2]]),
then B := k[[z,y, 2]]/(f) is isomorphic over k to k[[z,y, z]|/(f + ph).

To conclude the proof, we note that since k is algebraically closed, we can make the change of
variables (x,y, 2) = ((X,Y, ¥/CZ) to transform 2P — 2™y +y"x = 0 into ZP + X™Y +Y"X = 0,
with (™! = —1. Similarly, the change of variables (z,y,2) = (¢X,Y,¥/—(Z) transforms
2P —ymx + 2" =0 into ZP + Y™X + X" = (0 when ("1 = —1. 0

Remark 7.7. The triple groupings. Write ¢ = pr + 1 and d = ps + 1 with ;s > 1. The
singularity z? + z¢+ y¢ = 0 is a Z/pZ-quotient singularity ([26], Theorem 5.3(i)).

Assume that p < ¢ < d. The blow-up of the maximal ideal produces in the chart (z/y, z/y, y)
the singularity (z/y)? + (z/y)°y*? + y?* P = 0, which we normalize (with abuse of notation)
to 2P + 2% + y9=¢*! = 0. This is again a quotient singularity by Theorem (use the case
f = 2P +yP o + 2Pt and change the role of x and ).

Assume now that p < ¢ < d < 2c. Then we can perform the blowup of 27 + 2%y 4+ y?~¢*! =0
at the origin to get 27 4+ 2~ @Dy 4 yd—ctlgd=ct1-r — () which we normalize to 2P 4+ 2241y +
y?~¢tlz = 0. This hypersurface singularity is not known to be a Z/pZ-quotient singularity
when p is odd since 2¢ — d + 1 is of the form pt + 2 for some ¢ > 0. But when p = 2, this is a
7./ 2Z~quotient singularity by Theorem [7.6| (use the case f = 2P + 2P" "1y + yP*z and change the
role of x and y).

Let p = 2. Starting this process with the Fg singularity 22 4+ 23 + y° = 0 produces two new
Z/27-quotient singularities (with equations 22 + 23y + y*> = 0 and 22 + 2%y + 2y = 0) whose
associated graphs are the graphs of the Dynkin diagrams E7 and Dg, respectively (see [24] [4.8]).

8. EXISTENCE OF QUOTIENT SINGULARITIES WITH RESOLUTIONS OF SMALL SIZE

It is known that the intersection matrix A, ; on the path on n = p — 1 vertices arises as a
7./ pZ-quotient singularity (see [26], 9.4, for p > 2, and below for p = 2). We exhibit in this
section examples of families of p-suitable intersection matrices of size n where it is known that
they arise from a quotient singularity and where the graph is star-shaped. As the next theorem
shows, we have not been able to produce examples where n is small compared to p, suggesting
the possibility that such examples might not exist.

Theorem 8.1. Let p be any prime. Let n > p+3 be any integer. Then there exists a p-suitable
intersection matriz of size n which arises from a Z/pZ-quotient singularity.

Proof. We divide the proof into three cases, when (i) p > 5, (ii) p = 3, and (iii) p = 2.

(i) Assume that p > 5. We first establish the case n = p + 3 of the theorem with the
following two claims. Recall that any Brieskorn singularity given by an equation of the form
2P + 2P 4 yPstL = () for some r, s > 1 is a Z/pZ-quotient singularity ([26], Theorem 5.3).

8.2. (a) Assume thatp=4k+ 1. Letc:=p+1 and d :=p(p+1)/2+ 1. Then the Brieskorn
singularity 2P + x¢ 4+ y¢ = 0 has a resolution whose associated intersection matriz N is
p-suitable of size n = p+ 3. The intersection matriz is represented below, with |®y| = p
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and 7% = —2.
—d/2 ,ﬁ})/; _3 1 2 (p—2)c/2 3c/2 c/2
................. *—e Oo---- e ——— @
N A \/
[ @ @ s *—O @ L ® *—©O
—(p+3)/4 -3 P 2p pe/2 (p—2)e/2 3¢/2 c/2

(b) Assume that p = 4k + 3. Let ¢ :==3p+1 and d := p(3p + 1)/2 + 1. Then the Brieskorn
singularity 2P 4+ x¢ + y® = 0 has a resolution whose associated intersection matriz N is

p-suitable of size n = p+ 3. The intersection matriz is represented below, with |Py| = p
and 7% = 2.

—d/2 w2 5 L2 (p-2e/2 3¢/2 ¢/
................. Oo---- e ——— @

N \/ z \/
@ @ @ e *—o @ @ @ e o—o
—(p+1)/4 -3 P 6p pc/2 (p—2)c/2 3c/2 c/2

In both case (a) and case (b), we exhibit a vector Z such that —Z is a column of N1, Our
notation suggests that this vector is the fundamental cycle of NV, but we will not need, or prove,
this fact here. Recall that given N and Z, Theorem [3.4{(a) exhibits a new p-suitable matrix N

with a vector Z such that —Z is a column of N and \72] = 1. Since —Z is a column of N_l,
we can apply Theorem [3.4{a) again to N and Z to obtain a p-suitable matrix N and vector
7" such that Z” is a column of (N(z )~!, and so on, leading for each i > 2 to a p-suitable

matrix N and vector Z' such that Z'" is a column of (N(z))_l.

The key to finish the proof of Theorem[8.1)when p > 5 is the following claim: if N is associated
with the resolution of 2P +x°+y?, then N is associated with the resolution of 2P 4+ ¢ 4y*P¢ =0,
and for all v > 2, Y
is of the form pm + 1, Theorem 5.3 of [26] can be applied to show that N
Z/pZ-quotient singularity, of size n = p + 3 + 1.

We discuss case (a) below, and leave the details of the proof in case (b) to the reader. We
will need to show that the resolution of 2P + x¢ + y¢*P¢ = 0 has the intersection matrix

is associated with the resolution of 2P 4+ x¢ + ydtire = 0. Since d + ipc
® arises from a

—3 —dJ/2 -3

(8.1)

§

—(p+3)/4 —3
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d+ipc

and the resolution of 2P + z° +y = 0 has intersection matrix

— L 5 3
.. ........................ .._.
(8.2) nY N S
o * o—@
—(p+3)/4 -3

We use the notation introduced in [26], Theorem 5.1, to describe the intersection matrix of
the resolution of the singularity of 2P + 2¢+ y? = 0. Let g := ged(c, d), and

a; :=c/g, ag:=d/g, and ag:=p.

