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Abstract. Let k be an algebraically closed field of characteristic p > 0. Let Z/pZ acts on
A := k[[u, v]] by k-linear automorphisms and let AZ/pZ denote the ring of invariants. Let
π : X → Spec(AZ/pZ) be a minimal resolution of this quotient singularity with an exceptional
divisor E consisting in n smooth irreducible components meeting with normal crossings. We
study in this article the properties of the intersection matrix N ∈ Mn(Z) associated with E.
We show for instance that for any prime p, and for any n ≥ p+ 3, there exists a Z/pZ-quotient
singularity with intersection matrix of size n. We also show that for a large class of Z/pZ-
quotient singularities, the matrix N is such that N−1 has an integer coefficient on its diagonal,
and often even a full integer column. We exhibit two new classes of hypersurface quotient
singularities with AZ/pZ given by explicit weighted homogeneous equations.

1. Introduction

Let p be a prime. Let k be an algebraically closed field of characteristic p. Let A := k[[u, v]]
denote the ring of formal power series in two variables. Assume that Z/pZ acts on A by k-linear
automorphisms, and let AZ/pZ denote the ring of invariants. We will say that the closed point
of Spec(AZ/pZ) is a wild cyclic quotient singularity, where the term wild refers here to the fact
that the group acting on A has order divisible by the characteristic p.
Let π : X → Spec(AZ/pZ) be a resolution of the singularity, so that in particular X is a

regular scheme. Let Ci, i = 1, . . . , n, denote the irreducible components of the exceptional
divisor of π, and form the intersection matrix

N := ((Ci · Cj)X)1≤i,j≤n ∈ Mn(Z),
where (Ci ·Cj)X denotes the intersection number of Ci and Cj computed on the regular surface
X. Attached to the resolution π is its dual graph ΓN , with vertices v1, . . . , vn, where vi and vj
are linked by (Ci ·Cj)X distinct edges when i ̸= j. Let Ad(ΓN) denote the adjacency matrix of
the graph ΓN . The matrix N has the form Diag(c11, . . . , cnn) + Ad(ΓN), where cii = (Ci ·Ci)X
is the self-intersection number of Ci. It is well-known that the matrix N is negative-definite.
The following is also known about such matrices N :

(i) When the exceptional divisor of π has smooth components with normal crossings, the
components Ci are smooth projective lines and the graph ΓN is a tree ([20], Theorem 2.8).

(ii) The discriminant group ΦN := Zn/Im(N) is an elementary abelian p-group ([20], Theorem
2.6), so that in particular |ΦN | = |det(N)| = ps for some integer s ≥ 0.

(iii) The fundamental cycle Z ∈ Zn
>0 of N is the minimal positive vector such that NZ is a

non-positive vector. The self-intersection Z · Z := (tZ)NZ is such that |Z · Z| ≤ p ([20],
Theorem 2.4).
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Let p be any prime. Motivated by the above theorems, we call an intersection matrix N ∈
Mn(Z) p-suitable if it satisfies the following linear algebraic properties:

(a) There exists a connected tree Γ on n vertices, and integers c1, . . . , cn ≥ 2, such that N =
Diag(−c1, . . . ,−cn) + Ad(Γ).

(b) The matrix N is negative definite and the group ΦN is killed by p.
(c) The fundamental cycle Z of N is such that |Z · Z| ≤ p.

We will say that a p-suitable intersection matrix N arises from a quotient singularity if
there exists a Z/pZ-quotient singularity Spec(AZ/pZ) with a resolution of singularities π : X →
Spec(AZ/pZ) such that all irreducible components Ci of the exceptional divisor E of π are
smooth, and such that up to a choice of the ordering of the irreducible components Ci, the
intersection matrix associated with E is equal to the given matrix N .
It is an open question to completely characterize the p-suitable intersection matrices which

arise from a Z/pZ-quotient singularity. Recent works on this question include [14], [25], [26],
[27], and [29]. In this article, we establish some general properties of p-suitable matrices, and
suggest some properties which might possibly be enjoyed by the matrices which arise from a
Z/pZ-quotient singularity but not necessarily by all p-suitable matrices.

Recall that the degree (or valency) of a vertex v of a graph Γ is the number of edges of Γ
attached to v. A vertex v with degree at least three is called a node, and a vertex v with degree
one is called terminal. A graph is called a chain or a path if it is connected and does not contain
any node. The graph is called star-shaped if it is a connected tree with a unique node.

We present in this article several constructions of p-suitable intersection matrices. Our first
two results in this introduction indicate that p-suitable matrices are abundant. In particular,
given any large prime p, there exist many p-suitable matrices N of every size n ≥ 9.

Theorem (see 4.1 for a more general statement). Given any connected tree Γ on n ≥ 9
vertices which properly contains the graph of the Dynkin diagram E8, and given any prime p,
there exists a p-suitable intersection matrix N with associated graph Γ and |ΦN | = p.

Theorem 5.5. For any prime p and any integer δ ≥ 2, there exists a p-suitable intersection
matrix N whose associated graph has δ nodes and |ΦN | ≥ pδ.

Given a prime p and any integer δ > 1, it is natural to wonder whether there exists a Z/pZ-
quotient singularity whose minimal resolution of singularities has a resolution graph which is a
tree with δ distinct nodes. Our current record is δ = 5 when p = 2, found in 6.3.

The families of Z/pZ-quotient singularities whose resolution graphs are currently known
have resolutions whose number of irreducible components increases with p. For instance, the
intersection matrix Ap−1 on the path on n = p−1 vertices arises as a Z/pZ-quotient singularity
(see [26], 9.4). For trees which have at least one node, we can prove the following theorem.

Theorem 8.1. Let p be any prime. Let n ≥ p+3 be any integer. Then there exists a p-suitable
intersection matrix of size n which arises from a Z/pZ-quotient singularity.

In view of Theorems 8.1 and 4.1, it is natural to ask whether there exist a lower bound n(p),
with lim inf n(p) = ∞, such that if N is a p-suitable matrix of size n arising as a quotient
singularity and whose graph is a tree with at least one node, then n ≥ n(p).
An ample supply of p-suitable intersection matrices with star-shaped graphs is provided

by the resolutions of weighted homogeneous singularities of the form zp − xayb(xc − yd) = 0
with a, b, c, d ≥ 1 subject to certain mild conditions (see [26], Proposition 4.9). Some of
these hypersurface singularities are known to be quotient singularities, such as the Brieskorn
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singularities zp + xpr+1 + yps+1 = 0, and zp + xpry − xyps = 0 ([26], Theorem 5.3). We provide
in this article two new classes of weighted homogeneous singularities which are Z/pZ-quotient
singularities. In the classification of [30], page 61, the Brieskorn singularities are of Type I, and
our next two singularities are of Type II and Type III, respectively.

Theorem 7.6. Let k be an algebraically closed field of characteristic p. Let r, s ∈ Z>0. Let
f = zp + xpr+1y + yps+1 or f = zp + xpr+1y + ypsx. Let B := k[[x, y]][z]/(f). Then there exists
a k-linear action of Z/pZ on A := k[[u, v]] such that B is isomorphic to AZ/pZ.

The Z/pZ-quotient singularities in Theorem 7.6 have resolutions which are star-shaped. They
belong to a larger class of quotient singularities introduced in 7.2 which provides many examples
whose resolutions have graphs with more than one node.

We prove in Theorem 9.2 that a certain class of resolutions of quotient singularities arising
when constructing regular models of curves has associated intersection matrices N with the fol-
lowing additional property: The matrix N−1 has at least one integer coefficient on its diagonal.
This naturally leads us to ask the following question: Assume that N is a p-suitable matrix
arising from a quotient singularity. Assume that the graph of N has at least one node. Is it
possible for the matrix N−1 to have no integer coefficient?
Let p(Z) denote the arithmetic genus of the fundamental cycle Z of N (see 2.2). Proposition

10.6 exhibits a large class of matrices N with p(Z) = 0 where N−1 does not have any integers
on its diagonal. However, often enough, a p-suitable matrix N not only is such that N−1 has
an integer coefficient, but N−1 also has an integer column, as in the following theorem.