Set (1 :=dp/g, ls := cp/g and {y := cd /g, and define b; by b;¢;4+1 =0 mod a; and 0 < b; < a;.
The resolution is star-shaped, and each terminal chain is determined by a fraction a;/b; using
the construction with the pair (a;,b;). The unique node of the graph has self-intersection
—Sp, where

50 := g*/cdp + by /ay + ba/ays + gbo/p.

Since p = 4k + 1 in case (a), we find that d = p(p+1)/2+ 1 is even. Thus g = 2. It is
easy to check that by /a; = 2/(c/g), ba/as = 1/(d/g) and by/ag = (p — 2)/p. One checks that
the associated chains are of lengths 2,1, and (p — 1)/2, respectively. Since g = 2, there are two
chains of type (p —2)/p. Thus the total number of components in the resolution is p+ 3. Each
self-intersection on each of the chains is at most —2. It is easy to check that sy = 2.

Let us now describe the intersection matrix of the resolution of the singularity of 27 + x¢ +
y?+i? = (. Note that we have g = ged(c, d + icp). Let

ay :==c/g, ay:=(d+icp)/g, and aj:= p.

Set £ := (d +icp)p/g, 3 := cp/g and {, := c(d +icp)/g, and define b by 0’0 +1 =0 mod a]
and 0 <} < a}. The resolution is star-shaped, and again each terminal chain is determined by
a fraction a’; /b’ using the construction . The unique node of the graph has self-intersection
—Sp, where

so 1= g°/c(d +icp)p + by /d} + by/ay + gb/p.
It follows immediately from the definitions and from a; = @ that by = b}. Similarly, it follows
from ap = af, that by = b). Consider now the equality

ba(cp/g) +1 = a(d/g)
where 0 < by < ay. It follows that o < ¢p/g. Then we can write
(b2 + ai)(cp/g) +1 = a(d/g +icp/g)

and we obtain b, := by + i < d/g+ ai < d/g +icp/g.
We claim that s; = 5. Indeed

s — g — 92 g glbtai) gb
0 0 cngricp)p cdp d+icp d
g(_1 1 1 _ 1 _gai_
= cp(d+icp i) t9 b2(d+icp i)+ d+icp

= d(d—sil-licp) (_g - bch + Oéd) = O

To complete the proof of the claim, it suffices to check that the terminal chain obtained from
the fraction b),/a} using the construction [2.3| with the pair (aj, b)) is the one depicted in (8.1])
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and (8.2). This is not hard using the values ¢ = p+1 and d = pc/2+1, and we leave the details
to the reader.

(ii) We now address the case p = 3 of Theorem [8.1] Examples of Z/3Z-quotient singularities
with 3-suitable intersection matrices are found in with size n = 6, and in [24] [5.6] with size
n = 7. For the cases where n > 8, we proceed with the following family.

Quotient Singularity 8.3. (n = 8+r, r > 0) The matrix N, associated with the graph below
has three diagonal coefficients smaller than —2. We give these coefficients below along with the
coeflicients of Z, and N, Z,.

The associated group @y, has order 3 and Z? = —2 if r = 0, and Z? = —1 if r > 0. The matrix
N,, r > 0, arises as the resolution of a Z/3Z-quotient singularity in characteristic 3: It is the
resolution of the hypersurface singularity f = 23+ 2% +y!971?" = 0 (|26], 8.3). The matrix N,
is obtained from N, and Z, using Theorem (a).

(i) We now address the case p = 2 of Theorem

Quotient Singularity 8.4. (n =4+ r, r > 0)

1 1
NN\ —— 2z S
................. . .____O
-3 12 1 11
We have Z? = —2 when r = 0, and Z?> = —1 when r > 0. The associated group ®y, has

order 22. The matrix N,, r > 0, arises as the resolution of a Z/2Z-quotient singularity in
characteristic 2: It is the resolution of the hypersurface singularity f = 2% + 2% + 3" = 0
([26], 8.3). The matrix N,;; is obtained from N, and Z, using Theorem (a). The matrix
N, with r = 0 also appears in [15], Theorem C (iv). O

Corollary 8.5. For each prime p, there exist infinitely many p-suitable matrices with Z? = —1
and arising from a Z)pZ-quotient singularity.

Proof. The statement is immediate from the list of matrices exhibited in the proof of Theorem

R.1 O

It would be interesting to prove that for each integer 1 < s < p, there exist at least one (or
better, infinitely many) p-suitable matrices with Z? = —s and arising from a Z/pZ-quotient
singularity. When s # 1,2, (p + 1)/2, and p, examples of Z/pZ-quotient singularities with
Z? = —s are not known in general.

Remark 8.6. Fix a prime p > 3. We remark here that in general, the graph I' alone does
not determine a Z/pZ-quotient singularity. Indeed, consider the following two Z/pZ-quotient
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singularities having the same graph on 2p vertices. Let

_ptl 2 1
2 ---0
p—1 p—1
N p—1 p—1 Z —— —N—
—_—— —_—— @ e @@ °®
.. .................................. . 1 p _ 1 p p _ 1 1
with |®y| = p and Z? = —2. The matrix N is numerically Gorenstein and is shown to arise

as a Z/pZ-quotient singularity in [20], Theorem 6.3. The matrix N exhibited in has the
same graph as above, is not numerically Gorenstein, and is shown to arise as a Z/pZ-quotient
singularity in [21], Theorem 6.8, or [22] Theorem 1.1, or [29], Corollary 7.13.

Quotient Singularity 8.7. The only known case so far where the matrix N = (—p) arises as
a wild Z/pZ-quotient singularity is when p = 2. This is obtained with a := z* and b := y**! in
the equation f := 2P — (abxy)?~'z — aPzy — bPy = 0 (see Theorem . Note that the matrix
N = (—p) is not numerically Gorenstein when p > 2.

9. QUOTIENT SINGULARITIES ON MODELS OF CURVES

We review in this section how one can naturally generate interesting quotient singularities
when constructing regular models of curves. As we will see in Theorem [9.2] the intersection
matrices N associated with these singularities must be such that N=! has at least one integer
coefficient. Motivated by the setup of models of curves, we show in Theorem how to start
with the discrete data of the reduction of a curve and obtain infinitely many new p-suitable
matrices which might arise as Z/pZ-quotient singularities.

9.1. Let K be a complete discrete valuation field with valuation v, ring of integers Ok, uni-
formizer g, and residue field k£ of characteristic p > 0, assumed to be algebraically closed. Let
X/K be a smooth proper geometrically connected curve of genus g > 0. When g = 1, assume
in addition that X (K) # (). Assume that X/K does not have semi-stable reduction over Ok,
and that it achieves good reduction after a cyclic extension L/K of degree p.

Let H denote the Galois group of L/K. Let V/Op be the smooth model of X, /L. Let o
denote a generator of H. By minimality of the model ), ¢ defines an automorphism of ) also
denoted by o (but note that o : ) — ) is not a morphism of O-schemes). We also denote by
o the automorphism of the special fiber )} induced by the action of ¢ on Y. Let Z/O denote
the quotient /H, and let a : ) — Z denote the quotient map. The scheme Z is normal. The
map « induces a natural map Y, — Zr® which factors as follows:

yk L) yk/ <(T> —_— Z,:ed.

The map p is Galois of order |H|, and the second map is the normalization map of Z7* (see
1], 5.1).

Let P, ..., Py, be the ramification points of the map YV, — Vi/ (o). Let @1, ...,Qq be their
images in Z. The normal scheme Z is singular exactly at Qq, ..., Qg (see [21], 5.2). We
assume now that d > 1. Consider the regular model X — Z obtained from Z by a minimal
desingularization. After finitely many blow-ups X’ — X, we can assume that the model X’ is
such that &} has smooth components and normal crossings, and is minimal with this property.

Let f denote the composition X' — Z. Let Cy/k denote the strict transform in X" of the
irreducible closed subscheme Z7*@ of Z. The curve Cj has multiplicity |H| in X’. Let ', denote
the graph attached to the exceptional divisor f~1(Q;) associated with the resolution of Q;. Let
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Dy, ..., Dy denote the irreducible components of &} that meet Cj and assume that D; is a
component of f~1(Q;). Let r; denote the multiplicity of D; in X', i =1,...,d.

Theorem 9.2. Let X/K be a smooth proper geometrically connected curve of genus g > 0 be
as . Keep the above notation. Let I' denote the graph associated with the special fiber XJ.
Then, for alli=1,...,d,

(a) p divides r;, and I'g, contains a node of I
(b) Let N; denote the intersection matriz associated with an ordering of the vertices of T'g,.
Then the diagonal coefficient of N; ' corresponding to the vertex D; is an integer.

Proof. Part (a) is proved in Theorem 5.3 of [2I]. We show now that Part (b) is a consequence
of Part (a). Let n; denote the size of the matrix IV;. Without loss of generality, we can assume
that the component D, corresponds to the first vertex of I';. Let e; denote the first standard
vector in Z™. Removing the component Cy of multiplicity p disconnects the special fiber X}
into the d connected curves f~1(Q;), 7 =1,...,d. Each component of f~!(Q;) has a multiplicity
in X/, and we thus have a vector R; € Z%, such that N;R; = —pe1, and such that 'R; = (r4,...)
because of our choice of ordering of the components of f~1(Q;). It follows from the equality
N;R; = —pe; that —R;/p is the first column of the matrix Ni_l. Since we know that p divides
75, we find that the top left coefficient of N, ! is an integer. 0

9.3. Recall that to any regular model X' /Ok, one associates a linear algebraic object called
an arithmetical graph which describes the combinatorics of the special fiber &). We recall
below the definition of an arithmetical graph for the convenience of the reader. Let I' be a
finite connected graph on s vertices. An arithmetical structure (I'y M, R) on I' is a matrix
M € My(Z) of the form M = Diag(—cy,...,—cs) + Ad(T") with ¢; € Z~g for i = 1,...,s, and
a vector R € 72, such that M is positive semidefinite of rank s — 1 and MR = 0. Writing
‘R = (ry,...,rs), we always assume that ged(ry,...,rs) = 1. Such triple (I', M, R) will also be
called an arithmetical graph.

Theorem below constructs infinitely many p-suitable matrices starting with an arithmeti-
cal graph with some additional properties (specified below in . The quotient construction
of models of curves used in Theorem suggests that the p-suitable matrices constructed in
Theorem might arise in some cases from quotient singularities in models of curves. We
explain in more detail this motivation in the case of elliptic curves of reduction type I in m

9.4. Let v be a vertex of the arithmetical graph (I", M, R). Consider the submatrix M" obtained
from M by removing the row and the column of M corresponding to the vertex v. Let I', denote
the induced subgraph of I" obtained by removing from I'" the vertex v and all the edges of '
attached to v. If I', is a connected graph, then MV is an intersection matrix associated with
I',. The discussion below does not assume that I', is connected.

Let m € Z>,. Consider the following intersection matrix N on n := s+ mp — 1 vertices with
graph I'yy. The graph I'y is obtained from the graph I' by attaching to the vertex v a chain
of mp — 1 new vertices. More precisely, consider the path A,,,_; with vertices wy, ..., wp,_1,
labeled in such a way that w; and w,,,_; are the terminal vertices of the path. The graph I'y is
obtained by linking with one edge the vertex v of I' with the vertex w; of A,,,—;. The diagonal
elements of N are those of M for every vertex of I' except for the vertex v. Denoting by —c, the
diagonal element of M corresponding to v, we set the diagonal element of N for the vertex v to
be —c¢, — 1. The diagonal element of the new vertex w; is set to be =2, fori =1,...,pm — 1.
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Theorem 9.5. Let p be prime. Let (I', M, R) be an arithmetical structure on a finite connected
graph I' on s vertices. Suppose that v is a vertex of I' such that the coefficient of R corresponding
to v is equal to p. Assume that the group Z°~'/Tm(M?) is killed by p. Assume also that the
coefficients on the diagonal of M are at most equal to —2, except possibly for the coefficient
—c, corresponding to v, which could equal —1. Let m > 1. Then

(a) The matric N € Myipmp—1(Z) described in(9.4] is a p-suitable intersection matriz associated
with Ty, and @ = Z*~1 /Tm(M"Y).

(b) The column of N~ corresponding to v (resp. Wym—1)-1) is an integer column when m = 1
(resp. m > 1).

Proof. Let us prove first the case m = 1. We choose an ordering of the vertices of I' so that v
is the last vertex in that ordering. The matrix N can be represented as follows:

MY :
=1 1 0 ... 0
N — 1 -2 1
0 . . .0
: 1 -2 1
0O ... O 1 =2
Let 7' := (('R),p—1,p — 2,...,2,1). By construction, since MR = 0, we find that
(9.1) (*"Z" YN = (0,...,0,—1,0,...,0),

where the only non-zero entry is in the s-th column, the column corresponding to v. This fact
follows in an essential way from the fact that we have added exactly p — 1 vertices to I'. The
equation ([9.1)) shows that the s-th column of N~! is an integer vector. It follows from the
minimality of the fundamental cycle Z of N that Z < Z’, and |Z?| < |Z"| = p.