Theorem 10.1. Let p be prime. Let N be an intersection matrix such that ΦN is killed by p.
Assume that the graph Γ associated with N is a star-shaped tree. If |ΦN | ≠ p, then N−1 has at
least one integer column.

In many examples of p-suitable matrices N arising as quotient singularities presented in this
article and in [24], the fundamental cycle Z ∈ Zn

>0 of N is such that −Z is an integer column
of N−1. This is the case for instance if ΦN is trivial (see 11.1 (c)). When p = 2, we can show:

Theorem 11.2. Let p = 2. Let N be a p-suitable intersection matrix with fundamental cycle
Z. Then either −Z or −Z/p is a column of N−1.

When Z is a multiple of a column of N−1, we obtain the following sharp bound for |ΦN |.

Theorem (see 11.4). Let N be a p-suitable intersection matrix.

(a) Assume that −Z or −Z/p is a column of N−1. Then ordp(|ΦN |) ≤ 2 + 2p(Z)
p−1

.

(b) Let p = 2. Then |ΦN | divides p2p(Z)+2.

It is natural to wonder whether ΦN can always be generated by at most 2 + 2p(Z)
p−1

elements

when N is a p-suitable intersection matrix.

2. Notation

Let N ∈ Mn(Z) be a p-suitable intersection matrix whose associated graph is a connected
tree Γ on n vertices v1, . . . , vn. Thus by our definition, there exist integers c1, . . . , cn ≥ 2, such
that N = Diag(−c1, . . . ,−cn) + Ad(Γ). In this article, we will describe N using its tree Γ, and
adorn each vertex vi with the negative integer −ci. We follow the established custom and omit
to adorn vi if the integer −ci is −2.
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Example 2.1. We use the decorated tree Γ on the left in (a) below to represent the 6×6-matrix
N on the right after having made a choice of ordering of the vertices of the tree Γ.

(a)

−4

N =


−2 1 1 1 1 0

1 −2 0 0 0 0
1 0 −2 0 0 0

1 0 0 −4 0 0
1 0 0 0 −2 1

0 0 0 0 1 −2


Let N be any intersection matrix. Let Z ∈ Zn

>0 denote the fundamental cycle of N . We
represent the vector Z with tZ := (z1, . . . , zn) by adorning the vertex vi of Γ with the positive
integer zi. In the case of the above matrix N , we have tZ := (4, 2, 2, 1, 3, 2), which we record
on the left below.

We found it efficient to record the vector NZ on the same drawing as we draw the vector Z.
We use the following convention. Let t(NZ) = (s1, . . . , sn), with si ≤ 0 for all i = 1, . . . , n. For
each index i such that si ̸= 0, add a white vertex to the graph of Γ, and link it with a dashed
line to the vertex vi. Adorn the new white vertex with the coefficient |si|. In the example of
the matrix N above, we find that t(NZ) = (0, . . . , 0,−1), which we record in (b) on the right
below.

Z

2

2

4

1

3 2

(b)

2

2

4

1

3 2

1

Note that the information provided in the diagram (b) above, namely, the graph Γ, the vector
Z, and the vector NZ, allows the recovery of the diagonal elements of the matrix N , and thus
this data is sufficient to describe N itself. For the convenience of the reader, we will often
include the information of the diagonal of N explicitly, and will provide a pair of diagrams as
in (a) and (b) above to describe a matrix N , even if only one diagram would suffice.

The drawing of Z and NZ allows for a quick computation of the self-intersection |Z2| :=
|(tZ)NZ| by simply multiplying the integers linked by dashed lines, and adding the results of
the multiplications together. In the example above, we find that |Z2| = 1 · 2 = 2.

Note that in the given example, NZ is equal, up to a sign, to a standard vector of Zn.
When such is the case and Γ is any tree, the drawing of tZ = (z1, . . . , zn) allows for a quick
computation of |ΦN |. Indeed, let di denote the degree in Γ of the vertex vi. If NZ = −ej, then

|ΦN | = zj
∏n

i=1 z
di−2
i (use [20], Theorem 3.14). For instance, in the example above, we obtain

that |ΦN | = 2 42

2·2·2 = 4. When the order of ΦN is not prime, the precise group structure of ΦN

needs to be determined using for instance the Smith Normal form of N .

2.2. When describing an intersection matrix N with diagonal elements not all equal to −2,
we also indicate whether N is numerically Gorenstein. Recall that this is a purely algebraic
condition which can be expressed as follows. Write N = Ad(ΓN)−Diag(c1, . . . , cn), with ci ≥ 2
for i = 1, . . . , n. Let tH := (c1 − 2, . . . , cn − 2). Since N is invertible, the equation NK = H
has a unique solution K ∈ Qn. The vector K is called the canonical cycle of N .
The n× n intersection matrix N is numerically Gorenstein if K ∈ Zn. If a p-suitable inter-

section matrix arises from a hypersurface quotient singularity, then the matrix N is numerically
Gorenstein (see [26], Lemma 10.3). In the explicit example introduced above, the matrix N is
numerically Gorenstein because every 2-suitable intersection matrix is numerically Gorenstein
([26], Proposition 10.5).
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Given any vector R ∈ Zn with tR = (r1, . . . , rn), we have tRNK =
∑n

i=1 ri(ci − 2), and
the integer tRNR + tRNK is even. The integer p(R) := 1

2
(tRNR + tRNK) + 1 is called the

arithmetical genus of R. For instance, in Example 2.1, p(Z) = 1.

In later sections, we will title each paragraph describing a p-suitable intersection matrix
N by either Intersection Matrix or Quotient Singularity. By convention, we use the
title Intersection Matrix when we do not know whether the p-suitable intersection matrix
N described in that paragraph actually arises as a quotient singularity. This is the case in
particular for the matrix N described in 2.1. When p = 2, this matrix N is the smallest 2-
suitable intersection matrix for which we do not know if it arises from a quotient singularity1.
When we know that a given p-suitable intersection matrix N arises as a quotient singularity, we
use the title Quotient Singularity and we include a description of the quotient singularity.

2.3. For later use in describing intersection matrices, we record here the following standard
construction. Given an ordered pair of positive integers r and s with gcd(r, s) = 1 and r > s,
we construct an associated intersection matrix N = N(r, s) with vector R = R(r, s) and such
that (tR)N = (−r, 0, . . . , 0).
Indeed, we can find an integer m ≥ 1 and integers b1, . . . , bm > 1 and s1 := s > s2 > · · · >

sm = 1 such that r = b1s − s2, s1 = b2s2 − s3, and so on, until we get sm−1 = bmsm. These
equations are best written in matrix form:

−b1 1 . . . 0

1 −b2
. . .

. . . . . . 1
0 . . . 1 −bm




s1
...
...
sm

 =


−r
0
...
0

 .

We let N denote the above square matrix, and let R be the first column matrix above. It is
well-known that det(N) = ±r (see, e.g, [19], 2.6). The matrix N is an intersection matrix
whose associated graph is a path of length m:

−b1 −b2 −bm−1 −bm

Similarly, starting with a matrix N represented by the above path with b1, . . . , bm ≥ 2 and
setting sm := 1, it is possible to sequentially solve for integers 1 < sm−1 < · · · < s1 such that
the associated vector tR = (s1, . . . , sm−1, 1) is such that (tR)N = (−1)m−1 det(N)(1, 0, . . . , 0).
As usual, if X, Y ∈ Zn, we write X > 0 (resp., X ≥ 0) if all coefficients of X are positive

(resp., if all coefficients are non-negative). We write X > Y if X−Y > 0, and we write X ≥ Y
if X − Y ≥ 0. In particular, the fundamental cycle Z of an intersection matrix N is such that
Z > 0 and NZ ≤ 0.