To compute the group @5, we explicitly describe a row and column reduction of the matrix
N. First, add to the last column of N the sum of the other columns, weighted by the coefficient
of the column in Z’. We obtain the matrix N’ below:

MY : 0

—e,—1 1 0 ... —1

v 1 -2 1 0
B 0

: 1 -2 0

0 -~ 0 1 0

It is clear from the shape of N’ that Z**?~!/Im(N’) is isomorphic to Z*~!/Im(M"). We leave it
to the reader to describe the row and column operations needed to establish this isomorphism.
Since Z*~!/Im(M?) is killed by p by hypothesis, we find that N is p-suitable, and the case
m = 1 is proved.

Given the matrix N obtained above in the case of m = 1, consider the following new arith-
metical graph (I'y, My, Ry). Recall that the vertices of the graph I'y are the vertices of I and
new vertices wy, ..., wy_1, with w,_; the terminal vertex on the new chain on I'y. Let I'; be
the graph I'y along with a new vertex w, attached by one edge to w,_1. Let Ry € Z**? be such
that 'Ry := (‘R,p,...,p). Let My € Mg,,(Z) be the matrix with associated graph I'y whose
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coefficient on the diagonal corresponding to w, is —1, and whose other diagonal coefficients
are as in N. Then M;R; = 0 and so (I'y, My, Ry) is an arithmetical graph with a vertex w, of
multiplicity p.

Since M;” = N, we find that Z*P~! /Tm(M;") = Z*~' /Im(M"). We can thus prove the case
m = 2 of the Theorem by applying the case m = 1 to the arithmetical graph (I'y, M;, R;) with
the vertex w,. It is clear that this process can be continued and that the general case can be
obtained by a sequence of m applications of the case m = 1. 0

Example 9.6. Let p be prime. We describe below a class of star-shaped arithmetical trees
[(p,71,...,m) with a unique vertex vy of multiplicity p to which the construction in Theorem
0.5 can be applied.

Let t > 2. Consider integers r;, i = 1,...,t, such that 1 < r; < p. Assume that 25:1 r; =Cp
for some integer ¢. Each pair (p,r;) determines an intersection matrix N; = N(p,r;) as in
whose graph I'y, is a path, along with a vector R; = R(p, r;) such that (‘R;)N; = (—p,0,...,0).
Note that this construction uses a chosen order of the vertices of I'y,, and we denote by w; the
first vertex of I'y, in this ordering. In the construction, wj; is then a vertex of degree 1 of I'y;.

Let ' := I'(p,r1,...,7r) denote the graph with unique node vy to which we attach each
path I'y, with one edge linking vy to w;. Let s denote the total number of vertices of I'. Let
M € My(Z) denote the matrix of the form M = Diag(—¢y, ..., —¢s) + Ad(T") such that M
restricted to the vertices on the path I'y, is the matrix N;, and such that the self-intersection
of the central vertex vy is —c. Let R € ZZ, denote the vector such that R restricted to the
vertices on the path I'y, is the vector R; and such that the coefficient corresponding to vy is p.
Then we have M R = 0 by construction, and (I, M, R) is an arithmetical structure on I'.

Removing from I' the vertex vy and the edges adjacent to vy in I' leaves us with the disjoint
union of the graphs T'y.. Since ®y, = Z/pZ for each i = 1,...t, it follows that Z*~!/Tm(M"™)
is isomorphic to (Z/pZ)'. We can thus apply Theorem to the arithmetical graph (I, M, R)
at the vertex vy. Choosing m > 1, we obtain an intersection matrix N of size s+ pm — 1 whose
graph is star-shaped with ¢ + 1 terminal chains, and with ®y isomorphic to (Z/pZ)*.

9.7. The p-suitable matrix N in is obtained from I'(p,1,p — 1) using Theorem [9.5] This
matrix is not numerically Gorenstein. It does arise from a quotient singularity.

Let now p = 2. The Dynkin diagrams Dy, (see [6.2) are 2-suitable intersection matrices
obtained from the arithmetical tree I'(2,1,1) using Theorem . The Dynkin diagrams Dy
are known to arise as Z/2Z-quotient singularities (see, e.g., [1], Examples on page 64, [2], [31]
(2.6), or [20], Theorem 4.1, or [28], I11.3.1.5.1. The earliest appearance of Dy and Dg as quotient
singularities might be in [32], § 6). It is interesting to note that the Dynkin diagrams Ds, arise
in two different ways. Let Z/2Z act on A := k[[u,v]] such that Spec A%/?” has a resolution of
type Dyg. Consider the associated morphism ¢ : Spec A — Spec AZ/?Z. When d is even, the
morphism ¢ is only ramified at the maximal ideal. When d is odd, ¢ is ramified in codimension
1. In particular, only the case D,y with d even can arise in the context of regular models of
elliptic curves. We present below an intersection matrix N(r, s, t), obtained from the Kodaira
type I, with m = 2(r + s), which seems to arise in the context of elliptic curves only when

r 4 s is even (see(9.12)).
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Intersection Matrix 9.8. The Kodaira type I, is the arithmetical graph with m + 5 vertices
described below. We fix a vertex v to apply the construction in Theorem [9.5]

To the left of the vertex v is a Dynkin diagram D, (on a vertices, see and to the right of v
is a Dynkin diagram D,. Since the vertex v can a priori be any of the vertices of multiplicity
2 on the graph, we slightly generalize the definition of the Dynkin diagram D, to include the
cases a = 2 and a = 3. We set D, to be the disjoint union of two vertices of self-intersection
—2, so that ®p, = Z/2Z x Z/2Z. We set D3 to be the path on three vertices, each of self-
intersection —2, so that ®p, = Z/47Z. In general, it is well-known that &, = Z/4Z if a is odd,
and ®p, = Z/2Z x Z/27Z if a is even.

Let r,t > 0 and s > 1 be integers. Theorem shows that the following intersection matrix
N = N(r,s,t), constructed from the arithmetical graph I3, ,_, is always 2-suitable:

The group @y has order 2* since it is isomorphic to ®p, ., X ®p,,,,. The matrix N(r,s,t)
is denoted (21),; in [36], page 437. It is also found in [38], page 121, (38), along with an
equation for a singularity in characteristic 0 whose resolution produces N(r, s,t).

Quotient Singularity 9.9. (n = 6 + 4/ and two nodes.) Set r = t = 0 in the above
intersection matrix N(r,s,t) and let s = 2¢, with ¢ > 1.

The group ®y has order 2* and Z? = —2. We have K = —Z and p(Z) = 1. Computations
indicate that this intersection matrix arises in the resolution of the singularity f := 2P —
(ab)P~tz—aPy—bPx = 0 when a := 224y and b := y* T +2y with £ > 1. The quotient singularity
in [24] can be interpreted as the case ¢ = 0 in this construction. Our computations thus
make it likely that, with the parameters r =t = 0 and s = 2/, the 2-suitable matrix N in
does arise from a Z/27-quotient singularity.

The matrix N(0, s,0), of size 6+ 2s, is denoted A, , + As o+ As o+ Aasxo in [16], Table 2, p.
1291, and is associated with the resolution of 22 + (y* + 2%)(2? + y*™*) = 0 in characteristic 0.



INTERSECTION MATRICES OF WILD CYCLIC QUOTIENT SINGULARITIES 29

Quotient Singularity 9.10. (n = 6 + 4\ + 4¢ and three nodes.) Set again ¢ = 0 in the
intersection matrix N in and let r = 2\ and s = 2¢, with A\, ¢ > 1.

N = N(2),2¢,0)

The group ®y has order 2* and Z? = —2. We have K = —Z and p(Z) = 1. Computations
indicate that this intersection matrix might arise in the resolution of the singularity f :=
2P — (ab)P~'z — aPy — Pz = 0 when a := 2> + 2y and b := 3*** + 2y with \,¢ > 1. This
intersection matrix is denoted A, , + A, 4o + Ao at the bottom of page 1291 in [16].

Remark 9.11. In the 2-suitable intersection matrices above in[9.8] [0.9) and [0.10] the diagonal
elements are all equal to —2, except for one single coefficient equal to —3. Intersection matrices
with this property have been completely classified in [39).

Remark 9.12. Let us return to the set-up of Theorem [9.2] In particular, let O be a discrete
valuation ring with algebraically closed residue field k of characteristic p = 2. Let X/K be
an elliptic curve. Assume that there exists a quadratic extension L/K such that X /L has a
smooth model Y/Op. Assume that the special fiber ) is a supersingular curve. The normal
quotient Z := Y/Gal(L/K) has then a unique singular point. Let X’ — Z denote the minimal
desingularization of Z, and let Aj denote the minimal regular model of X /K, with contraction
morphism X’ — Xj.

Assume that the Kodaira type of the special fiber of A} is I, for some m > 1. Since
[L : K] = 2, we can apply Theorem 1 in [I0] to find that the component group of the Néron
model of X/K must be killed by 2, so that m has to be even. We can thus write m = 2r + 2s
for some r > 0 and s > 1 such that the intersection matrix of the desingularization X" is of the
form N(r, s, t) in Since we assume that the elliptic curve has potentially good supersingular
reduction, we can further use [37], Theorem 1.4, to show that in fact m is divisible by 4.

Hence, using elliptic curves, we can only produce examples of Z/27Z-quotient singularities
with intersection matrices N(r,s,t) as in with the additional constraint that r + s is even.
We do not know if the matriz N(r,s,t) also arises as a quotient singularity when r + s is odd.

9.13. Let p be prime. Let N be a p-suitable intersection matrix of size n. Suppose that v is a
vertex of I'y such that the corresponding column (N~!'), of the matrix N~! is not an integer
column, but the diagonal element (N~!),, is an integer. Let m > 1. Consider the following
matrix N, of size n + pm. Let wy,...,w,, be the ordered vertices of a chain of length pm.
Consider the graph I'y,  obtained by attaching the vertex v of I'y with the initial vertex w; of
the chain using a single edge. Set the matrix N, associated with 'y to have the following
diagonal elements: if w is a vertex of I'y, use the diagonal element of N. Set the diagonal
element corresponding to w; to be (N~ 1),, — 1. Set all other diagonal elements corresponding
to wa, ..., Wy to be —2. The matrix N is a submatrix of IV, in the top left corner.

Corollary 9.14. Let p be prime. Let N be a p-suitable intersection matrix of size n. Suppose
that v is a vertex of Uy such that the corresponding column (N=1), of the matriz N~ is not an
integer column, but the diagonal element (N~'),, is an integer. Let m > 1. Then the matriz
Ny, of size n+ pm described in[9.13 is p-suitable. Its group Py, is isomorphic to Py .

Proof. The corollary follows directly from Theorem applied to the following arithmetical
graph (G, M, R). Let G denote the graph obtained by linking the vertex v of I'y to an additional
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vertex w; by a single edge. The matrix M with graph G is set to have the matrix NV in its
top left corner. The bottom right diagonal element is set to be (N71),,. Since all coefficients
of the matrix N~! are negative, the vector 'R := (—p{N~—'),, p) has positive coefficients. It is
easy to check that MR = 0. Since {N~!), is not an integer column, the coefficients of R are
coprime. The triple (G, M, R) is an arithmetical graph and the vertex w; has multiplicity p.
The top left minor of M has group killed by p since it is isomorphic to ®5. Thus we can apply
the construction of Theorem to (G, M, R) and w;. O

Let us say that a matrix N can be extended if there exists a matrix N’ that contains N and
such that the diagonal coefficients of N are also on the diagonal of N'.

Corollary 9.15. Let p be prime. Let N be a p-suitable intersection matriz of size n. Suppose
that v is a vertex of U such that the diagonal element (N~'),, is an integer. Then the matriz
N can be extended to a larger p-suitable matriz N'.

Proof. If the column (N71), is not an integer column, then the matrix N’ := N,, in Corollary
is the desired extension of N. If the column (N~!), is an integer column, then the matrix
N':= N in Theorem (a) is an extension of N. O

Quotient Singularity 9.16. The following p-suitable matrix N and its vertex v on the left
produce, using Corollary [0.14] new matrices N, for every m > 1. The matrix N and all the new
matrices IV, all arise as Z/pZ-quotient singularities. We indicate on the right the coefficients
of the vector Ry = —p(N~!), such that ‘RgN = (—p,0,...,0). We have |®y| = p*.

-p p 1
¢ _
p—1 p—1 | p—1 p—1
N —_—— ——— RO :’_/h —_—
L S VI, N W Py @ G @@ ®
v p p P p-1 1

The matrix N is not numerically Gorenstein, and is shown to arise as a Z/pZ-quotient sin-
gularity in [2I], Theorem 6.8, or [22] Theorem 1.1, or [29], Corollary 7.13. For N,,, use [22]
Theorem 1.3 and 3.12.

10. EXISTENCE OF INTEGER COEFFICIENTS IN N !

We investigate in this section when a p-suitable matrix N has the property that N~! has an
integer coefficient, or an integer column. The geometric motivation for studying this question
comes from Theorem [9.2b).