3. Constructing new p-suitable matrices from old ones

In this section, starting with a p-suitable matrix N such that N−1 has an integer column, we
construct in several instances a new p-suitable matrix of larger size. A similar result is obtained

1The matrix −N defines an indecomposable positive definite quadratic form on Z6 of determinant 4. Such
forms are classified and there is only one isomorphism class over Z, represented by the lattice 46 on page 20 of
[9], Table 1. The Dynkin diagram D6 also defines a quadratic form isomorphic to 46, and in its case it is known
that the intersection matrix N ′ of the Dynkin diagram D6 arises from a Z/2Z-quotient singularity (see 6.2 and
9.7). The isomorphism between the quadratic forms defined by −N and −N ′ is easy to establish directly: If
we denote by {e1, . . . , e6} the basis for −N , then the basis {e1, e2, e3, e5, e6,−Z} produces the matrix −N ′.
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in 9.14 assuming the existence of a column of N−1 which is not an integer column, but such
that the diagonal element on that column is an integer.

3.1. Let N be any symmetric integer matrix with negative integers on the diagonal, and non-
negative integers off the diagonal, and assume that its associated graph Γ is connected. In
general, such a matrix need not be negative definite or semi-definite. However, as recalled in
[20] 3.3, if there exists any integer vector W > 0 such that NW ≤ 0, then either NW = 0 and
N is negative semi-definite, or NW < 0 and N is non-singular and negative definite.

Let N ∈ Mn(Z) be an intersection matrix with associated graph Γ. We let e1, . . . , en denote
the standard basis of Zn. When v is a vertex of Γ and no ordering of the vertices of Γ has been
chosen, we let ev denote the standard basis vector of Zn associated with v. We let v denote the
class of ev in the quotient ΦN := Zn/Im(N).

3.2. Let N ∈ Mn(Z) be an intersection matrix. Let (N−1)i denote the i-th column of the
matrix N−1. Recall that each coefficient of the matrix N−1 is negative ([34], Corollaire p.
387). Let pi ≥ 1 denote the smallest positive integer such that the vector Ri := −pi(N

−1)i
has non-negative integer coefficients. By minimality of pi, the greatest common divisor of the
coefficients of the integer vector Ri is 1. By construction, we have NRi = −piei, showing that
the order of the class of ei in ΦN is pi. By definition of the fundamental cycle Z, we also have
Z ≤ Ri for each i = 1, . . . , n.

Lemma 3.3. Let p be prime. Let N ∈ Mn(Z) be a p-suitable intersection matrix. Assume that
for some i, the integer vector Ri (defined in 3.2) is such that (tRi)NRi = −1. Let N ′ ∈ Mn(Z)
denote the matrix which differs from N only at the (i, i)-entry, with N ′

ii = Nii − (p− 1). Then

(a) N ′ is p-suitable, and |ΦN ′| = p|ΦN |.
(b) Assume that the canonical vector of N is tK := (k1, . . . , kn). Then the canonical vector of

N ′ is K ′ := K + (ki+1)(p−1)
p

Ri. In particular, if N is numerically Gorenstein, then N ′ is

numerically Gorenstein if and only if p divides ki + 1.

Proof. (a) Let N ii denote the (n−1)×(n−1)-matrix obtained from N by removing its i-th row
and i-th column. The hypothesis that (tRi)NRi = −1 implies that NRi = −ei and that the
ith coefficient of Ri is 1. Without loss of generality, we can assume that i = 1. We now show
that the same row and column operations produce the Smith Normal Form of both N and N ′.
Write tR1 = (1, r2, . . . , rn). Let Ni denote the i-th column of N . Add the linear combination∑n

j=2 rjNj to the column N1. Similarly, add the linear combination
∑n

j=2 rjN
′
j to the column

N ′
1. Proceed similarly with adding the same linear combination of the rows of N to the first

row of N , and do the same for N ′. At the end of these operations, we find that N is similar to
the matrix on the left below, and N ′ is similar to the matrix on the right:

−1 0 · · · 0
0
... N11

0

 ,


−p 0 · · · 0
0
... N11

0

 .

It is clear then that ΦN ′ ∼= Z/pZ× ΦN .
Let Z (resp. Z ′) denote the fundamental cycle of N (resp. N ′). It follows from 11.1(b)

that Ri = Z. Since N ′Ri = NRi − (p − 1)ei = −pei, we find that Z ′ ≤ Ri. In particular,
|(tZ ′)N ′Z ′| ≤ |(tRi)N

′Ri| = p, as desired.
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(b) Recall that by definition, tKN = −(N11 + 2, . . . , Nnn + 2). Recall that K ′ := K +
(ki+1)(p−1)

p
Ri. It is easy to check that (tK ′)N ′ = (tK)N + (p− 1)ei, so that K ′ is the canonical

cycle of N ′. Since the i-th coefficient of Ri is equal to 1, we find that the vector K ′ has integer
coefficients if and only if p divides ki + 1. □

Let N be a p-suitable intersection matrix of size n. Suppose that the matrix N−1 has an
integer column. We use below this column to create a new p-suitable matrix N of size n + 1.
Without loss of generality, we can assume that the first column of N−1 is an integer vector. In
other words, the integer vector R1 ∈ Zn

>0 is such that NR1 = −e1. Let r1 ∈ Z>0 denote the
first coefficient of R1. Set

N :=


−(r1 + 1) 1 0 · · · 0

1
0 N
...
0

 .

Theorem 3.4. Let N be a p-suitable intersection matrix of size n. Suppose that the first column
of N−1 is an integer vector. Then

(a) The matrix N is p-suitable of size n+ 1, with |ΦN | = |ΦN |. The vector R := t(1,tR1) is the
fundamental cycle of N and tR N R = −1.

(b) The matrix N
′
constructed in 3.3 using N and R is p-suitable of size n + 1, with |ΦN

′| =
p|ΦN |.

Proof. (a) Label the standard basis of Zn+1 as {e0, e1, . . . , en}. It is immediate to check that
N ·R = −e0. Write tR1 := (r1, . . . , rn). To show that ΦN is isomorphic to ΦN , we proceed with
the following row and column operations. Add the sum of columns

∑n
j=1 rjN j+1 to the first

column of N . Similarly, add the same linear combination of the last rows to the first row of N .
After these operations, we find that N is similar to

−1 0 · · · 0
0
... N
0

 .

It is clear then that ΦN
∼= ΦN .

Since NR = −e0, we find that tRNR = −1. It follows from Proposition 11.1 (b) that R is
the fundamental cycle of N . The statement of (b) follows immediately from Lemma 3.3 (a). □

We illustrate below the constructions in Theorem 3.4 when p = 3. An example when p = 2
and the Dynkin diagram Dm is found in 6.2.

Quotient Singularity 3.5. (n = 8) The following matrix is p-suitable for any prime p:

Diagonal of N

−4

Z

6

3

9 12

8 4

7 2

1
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The associated group ΦN is trivial and Z2 = −2, with K = −2Z and p(Z) = 2. This matrix
arises from the resolution of the hypersurface singularity given by f = z3 + x4 + y7 = 0. It is
shown to arise from a Z/3Z-quotient singularity in [26], Theorem 7.1, or Theorem 5.3.

Quotient Singularity 3.6. (n = 9) Let p = 3. Using the matrix N in 3.5 and its fundamental

cycle, Theorem 3.4 constructs the p-suitable matrices N and N
′
below.

N(N
′
) −4 −3(−5) Z(Z

′
)

6

3

9 12

8 4

7 2 1

1(3)

The associated group ΦN is trivial, and Z
2
= −1 with p(Z) = 3. The matrix N arises from the

resolution of the hypersurface singularity given by f = z3 + x4 + y19 = 0. It is shown to arise
from a Z/3Z-quotient singularity in [26], Theorem 5.3.

The associated group ΦN
′ has order 3, and (Z

′
)2 = −3 with p(Z

′
) = 3. We do not know if the

matrix N
′
arises from a Z/3Z-quotient singularity. Note that the matrix N

′
is not numerically

Gorenstein, even though the matrix N is.

Quotient Singularity 3.7. (n = 10) Given the matrix N in 3.6 and its fundamental cycle Z,

Theorem 3.8 below constructs the following matrix N
′′
.

N
′′

−4 −4 Z
′′

6

3

9 12

8 4

7 2 1 1

11

The associated group ΦN
′′ has order 3 and (Z

′′
)2 = −2 with p(Z

′′
) = 3. Note that in this

example, the fundamental cycle Z
′′
is not a multiple of a column of (N

′′
)−1.

The matrix N in 3.6 is associated with the resolution of f = z3 + x4 + y19 = 0. Perform the
blow-up of the origin of the hypersurface f = 0. In the chart with coordinates z/y, x/y, y, the
strict transform is given by (z/y)3 + (x/y)4y + y16 = 0. It turns out that the singularity given

by g = z3 + x4y + y16 = 0 has resolution matrix equal to N
′′
. Theorem 7.6 shows that the

singularity g = 0 is a Z/3Z-quotient singularity. This blow-up construction of a new quotient
singularity from an old one motivated our next theorem, which is purely linear algebraic.

Theorem 3.8. Let p ≥ 3. Let N ∈ Mn(Z) be a p-suitable intersection matrix. Assume that
for some i ∈ [1, n], the i-th column of N−1 is an integer column. Let r := |(N−1)ii| and
assume in addition that r ≤ (p − 1)/2. Then there exists a new p-suitable intersection matrix
N ′′ ∈ Mn+p−r−1(Z) with the following properties:

(a) |ΦN ′′ | = p|ΦN |.
(b) Let Z and Z ′′ denote the fundamental cycles of N and N ′′. Then |Z2| ≤ r, and |Z ′′2| ≤ 2r.
(c) When p = 3, then r = 1, Z is a column of N−1, |Z ′′2| = 2, and Z ′′ is not a column of

(N ′′)−1.

Proof. Let Ap−r−1 denote a chain of p− r − 1 consecutive vertices w1, w2, . . . , wp−r−1, with w1

being a vertex of degree 1 on the chain. Set all self-intersections of Ap−r−1 to be −2. Let ΓN ′′



INTERSECTION MATRICES OF WILD CYCLIC QUOTIENT SINGULARITIES 9

denote the union of the graphs ΓN and Ap−r−1 with an additional edge linking vi ∈ ΓN to
w1 ∈ Ap−r−1. The diagonal element of the matrix N ′′ at vertices of ΓN are those of N , except
at vi, where we set N ′′

ii := Nii − 1. The diagonal elements of N ′′ at vertices of Ap−r−1 are all
−2.
(a) Without loss of generality, we may assume that i = n and that the vertex v := vn is

the last vertex in the chosen ordering of the graph ΓN and of the columns of N . We let N v

denote the matrix obtained from N by deleting the row and the column of N corresponding to
v. To show that |ΦN ′′ | = p|ΦN |, we compute det(N ′′) as a sum of two determinants, as follows.
Write

N ′′ =



Nv
...

· · · Nnn − 1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2


.

Then

det(N ′′) = det



Nv
...

· · · Nnn 1
0 −2 1

. . .
. . .

. . .

1 −2 1
1 −2


+ det



Nv 0
· · · −1 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1 −2


.

Hence
det(N ′′) = det(N)(−1)p−r−1(p− r) + det(N v)(−1)p−r.

By construction, (N−1)nn = det(N v)/ det(N) = −r. It follows that det(N v) = − det(N)r.
Therefore

det(N ′′) = (−1)p−r−1p det(N)− (−1)p−r−1r det(N)− (−1)p−r det(N)r
= (−1)p−r−1p det(N),

as desired.
(b) We continue to assume that i = n. Since the n-th column of N−1 is an integer column

by hypothesis, the positive vector Rn introduced in 3.2 is such that NRn = −en. Also by
hypothesis, (tRn)NRn = −r. It follows that |Z2| ≤ |R2

n| = r (see proof of Proposition 11.1 (b)).
By hypothesis, r ≤ p− 1− r. Set tZ̃ ′′ := (tRn, r, . . . , r, r − 1, r − 2, . . . , 2, 1), to obtain

(tZ̃ ′′)N ′′ = (0, . . . , 0,−1, 0, . . . , 0,−1, 0, . . . , 0)

and (tZ̃ ′′)N ′′Z̃ ′′ = −2r. It follows that N ′′ is negative definite (3.1), and that Z ′′ ≤ Z̃ ′′, so that
|(tZ ′′)N ′′Z ′′| ≤ |(tZ̃ ′′)N ′′Z̃ ′′| = 2r.

To finish the proof that N ′′ is p-suitable, it remains to show that ΦN ′′ is killed by p. For this,
we will show that the class of every vertex of ΓN ′′ is killed by p. Let us start with the class of
wp−r−1. Consider the vector tRwp−r−1 := (tRn, r + 1, r + 2, . . . , p− 1). It is easy to check that

N ′′Rwp−r−1 = −pewp−r−1 .

Since r is a coefficient of Rn and gcd(r, r + 1) = 1, this equality shows that the class of wp−r−1

in ΦN ′′ has order p. Using this fact and Lemma 10.2, we conclude that the classes of vn,
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w1, . . . , wp−r−2 also have order p. Consider now a vertex vj of ΓN with j < n, with the relation
NRj = −pjej and pj ∈ {1, p}. Let rj denote the coefficient of Rj at the vertex v = vn. Let

tSj = (tRj, rj, . . . , rj).

We have the relation

(3.1) (tSj)N
′′ = (0, . . . ,−pj, . . . , 0, 0, . . . , 0,−rj).

Since the matrix N−1 is symmetric and we assume that the n-th column has integer coefficients,
we find that either (1) pj = p, in which case rj is divisible by p, or (2) pj = 1.

In case (1), the relation (3.1) shows that the order of ej in ΦN ′′ is equal to pj = p. In case
(2), we have two possibilities. Either (2)(i): rj is divisible by p, in which case again (3.1) shows
that the order of ej in ΦN ′′ is equal to pj = 1, or (2)(ii): rj is not divisible by p, in which case
(3.1) shows that the order of ej in ΦN ′′ is equal to the order of ep−r−1, which we showed above
to be p.

(c) Let p = 3. Then tRnNRn = −1 by hypothesis. It follows from Proposition 11.1 (b) that
Z = Rn. Set

tZ̃ ′′ := (tZ, 1). Then t(N ′′Z̃ ′′) = (0, . . . , 0,−1,−1) and tZ̃ ′′N ′′Z̃ ′′ = −2. We claim
that Z ′′ = Z̃ ′′. Indeed, if Z ′′ < Z̃ ′′, then it follows from the proof of Proposition 11.1 (b) that
|Z ′′2| < |Z̃ ′′2|. This is not possible because the coefficients of Z̃ ′′ at vn and w are equal to 1,
and this implies that the coefficients of Z ′′ at vn and w also have to equal 1. Then |Z ′′2| ≥ 2,
which is a contradiction. □

Remark 3.9. It may happen that the initial matrix N in Theorem 3.8 is numerically Goren-
stein, but the larger matrix N ′′ is not. Such an example occurs in [24], 6.16, where p = 5 and
N is the intersection matrix of the resolution of z5 + x2 + y8 = 0.