Let N € M, (Z) be an intersection matrix with associated graph I'. We let ey, ..., e, denote
the standard basis of Z". When v is a vertex of [' and no ordering of the vertices of I" has been
chosen, we let e, denote the standard basis vector of Z™ associated with v. We let © denote the
class of e, in the quotient ®y := Z" /Im(N).

Let (N~1), denote the column of N~! corresponding to v, so that we have N(N~1), = e,.
It follows that ¥ is trivial in @ if and only if the column (N~1), is an integer vector.

Theorem 10.1. Let p be a prime. Let N € M, (Z) be an intersection matriz such that @y is
killed by p. Assume that the graph T associated with N is a star-shaped tree. If |®y| # p, then
the matriz N=' has at least one integer column.
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Proof. Let vy denote the unique node of I'. Removing vy from I' as well as all the edges of "
adjacent to vy produces the disjoint union of m terminal chains I'y,...,I',. Order the vertices
of each terminal chain from the vertex connected to vy to the terminal vertex of the chain.
Let N, denote the intersection matrix of the chain with that ordering. Let a; > b; denote the
coprime integers associated with Np, in . In particular, there exists a vector ‘R; = (b;, ..., 1)
such that ("R;)Nr, = (—a;,0,...,0). Let —c denote the diagonal element of N associated with
the vertex vg. Then, as seen in [26], Proposition 1.3, we have

det(N)| = (km (1;[11“ am)) (lcm(al,...,am)(c— Zbi/ai)> .

Assume that @y is killed by p and that for all vertices v of I, ¥ # 0. Then by Lemma [10.2

(b), we have a; coprime to p for i = 1,...,m. It follows that mr(g%—laam)

can only be a power

7, la’Z
lem(at,...,am

of p if y = = 1. Hence,

|det(N)| = lem(ay, ..., am)(c — Zbi/ai).

It follows from [26], Proposition 1.3, that lem(ay, ..., ay)(c — > i, bi/a;) is the order of 75 in
® . By hypothesis, this order is p. Hence, we have shown that |det(N)| = p, as desired. [

Lemma 10.2. Let p be a prime. Let N € M, (Z) be an intersection matriz with associated graph
I'. Let vy,...,v; denote the consecutive vertices of a terminal chain T of I'. More precisely,
assume that v, is a terminal vertex (and so has degree 1), and that when t > 1, v; is linked to
vir1 by exactly one edge fori = 1,...,t — 1, and vy has degree 2. Let Nr denote the matriz
of this chain, and let so > s; > --- > s; = 1 denote the integers associated with this terminal
chain as in . Letting 'S := (s1,...,st), we have 'SNy = (—50,0,...,0). Let vy be the vertex
of T' linked to vy that is not on the given terminal chain. Then

(a) We have Ty = sov;. We also have 10y = sov1 and, more generally, $;11U; = $;U;11.
(b) Assume that the group ®y is killed by p, and that v, # 0 in ®y. Then the elements
Vo, ..., 01 are not trivial in ®y if and only if p does not divide sg, Sq,...,S4_1.
Let —c; denote the coefficient corresponding to the wvertex v; on the diagonal of N.
When p = 2, the condition p does not divide s, S1,...,S_1 is equivalent to the condition
Cly...,C_1 are even and c; 1S odd.

Proof. (a) Let us start by showing that vy — sgv; = 0. For this, it suffices to show that the
vector e,, — So€y, 1s in the image of V. Recall that |det(/N7)| = so. Consider the sequence 1 =
Ty <19 < -+ <71y < Sgsuch that, letting ‘R := (1,79,...,7:), we have (‘R)Ny = (0,...,0, —s¢).
Let N, denote the column of N corresponding to the vertex v. We obtain

vy — S0€w, = Ny, + 12Ny, + -+ + 1Ny,

as desired. Shortening the chain vy,...,v;,...,v; to v;,...,v; and applying the above result to
the new chain v;, ..., v; shows that v;,7 — s;41v; = 0. Using the relations v; — s;v; = 0 and
6i+1 - 8i+16t =0 gives us 8i+16i = Siﬁi+1.

(b) Assume that T, has order p and that the group ®y is killed by p. Suppose that there
exists an index ¢ in [0,¢ — 1] such that ¥, is trivial. The relation s;0;41 = $;117; shows then
that either p divides s;, as desired, or that 7,1 = 0. We can repeat the argument with v, if
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p does not divide s;. Since we assume that 7; is not trivial, we must have s; divisible by p for
some j € [i,t — 1].

Assume now that p divides s; for some ¢ € [0,¢ — 1]. Then the relation s;0,11 = s;1170; shows
that either v; is trivial as desired, or that p divides s;;;. Repeating the process if v; is not
trivial, we find that either one of the v; is trivial, as desired, or we have p dividing s; = 1,
which is a contradiction. ([l

Intersection Matrix 10.3. We exhibit below a 2-suitable matrix N of size n = 10 with
|®x| = 2 and such that N~! does not have any integer coefficient. Suppose that such N exists.
Then the condition |Z?| < 2 implies that N contains a principal square submatrix N’ of size
n — 1 such that |det(N’)| = 1. The terminal chains of the graph of N also have to satisfy the
conditions of Lemma [10.2 It turns out that Graph (11) in Table I of [5] exhibits an 9 x 9
intersection matrix N’ satisfying the above conditions, and from which one can obtain the
desired example N of size n = 10:

-5 =3 1577515
536355
92475 2839527
N [ ® ' 7 [ ® ® 946509
-29 -3
2175 --=-0
—1233  —2366275 2366273 1 2

The group ®y has order 2 and Z? = —2. The matrix N~! has no integer coefficient. As the
reader will have noted, one coefficient of N is very negative compared to the size of |®y|. The
graph (5) in Table I of [5] is star-shaped on 9 vertices and leads to a similar example.

Proposition 10.4. Let p be prime. Let N € M,(Z) be a p-suitable intersection matriz such
that |®x| = p. If N~ has an integer coefficient, then it has an integer column.

Proof. Let us assume that N~! has no integer columns. Let N j’l denote the j-th column of
N~L. Since @y is killed by p, we have pNj_1 € Z™ and N(pNj_l) = pe;, showing that the class
of e; has order dividing p. Since the vector N;l has at least one non-integer coefficient by
hypothesis, we find that the class of e; has order exactly p in &y := Z"/Im(N).