4. Existence of p-suitable matrices of small sizes

Fix a finite connected tree Γ on n vertices. For a given prime p, one may wonder whether
there exists a p-suitable matrix N with associated graph Γ. We show in this section that such
matrix might not exist when p is small (see Proposition 4.7). On the other hand, it is likely
that for most graphs Γ, and for all primes p large enough (depending on Γ), such a p-suitable
matrix does exist. We will not attempt in this article to exhibit evidence for this expectation
beyond Theorem 4.1 (see, e.g., [23] Remark 1.4). We show then in Proposition 4.6(a) that for
any given p, the number of p-suitable matrices N with graph Γ is always finite.

Theorem 4.1. Let Γ0 be a finite connected tree such that for some prime ℓ, there exists an
ℓ-suitable matrix N0 with associated graph Γ0 such that |ΦN0| = 1. Let Γ be any finite connected
tree which strictly contains Γ0 as an induced subgraph. Let p be any prime. Then there exists
a p-suitable matrix N with associated graph Γ such that |ΦN | = p.

Proof. Since both Γ0 and Γ are connected trees, our hypothesis implies that there exists at least
one terminal vertex of Γ which is not contained in Γ0. In fact, if Γ has s more vertices than Γ0,
we can consider a sequence of connected trees

Γ0 ⊂ Γ1 ⊂ · · · ⊂ Γs−1 ⊂ Γs = Γ

such that for each j = 1, . . . , s, Γj is obtained from Γj−1 by adding a single vertex to Γj−1 and
linking it by a single edge to an already existing vertex of Γj−1.
For each j = 1, . . . , s, use Theorem 3.4 (a) to produce an intersection matrix Nj with graph

Γj such that |ΦNj
| = 1. Then use Theorem 3.4 (b) to modify the matrix Ns to obtain a new

p-suitable matrix with graph Γs = Γ such that |ΦN | = p. □
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Corollary 4.2. Given any connected tree Γ which properly contains the graph of the Dynkin di-
agram E8, and given any prime p, there exists a p-suitable intersection matrix N with associated
graph Γ and |ΦN | = p.

Proof. Corollary 4.2 follows immediately from the more precise Theorem 4.1, since it is known
that the Dynkin diagram E8 has ΦE8 = (0). □

Remark 4.3. Using [35], Corollary 3.11, we find that a graph as in Corollary 4.2 cannot be
associated with the resolution of a rational singularity.

Remark 4.4. For further information on the intersection matrices N such that |ΦN | = 1, we
refer the reader to [5], [6], [7], and [8]. There are nine known such intersection matrices of
minimal size n = 8, and they are listed in [24], Section 8. One such example is exhibited in 3.5.

Intersection Matrix 4.5. The graph Γ displayed below on n = 9 vertices contains the graph
of the Dynkin diagram E8. The proof of Theorem 4.1 leads to the following explicit intersection
matrix:

N

−(p + 4)

Z ′

4

2

6 8 10

5

7 4

1p

The associated group ΦN has order p and |Z2| ≤ p since Z ′2 = −p. The case p = 1 gives the
intersection matrix of the resolution of z2+x13+y5 = 0. The case p = 2 gives the matrix of the
resolution of the blow-up z2 + x9 + y5x = 0. Both of these matrices arise from Z/2Z-quotient
singularities (see [26] Theorem 5.3 (i), and Theorem 7.6). When p ≥ 3, the matrix N is not
numerically Gorenstein. When p ≥ 11, the matrix N−1 has no integer column.

Proposition 4.6. Let Γ be a connected graph on n vertices.

(a) Fix a prime p. Then there exist only finitely many intersection matrices of the form N =
Diag(−c1, . . . ,−cn) + Ad(Γ) with c1, . . . , cn ∈ Z≥1 and such that ΦN is killed by p.

(b) Assume that Γ is a tree. Let t denote the length of the longest path in Γ. Let N =
Diag(−c1, . . . ,−cn) + Ad(Γ), with c1, . . . , cn ∈ Z. Then the group ΦN can be generated by
n− t+ 1 elements.

Proof. (a) It is proved in Theorem 1 of [17] that for a given integer d, there exist at most
finitely many matrices −N = Diag(c1, . . . , cn) − Ad(Γ) which are positive definite and have
det(−N) = d.

In our case, the matrix N has size n, so that the group ΦN can be generated by n elements.
Hence, when ΦN is killed by p, |ΦN | divides pn. It follows that for any given prime p, there are
only finitely many possibilities for the values taken by det(N).
(b) Suppose that the vertices v1, . . . , vt are the consecutive vertices of Γ on a path of longest

length in Γ. The top left t × t submatrix M of N is a tridiagonal matrix. Let M ′ denote
the submatrix of M obtained by removing its first row and last column. Every coefficient of
the diagonal of M ′ is equal to 1. Since Γ is a tree, every coefficient of M ′ below the diagonal
of M ′ is 0. Hence, M has a (t − 1 × t − 1)-submatrix with determinant equal to 1. This
shows that the Smith Normal Form D := Diag(d1, . . . , dn) of N (with d1 | . . . | dn) must have
d1 = · · · = dt−1 = 1. Thus ΦN , which is isomorphic to ΦD, can be generated by n − (t − 1)
elements. □
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Proposition 4.7. Consider the graphs

Γ , Γ′

v1 v4

v5

v6 v7

and Γ
′′

(a) There exist no 2-suitable intersection matrices with graph Γ.
(b) There exist no 2-suitable or 3-suitable intersection matrices with graph Γ′ or Γ

′′
.

Proof. (a) Consider the matrixN := Diag(−x1, . . . ,−x6)+Ad(Γ), where x1, . . . , x6 are variables
and Ad(Γ) is the adjacency matrix of Γ. Then det(N) is a polynomial f(x1, . . . , x6). The set
of integer values taken by this polynomial when x1, . . . , x6 ≥ 2 is discussed in [23], 5.3 (c). The
smallest value is |f(−2, . . . ,−2)| = 3. When exactly one of the variables is increased to 3 and
the others are left at 2, we obtain the values |f(x1, . . . , x6)| = 7, 9, 13, Thus this polynomial
does not take any value in {1, 2, 4} when x1, . . . , x6 ≥ 2. This suffices to prove Part (a), since
Γ has a path of length 5, so that when ΦN is killed by 2, we have |ΦN | ∈ {1, 2, 4} by 4.6 (b).
(b) Consider the matrix N(−x1, . . . ,−x7) := Diag(−x1, . . . ,−x7) +Ad(Γ′), where x1, . . . , x7

are variables. Then det(N) is a polynomial f(x1, . . . , x7). Since Γ′ has a path of length 5, we
must have |ΦN | ∈ {1, 2, 3, 4, 8, 9, 27} by 4.6 (b).
For any x7 ≥ 2, the matrix N(−2, . . . ,−2,−x7) is not positive definite since its determinant

is constant, equal to −4. The tuple (x1, . . . , x7) = (2, 2, 2, 2, 3, 2, 2) produces a matrix N of
determinant 0 which is positive semi-definite of rank 6. The tuple (2, 3, 2, 2, 2, 2, 3) produces a
positive definite matrix N with ΦN = Z/3Z. The tuple (2, 4, 2, 2, 2, 2, 2) produces a positive
definite matrix N with ΦN = Z/2Z. This information suffices to produce an explicit effective
bound B such that, if N(−x1, . . . ,−x7) is positive definite with determinant at most 27, then
2 ≤ x1, . . . , x7 ≤ B. We leave the details to the reader, using [23] 2.1(c). We also need in
addition that ΦN is killed by p = 2 or 3. There are three examples of such N , with ΦN = Z/2Z
and Z/3Z given above, and with (x1, . . . , x7) = (2, 2, 2, 2, 3, 2, 3) producing a matrix N with
ΦN = Z/2Z × Z/2Z. In each case, we leave it to the reader to check that we have |Z2| > p,
where Z denotes the fundamental cycle of N . Thus these matrices are not p-suitable.
Consider now the matrix N := Diag(−x1, . . . ,−x6)+Ad(Γ′′), where x1, . . . , x6 are variables.

Then det(N) is a polynomial f(x1, . . . , x6). We leave it to the reader to show that this poly-
nomial does not take any value in {1, 2, 3, 9, 27} when x1, . . . , x6 ≥ 2. Since Γ has a path of
length 4, we have |ΦN | ∈ {1, p, p2, p3} by 4.6 (b). The values |ΦN | = 4 or 8 both occur, but the
reader will check that in all occurrences, the group ΦN has exponent 4. Hence, these matrices
are not p-suitable. □

5. Gluing two graphs to obtain new p-suitable matrices

We show in this section how to start with two p-suitable intersection matrices and build a
third one. This construction will let us build in Theorem 5.5 p-suitable matrices whose graphs
have any number of nodes. Let us start with the following example.

Quotient Singularity 5.1. (n = 14) We describe below the smallest known Z/3Z-quotient
singularity to date having a graph with at least two nodes and a 3-suitable resolution matrix.
(Because the matrix N has a unique coefficient on the diagonal which is smaller than −2, we
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only give below the vectors Z and NZ.)

Z

5 7 9 5 1(−11) 6 4 2

3 6 3 3 4 21

The associated group ΦN has order 32 and Z2 = −3. This intersection matrix is the resolution
matrix of the singularity f := zp−(abxy)p−1z−apxy+bpx = 0 with a := y3+xy and b := x2+y3x
It follows from Theorem 7.5 that this is a Z/3Z-quotient singularity.
The graph above with two nodes is obtained by gluing together the graphs of the 3-suitable

intersection matrices N1 and N2 below. The left matrix N1 arises from a Z/3Z-quotient sin-
gularity ([24], 5.19(a2), z3 + x4y + y4 = 0, blow up of 3.5). The right matrix arises from
the desingularization of z3 + x4 + y14 = 0, which is not known to arise from a Z/3Z-quotient
singularity.

Z1

5

3

7 9

6 3

5 1(−5)

1

and Z2

1(−7) 6 4 2

3 4 21

Intersection Matrix 5.2. (n = 15 +m,m ≥ 0) Starting with the two intersection matrices
N1 and N2, one can construct the infinite family of 3-suitable matrices below. Theorem 5.4
generalizes this construction.

Z

5 7 9 5 1(−6) 1

2+m︷ ︸︸ ︷
1(−7) 6 4 2

3 6 3 3 4 21

The associated group ΦN has order 32 and Z2 = −3.

5.3. To generalize the construction in 5.2, we need to introduce the following notation. Let N1

be a p-suitable matrix of size n1 with fundamental cycle Z1. Assume that

(i) There exists a vertex v of ΓN1 such that the coefficient of Z1 corresponding to v is 1.
(ii) The coefficient of the vector N1Z1 corresponding to the vertex v is 0.

Let N2 be a p-suitable matrix of size n2 with fundamental cycle Z2. Assume that

(iii) (tZ2)N2Z2 = −1, so that in particular there exists a vertex w on the graph ΓN2 such
that the coefficient of Z2 corresponding to this vertex is 1, and such that −N2Z2 is
the standard basis vector of Zn2 corresponding to w (see proof of 11.1 (a)).

Fix a positive integer m. We now describe a new intersection matrix N of size n1 +m+ n2.
If m = 0, then the graph ΓN is simply the union of the graphs ΓN1 and ΓN2 joined by a single
edge linking v and w. If m > 0, let u1, . . . , um denote the consecutive vertices on the graph of
a chain Am of length m. All the self-intersections of the matrix Am are equal to −2. Since the
vertices are consecutive, we will assume that u1 and um have degree 1. Then the graph ΓN is
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the union of the graphs ΓN1 , Am and ΓN2 with one added edge linking v to u1 and a second
added edge linking um to v.

If −c = (N1)vv denotes the diagonal element of N1 corresponding to the vertex v, then we
set to −c− 1 the diagonal element of N corresponding to v in ΓN . All other diagonal elements
of N are those found already in N1, Am, or N2.

Theorem 5.4. Let p be prime. Let N1 and N2 be two p-suitable matrices satisfying the condi-
tions 5.3 above. Then the matrix N introduced in 5.3 is p-suitable with ΦN = ΦN1 ×ΦN2. If Z
denotes the fundamental cycle of N , then |(tZ)NZ| ≤ |(tZ1)N1Z1|.
Proof. Let Z ′ denote the vector in Zn1+m+n2

>0 where Z ′ restricted to N1 is Z1, where Z
′ restricted

to N2 is Z2, and where Z ′ restricted to Am is t(1, . . . , 1). The vector Z ′ has strictly positive
coefficients. By our construction, the vector NZ ′ has non-zero coefficients exactly where the
vector N1Z1 has non-zero coefficients. In fact, the non-zero coefficients of NZ ′ equal the non-
zero coefficients of N1Z1, so that (tZ ′)NZ ′ = (tZ1)N1Z1. It follows that N is negative definite
(3.1), and that the fundamental cycle Z of N is such that Z ≤ Z ′. Since |Z2

1 | ≤ p, we find that
|Z2| ≤ p.

To show that N is p-suitable, it remains to show that ΦN is killed by p. Since both ΦN1 and
ΦN2 are killed by p, it suffices to show that ΦN = ΦN1 × ΦN2 . For this we proceed with a row
and column reduction of the matrix N .

Recall that the coefficient of Z2 is 1 at w by hypothesis. Moreover, −NZ2 is the standard
basis vector corresponding to w. We use this fact and add the following linear combination
of columns of N to its column corresponding to w: multiply each column of N corresponding
to a vertex in ΓN2 by the corresponding coefficient of Z2, and add everything to the column
corresponding to w. This operation almost clears out that column, leaving a −1 at the w-row,
and a 1 at the um-row. A similar linear combination of the rows will almost clear out the w-row,
leaving on the w-row a coefficient −1 in the w-column, and a coefficient 1 in the um-column.
After this operation, we find that the group ΦN is the product of two groups. It is easy to
check one of them is ΦN2 , and the second one can be determined to be ΦN1 . □

Theorem 5.5. Let p be prime. Let δ ∈ Z≥2. Then there exists a p-suitable intersection matrix
N whose associated graph is a tree with δ nodes and with |ΦN | ≥ pδ.

Proof. There are many ways of obtaining a p-suitable matrix whose graph is a tree with δ nodes.
We exhibit below one such convenient way. Let N1 and N2 be two p-suitable matrices with
star-shaped graphs as in Lemma 5.6. Let m = δ − 2 and apply the construction of Theorem
5.4 to the matrices N1 and N2 using this m. We obtain in this way a new graph ΓN with
two nodes and a chain of m vertices u1, . . . , um linking the graphs of N1 and N2. It is easy to
check that the matrix N satisfies Conditions (i) and (ii) at the vertex u1. We can thus apply
Theorem 5.4 to the pair (N, u1) and the matrix N2 to construct a new matrix N (1) whose graph
has three nodes and is obtained as the union of the graphs of N and N2 linked by one edge.
We can continue this process with the vertex u2 associated with the matrix N (1) to obtain a
new matrix N (2) whose graph has four nodes. Repeating this process δ − 4 times, we obtain a
matrix N (δ−2) whose graph has δ nodes. In each step in our process, Theorem 5.4 describe the
associated finite group, and we find that since we chose |ΦN1|, |ΦN2| ≥ p, the group ΦN(δ−2) has
order at least pδ. □

Lemma 5.6. Let p be prime. Then there exist a p-suitable matrix N1 satisfying Conditions (i)
and (ii) in 5.3, and a p-suitable matrix N2 satisfying Condition (iii). Moreover, N1 and N2

can be chosen so that their graphs are star-shaped and |ΦN1 |, |ΦN2| ≥ p.
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Proof. When p = 2, the matrix Nr (r ≥ 1) in 8.4 satisfies all three conditions. When p ≥ 3, the
matrix N in Remark 8.6 satisfies Conditions (i) and (ii). The construction (a) in Theorem 3.4,
applied to the pair (N,Z) in 8.6 produces a new matrix N which satisfies Condition (iii). □

Remark 5.7. Using [35], Theorem 5.1, we find that a graph as in Theorem 5.5 cannot be
associated with the resolution of a rational singularity as soon as δ > |Z2| − 2 when |Z2| ≥ 3.