Assume now that |®y| = p. If N = (—p), the proposition is true. Assume that n > 2. Fix
any k < n. Since the matrix N is symmetric, for any £ < n, we can find j < n such that the
j-th coefficient of the k-th line is not an integer. Let ¢ # j. Since ®y is cyclic of order p, and
the classes of e; and of e; have exact order p, there exists an integer a; coprime to p such that
the class of a;e; — e; is trivial in ®y. Since we have N(a;N; ' — Nj’l) = a;e; — e;, we find that
(a;N; ' — Nj_l) must be an integer vector. Thus, if the k-th coefficient of Nj_1 is not an integer,
then the k-th coefficient of N;! cannot be an integer. It follows that the matrix N~! has a
k-th row, none of whose coefficients are integers. O

Proposition 10.5. Let N be a p-suitable intersection matrix such that its associated graph T’
is a chain. Then the matriz N~' has no integer coefficient.

Proof. First, since I is a chain, the group ®y is always a non-trivial cyclic group ([20], Lemma
3.13). Since N is p-suitable, we find that |®y| = p. It follows from that to show that
N~! has no integer coefficient, it suffices to show that it has no integer column. For this, we
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use m (a). Keeping the notation introduced in [10.2} let vy, vy, ..., v; denote the consecutive
vertices of I'. We have p = det(—N) > sg > s > -+ > 5. In particular, every integer s;

is coprime to p for © = 0,...,t — 1. Since s;,1U; = $;U;41, we find that none of the classes v;
can be trivial, because if one were trivial, all would be, and this would contradict the fact that
det(—N) > 1. O
Proposition 10.6. Let I' be a connected tree on n vertices vy, ...,v,. Let d; denote the degree
of the vertex v;. Let N := Diag(—cy,...,—¢,) + Ad(T) with ¢; € Zso for alli=1,...,n. Let e
denote the exponent of ®y.

(a) Assume that ¢; € Z>q, for all i =1,...,n, and that for at least one index j, c; > d;. Then

N is negative definite with'Z = (1,...,1) and |Z - Z| < e. We havd|p(Z) = 0.

(b) Assume that ¢; € Zsq, for alli =1,...,n. Then the inverse N~ does not have any integer

on its diagonal.

Proof. (a) Since (1,...,1)N < 0, we find that N is negative definite (3.1). In particular,
7 = (1,...,1). That |Z - Z| < e follows immediately from Lemma 3.7 in [20] since Z has a
coefficient equal to 1. Since I' is a tree, we have Y | (d; — 2) = —2. Using this fact, it is easy
to check that p(Z) = 0.

(b) Our hypothesis on the diagonal of N shows that P := —N is strictly row diagonally
dominant (see [13], p. 124). It follows then from Theorem 2.5.12 in [I3] that P! is strictly
diagonally dominant. This means that if we write P~! = ((g;;)), then for each i, and for all
J# 1, Qi > Gij-

Without loss of generality, it suffices to prove that the diagonal element ¢;; on the first line
Q. of P71 is not an integer. Let N; denote the first column of N. Then

Qi(—=N1) = quer — 337, quyAd(l); =1
(L...,1)(=Ny) = ¢ — 2?22 Ad(T)yj =¢i—d; > 1.

It follows that Z?:z(‘hj — q11)Ad(I")1; > g11 — 1. Because the graph is connected, we find that

the left hand side of the inequality is always strictly negative. On the other hand, if ¢;; is a
(positive) integer, then ¢;; — 1 > 0, which is not possible. O

Example 10.7. Given any prime p > 11, there exists a p-suitable matrix N of size p + 2, with
fundamental vector Z such that K = —Z and p(Z) = 1, and such that N~! does not have any
integer coefficient. Indeed, consider the following matrix N(p), with |® x| = p and Z? = —3:

3 1
@
Z |
[ L L @ L L

2 4 6 5 4 3 2(-3) 2 2 1(-3)

We leave the details to the reader. This matrix is denoted by A, .., + E7, on page 1294 in
[16], and associated with the resolution of y(22 + 2% + 3°) + 2%2* = 0 with 2a + 3b = p.

11. BOUND FOR THE SIZE OF THE DISCRIMINANT GROUP

Let N be an intersection matrix. The columns of N~! provide upperbounds for the funda-
mental cycle Z. We discuss below two cases where Z is related to a column of N1,

2When ¢; > d;, the associated weighted graph I' with weights (c1,...,cn) is called minimal in [33], 2.3.
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Proposition 11.1. Let N € M,,(Z) be an intersection matriz with fundamental cycle Z.

(a) If "Z)NZ = —1, then —Z is an integer column of the matriz N~!.

(b) Let R; € Z" be as in[3.9 If (‘"R)NR; = (‘Z)NZ, then R; = Z. In particular, if for some

(c) Assume that |®x| = 1. Then the vector —Z is a column of N='. More precisely, let z
denote the minimum of the coefficients of the matrix —N~1'. Then there exists an index
J € [1,n] such that z = (—N~1);; and the vector —Z is equal to the j-th column of N~

Proof. (a) Write *Z = (z1,...,2,). Recall that Z is a positive vector, and that NZ is a non-
positive vector. It follows that when (*Z)NZ = —1, there exists an integer i € [1,n] such that
NZ = —e; and z; = 1. Hence, —Z is equal to the i-th column of N~ 1.

(b) Since by construction, R; has positive coefficients and N R; is a non-positive vector, the
minimality property of Z implies that Z < R;. Let us then write R; = Z + X with X > 0. It
follows that

R? =7+ 2('Z)NX + X2

Since N is negative definite, X? < 0. Since NZ < 0 and X > 0, we have (*Z)NX < 0. Hence,
R? < 7%, and when R? = Z%, we must have X? = 0 or, equivalently, R; = Z.

Assume now that (‘R;)NR; = —1. Since R? < Z* < —1, we find that in this case R? = Z2,
so that R; = Z.

(c) Write R; = Z + X; with X; > 0. It follows that

Z-Ri=-pzu=2"+7X,.

Since |®y| = 1, we find that p; = 1. Let j € [1,n] be such that z; = min;(z;). Since Z? is a
linear combination (with negative coefficients) of 21, ..., z,, we find that the only possibility to
have —z; = ZQ+Z-XJ- with Z - X; < 0is to have NZ = —e;. Since NR; = —e;, we must have
Z = R, as desired. Now that we know that Z is a column of —N !, and that R; > Z for all i,
we find that z must be a coefficient of R;. Since the matrix N~! is symmetric, z must be the
diagonal element of the j-th column of —N~!. O

Theorem 11.2. Let N be a 2-suitable intersection matriz with fundamental cycle Z. Then
there exists a column R of N~! such that either Z = —R or Z = —2R.