6. Trees with more than one node in characteristic 2

In view of Theorem 5.5, it is natural to wonder, given a prime p and any integer δ > 1,
whether there exists a Z/pZ-quotient singularity whose minimal resolution of singularities has
a resolution graph which is a tree with δ distinct nodes. Our record below is a family of 2-
suitable intersection matrices whose graphs are trees with 5 nodes, and which are likely to arise
from a Z/2Z-quotient singularity. A family with 3 nodes is discussed in 9.10. The equations
given for these singularities can be checked to arise from a Z/2Z-quotient singularity using 7.1
and Theorem 7.5.

Remark 6.1. We used Magma [4] to compute explicitly the resolutions in this section. We
include a generic code below.

p := 2; k := FiniteF ield(p60); A < x, y, z >:= AffineSpace(k, 3);
a := x2; b := y3; f := zp − (abxy)p−1z − apxy + ybp;
S := Surface(A, f); P := Scheme(A, [x, y, z]);
R := ResolveSingByBlowUp(S, P );
D := IntersectionMatrix(R); a; b; f ;D; ElementaryDivisors(D);
nn := NumberOfBlowUpDivisors(R);nn; for i := 1 to nn do
B := BlowUpDivisor(S,R, i); i, IsSingular(B); Genus(B); end for;

When n = 6, there exists only one tree with two nodes, and it is not associated with any
2-suitable intersection matrix (see Proposition 4.7(c)). When n = 7, there exist three trees
with two nodes. One such tree is not associated with any 2-suitable intersection matrix (see
Proposition 4.7(b)). The other two occur with 2-suitable intersection matrices in [24] 4.11 and
in [24] 4.25. The matrix [24] 4.11 is known to arise from a Z/2Z-quotient singularity. When
n = 8, there are already ten different connected trees with two nodes.

Quotient Singularity 6.2. (n = 4ℓ + 1 ≥ 9 and two nodes) It is well-known that the
Dynkin diagram Dm on m vertices is a 2-suitable intersection matrix only when m is even, in
which case we have ΦDm = Z/2Z× Z/2Z. When m is odd, ΦDm = Z/4Z. We represent below
Dm with its fundamental cycle.

Dm

1 2 2

1

m−5︷ ︸︸ ︷
2 2 1

1

Let m = 2r. It is known that D2r arises as a Z/2Z-quotient singularity (see 9.7, [2], [31]).
We represent below the two extensions of Dm obtained from Theorem 3.4 using its fundamental
cycle. We let n := 2r+1 denote the number of vertices of the two extensions. We denote these
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matrices by N
(3)
n and N

(4)
n .

N
(3 or 4)
n

n−6︷ ︸︸ ︷
−3(−4)

Z

1 2 2

1

n−6︷ ︸︸ ︷
2 2

1

1

1(2)

The group Φ
N

(3)
n

has order 22 and Z2 = −1. The group Φ
N

(4)
n

has order 23 and Z2 = −2. In

both cases, K = −Z and p(Z) = 1. These graphs are denoted An,∗∗∗∗, n ≥ 2, in Tables 1 and
2 of [16], pages 1290-1291. Computations suggest that we always have the following quotient
singularities when n = 4ℓ+ 1 and ℓ ≥ 2:

• The matrix N
(3)
n occurs as the resolution matrix of the Z/2Z-singularity given by the

equation f = 0, where f = zp − (ab)p−1z − apx− bpy with a = x and b = yℓ+3 + xy.

• The matrix N
(4)
n occurs as the resolution matrix of the Z/2Z-singularity given by the

equation g = 0, where g = zp − (abxy)p−1z− apxy− bpy with a = x and b = yℓ+2 + xy.

In the case ℓ = 1 and n = 5, the analogues of the matrices N
(3)
n and N

(4)
n have graphs with one

node only, and occur in 8.4 (case r = 1) and in [24] 4.3.

Surprisingly, we have not been able to provide evidence that the 2-suitable matrix N
(3)
n arises

from a Z/2Z-quotient singularity when n = 2r + 1 and r ≥ 3 is odd. On the other hand,

the matrix N
(4)
7 is the intersection matrix associated with the resolution of the Z/2Z-quotient

singularity f := zp−(abxy)p−1z−apxy−bpy = 0 with a := x3+xy and b := y3+x2y. Similarly,

when n = 11 (resp. n = 15), the matrix N
(4)
n is the intersection matrix associated with the

resolution of f with a := x3 + xy and b := y3 + xy2 (resp. b := y3).

Quotient Singularity 6.3. (n = 18 + 8ℓ and five nodes)

Z

1 2

2+4ℓ︷ ︸︸ ︷
2 2(−3) 2

2+4ℓ︷ ︸︸ ︷
2 1

1 1
2

2(−3) 122221

1

1

The associated group ΦN has order 26, and Z2 = −2 with p(Z) = 2. This matrix occurs as
the intersection matrix in the resolution of the hypersurface singularity f = 0, where f :=
zp − (ab)p−1z− apy− bpx with a := x5+ℓ + y(x3 + xy) and b := y(x3 + xy+ y3) when ℓ = 0, 1, 2.

7. Explicit quotient singularities

We first recall in this section a family of Z/pZ-quotient hypersurface singularities introduced
in [25], section 7. We then discuss a variation that allows for new parametrized families, as in
[26], section 8.

7.1. Let k be an algebraically closed field of characteristic p > 0. Fix a system of parameters
a, b in k[[x, y]]. Let µ ∈ k[[x, y]], and consider the equation

(7.1) zp − (µab)p−1z − apy + bpx = 0,



INTERSECTION MATRICES OF WILD CYCLIC QUOTIENT SINGULARITIES 17

and the associated ring

Bµ = B := k[[x, y, z]]/(zp − (µab)p−1z − apy + bpx).

(a) Assume that µ is a unit in k[[x, y]]. It is shown in [25], 7.1, that B is isomorphic to the
ring of invariants AZ/pZ of an explicit wild action of Z/pZ on A := k[[u, v]] ramified precisely
at the origin. More precisely, after identifying A with the ring

k[[x, y]][u, v]/(up − (µa)p−1u− x, vp − (µb)p−1v − y),

the action is determined by the automorphism σ with σ(u) = u + µa and σ(v) = v + µb. The
morphism SpecA → SpecAZ/pZ is ramified only at the maximal ideal m. Such actions are
called moderately ramified in [25], and we refer the reader to [25] for further information on
these actions.

(b) Assume that µ is not a unit in k[[x, y]], that µ ̸= 0, and that it is coprime to both a and
b. Then B is again isomorphic to the ring of invariants AZ/pZ for the action on A := k[[u, v]]
described above. However, in this case the morphism SpecA → SpecAZ/pZ is ramified in
codimension 1

7.2. Consider now the following variation. Assume that a, b, µ ∈ k[[x, y]] \ {0} and that xy
divides µ. Set

A0 := k[[x, y]][U, V ]/(Up − (µa)p−1U − x, V p − (µb)p−1V − xy).