Proof. Proposition (a) shows that if (‘Z)NZ = —1, then —Z7 is an integer column of the
matrix N~!. Let 'Z := (21,...,2,). Suppose now that (Z)NZ = —2. Then either

(a) There exists i € [1,n] such that NZ = —e; and z; = 2, or
(b) There exists i € [1,n] such that NZ = —2¢; and z; = 1, or
(c) There exist 4, j € [1,n], i # j, such that NZ = —e; —¢; and z; = z; = 1.

In the first case, —Z is a column of N~!. The second case can only happen when N is 2-suitable,
and in this case —Z/2 is a column of N1

Assume now that we are in the third case and that @ is killed by a prime p. Recall that
NR;, = —p;e; and NR; = —pje; for some p;,p; € {1,p}. It follows that Z = R;/p; + R;/p;.
Since Z is an integer vector, such equality can only happen if p; = p; = 1 or p; = p; = p. Since
Z is the fundamental cycle, we must have Z < R; and Z < R;, and therefore only the case
p; = pj = p can happen, and we have pZ = R; + R;.

The hypothesis that NZ = —e; — e; shows that Z < R; and Z < R;. We obtain then that
2Z < R;+ Rj = pZ. When p = 2, this inequality is impossible, and so (c¢) cannot happen. 0O
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Remark 11.3. When p > 2, it may happen that the fundamental cycle is not related only
to a single column of N~!. The construction in Theorem for instance is likely to produce
p-suitable intersection matrices N with fundamental cycle Z such that NZ has two non-zero
coefficients (see when p = 3). We do not know how to construct families of p-suitable
intersection matrices N such that n > p and NZ has at least three non-zero coefficients.

Let N be a p-suitable intersection matrix with associated graph I'.. When Z is a multiple
of a column of N™! we produce below a tight upperbound for |®y|. Let d; denote the degree
of the vertex v; € I'. Write N = —Diag(cy,...,¢,) + Ad(T') with ¢;,...,¢, > 2. Let K be
the canonical cycle of N (see 2.2). Given any vector R € Z" with ‘R = (r1,...,7,), we have
'RNK =37 ri(c;—2). Let now R = R; € Z" be as in[3.2, with NR; = —pje; and p; € {1, p}.
Then

(1,...,)NR=—p; = Y (—ci+2)r; + Y _(d; — 2)rs,
i=1

i=1
and we find that

(11.1) ‘RNK =p;+ Y (di —2)r;.
i=1

Assume in addition that R = R; = Z. Then (‘R)NR = —p;r; = Z*> > —p. Hence, p;r; < p.

Theorem 11.4. Let N be a p-suitable intersection matriz.

(a) Assume that —Z is a column of N~*. Then ord,(|®n|)(p — 1) < Z - K + p. In particular,
ord,(|Py|) < 2+ 22

(b) Assume that —Z/p is a column of N~*. Then ord,(|®x|)(p—1) < Z - K + 1.

(c) Let p=2. Then |®y| divides p*P(¥)+2,

Proof. Recall the expression for |®y| obtained in [20], Theorem 3.14, using the vector R := R;:
[det(N)] = pyry - [Tri" ™.
i=1

This expression is strikingly similar to the expression for ‘RN K found in . We are going
to relate these two expressions using an arithmetical graph obtained from N, to which we will
apply the following result on arithmetical graphs.

Let (G, M, R) be an arithmetical tree on s vertices, as in 9.3, Let 'R := (7,...,T,), with
ged(Fy, ..., Ts) = 1. Let ; denote the degree of the vertex v; € G. The main integer invariant
associated with (G, M, R) is given by the formula

290 — 2 = Zn((si —2).
i=1
Let @), denote the torsion subgroup of Z*/Im(M). Then [18], Theorem 4.7, shows that
> ordy(|Pa)(g — 1) < 2g0.

q prime

(a) Let us assume now that —Z = R; is a column of N7, so that p; =1 and r; < p. Using
N, T', and R;, we construct the following arithmetical graph (G, M, R). The tree G is obtained
from I' by attaching with a single edge one new vertex w to the vertex v; of I'. The matrix M
has then size s = n + 1. Assuming that the order of the vertices of G are vy,...,v,,w, we set
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the diagonal of M to be (—ci, ..., —cy, —7;). Set 'R := (rq,...,r,,1), and note that MR = 0.
It is easy to check that |®,;| = |® x| and that

290 =2 = Ti(0i—2) =3 ri(di—2)+r;—1
— (R)NK —p; +1; — 1.

Hence, 290 = ("R)NK + r;. Since @y is a p-group by hypothesis, we find that
ordy(|Oxl)(p = 1) = Y ord (|®u])(g—1) <290 < Z- K +p.

q prime
By definition, Z - K +p<p+2p(Z)—-2—-72-Z <2(p—1) + 2p(Z).

(b) Let us assume now that —Z = R; is such that p; = p, so that r; = 1. Using N, T,
and R;, we again construct an associated arithmetical graph (G, M, R). Let wo,w, ... , Wp—1
denote the ordered vertices of a chain of length p. The tree GG is obtained from I' by attaching
with a single edge the vertex wy to the vertex v; of I'. The matrix M has then size s = n + p.
Assuming that the order of the vertices of G are vy, ...,v,, wy, ..., w,_1, we set the diagonal of
M tobe (—cp,...,—¢p,—1,—2,...,-2). Set ‘R := (r1,...,7,p,p—1,...,2,1), and note that
MR = 0. Computing in two different ways the determinant of the matrix A"+ obtained
by removing the row and column of M corresponding to the vertex w, gives

| det (M™M= @y [p® = [P p.
Finally, we find that

290 —2 =3, Ti(0i—2) =2 ri(di —2)+1; -1
= (tR)NK—pj +7"j — 1.

Hence, 290 = ("R)NK — p; + 2. Since @y is a p-group by hypothesis, we find that
ord,(|On|/p)(p—1) = > ordy(|Pul)(g—1) <290 =2 K —p+2.

q prime
It follows that ord,(|®n|)(p—1) < Z-K + 1.
(¢) Recall that when p = 2, Theorem shows that either —Z or —Z/2 is a column of
N~ We can thus apply (a) and (b) to obtain that ordy(|®x|) < Z - K +2. Then 2p(Z) +2 =
Z-K+27?+4> 7 K + 2, since by hypothesis, a 2-suitable matrix satisfies Z2 +2 > 0. [

The bound in (c) is achieved in Example Note that this bound is much sharper in this
example than the bound obtained using Proposition (b). Note also that Example m shows
that one cannot expect to bound |® | only in terms of p(Z).
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