Define τU : A0 → A0 with τU(U) := U + µa and τU(V ) := V . Similarly, define τV : A0 → A0

with τV (U) := U and τV (V ) := V + µb.

Proposition 7.3. Assume that a, b, µ ∈ k[[x, y]] \ {0} and that xy divides µ. Then the ring
A0 is a domain. The maps τU and τV are k[[x, y]]-automorphisms of A0 generating a group H
isomorphic to Z/pZ× Z/pZ. We have k[[x, y]] = AH

0 .

Proof. The polynomial Up−(µa)p−1U−x is irreducible in k[[x, y]][U ] because of our assumption
that x divides µ and the Schönemann-Eisenstein Criterion applied to the prime ideal (x). The
ring R := k[[x, y]][U ]/(Up − (µa)p−1U − x) is then a domain, with a unique maximal ideal
generated by y and U . Since R is finite of rank p over k[[x, y]], we find that its dimension is 2.
Since the maximal ideal of R is generated by two elements, we find that the noetherian local
ring R is regular.

Consider now V p− (µb)p−1V −xy ∈ R[V ]. This polynomial is irreducible in R[V ] because of
our assumption that y divides µ and the Schönemann-Eisenstein Criterion Theorem applied to
the prime ideal (y). Hence A0 = R[V ]/(V p − (µb)p−1V − xy) is a domain with maximal ideal
(y, U, V ).

It is clear that when abµ ̸= 0, the maps τU and τV are automorphisms of order p of A0 which
generate a subgroup H of automorphisms of A0 of order p

2. Let L denote the field of fractions of
A0 and let K be the field of fractions of k[[x, y]]. Then the extension L/K is Galois with group
H. Since A0 is integral over k[[x, y]], any element of A0 fixed by H is in K and is integral over
k[[x, y]]. Since k[[x, y] is integrally closed because it is regular, we find that k[[x, y]] = AH

0 . □

Let L denote the field of fractions of A0. Let A
′ denote the subring A0[

V
U
] of L.

Proposition 7.4. Assume that a, b, µ ∈ k[[x, y]] \ {0} and that xy divides µ. The ring homo-
morphism A′ → A := k[[u, v]], which sends U to u and V/U to v, is a k-isomorphism.



INTERSECTION MATRICES OF WILD CYCLIC QUOTIENT SINGULARITIES 18

Proof. The equation Up− (µa)p−1U −x = 0 first shows that x/U is in the maximal ideal of A0,
and then that x/Up is in A0 and is a unit. The ring A0 is not integrally closed, since it is clear
from the equation V p − (µb)p−1V − xy = 0 that(

V

U

)p

−
(
µb

U

)p−1(
V

U

)
− x

Up
y = 0

is an integral relation for V
U
over A0 since x divides µ and x/U is in A0. The ring A′ := A0[

V
U
],

viewed as a subring of L, is a local ring of dimension 2 with maximal ideal generated by
(y, U, V, V/U). Since y and V can be expressed in terms of U and V/U , we find that the maximal
ideal can be generated by two elements and, hence, A′ is regular, and is thus isomorphic to the
power series ring k[[u, v]], with u := U and v := V/U . □

Consider the automorphism τU ◦ τV = σ : A0 → A0 of order p with

σ(U) := U + µa, and σ(V ) := V + µb.

The group ⟨σ⟩ acts on A′, since

σ(V/U) = (V/U + µb/U)(1 + µa/U)−1

and 1 + µa/U is a unit in A0.
Let z := aV − bU . Then σ(z) = z, and we find that

(7.2) zp − (µab)p−1z − apxy + bpx = 0.

Consider the ring

B′ := k[[x, y]][Z]/(Zp − (µab)p−1Z − apxy + bpx),

and let B denote the subring k[[x, y]][z] of A0, image of the natural map φ : B′ → B ⊆ A⟨σ⟩

which sends Z to z.

Theorem 7.5. Assume that a, b, µ ∈ k[[x, y]] \ {0} and that xy divides µ. Assume also that
(x, y) is the radical of the ideal (a, b) in k[[x, y]]. Then the ring B′ is a domain and the map φ
is injective. This map induces an isomorphism between the field of fractions of B′ and the field
of fractions of A⟨σ⟩. The homomorphism φ : B′ → A⟨σ⟩ is an isomorphism if B′ is regular in
codimension 1. This latter condition is satisfied for instance if either a = xr and b = ys, or if
a = yr and b = xs, for some integers r, s ≥ 1.

Proof. The ring B′ is a domain because the polynomial f := Zp − (µab)p−1Z − apxy + bpx is
irreducible in k[[x, y]][Z]. Indeed, we assume that x divides µ, and it is easy to check that x
cannot divide apy + bp under our hypotheses. We can then apply the Schönemann-Eisenstein
Criterion. One checks then that (f) is the kernel of the map k[[x, y]][Z] → A′, so that the
homomorphism φ is injective. By degree considerations, we find that the field of fractions of B′

is isomorphic, under the natural extension of φ, to the field of fractions of A⟨σ⟩. The ring B′ is
Cohen–Macaulay since it is free as a module over the regular ring k[[x, y]]. Thus B′ is normal
as soon as it is regular in codimension 1.

Because of the special forms of a and b in the Theorem, we can show that B′ is regular in
codimension 1 by using the Jacobian criterion of Nagata ([12], IV.22.7.3). We claim that if a
prime ideal p of B′ contains the classes of f and of the partial derivatives fx, fy, fZ , then p
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contains (x, y, Z). Let us assume first that p > 2. Then

∂f
∂Z

= −(µab)p−1.
∂f
∂x

= Z(µab)p−2 ∂µab
∂x

− apy + bp.
∂f
∂y

= Z(µab)p−2 ∂µab
∂y

− apx.

We conclude that p contains a factor of µab, a factor of apx and a factor of −apy + bp.
If a = xr, then p contains x. If then b = ys, then p either contains y or a factor of −xrp+yps−1.

But if it contains −xrp + yps−1 and x, it always also must contain y, as desired.
If a = yr, then p contains x or y since it contains apx. If then b = xs and p contains x, then

since it contains −apy + bp, it must contain y also. If b = xs and p contains y, then since it
contains −apy+ bp it must contain x also. Once the ideal p contains x and y, the relation f = 0
shows that it must contain Z.

We now consider the case where p = 2. We have in this case
∂f
∂x

= Z(ab∂µ
∂x

+ aµ ∂b
∂x

+ bµ∂a
∂x
)− apy + bp.

∂f
∂y

= Z(ab∂µ
∂y

+ aµ ∂b
∂y

+ bµ∂a
∂y
)− apx.

Since p contains at least one of a, b, µ, and since µ is divisible by xy by hypothesis, we find that
we need only consider two cases, when x ∈ p and when y ∈ p. In both cases, we find that p
contains a factor of −apy + bp and a factor of −apx. Suppose first that x ∈ p. Then p contains
a factor of −apy + bp. Then using the expression −apy + bp, we find that either a = yr and
y ∈ p, or a = xr, and again y ∈ p.
Suppose now that y ∈ p. Using the expression −apy + bp, we find that p contains a factor of

b, and thus contains x when b = xs. If a = xr, then the expression −apx shows that x ∈ p, as
desired. □

We provide now two new classes of weighted homogeneous singularities which are Z/pZ-
quotient singularities. The method of proof of Theorem 7.6 below follows the same argument
as in the proof of Theorem 5.3 in [26].

Theorem 7.6. Let k be an algebraically closed field of characteristic p. Let r, s ∈ Z>0. Let
g = zp + xpr+1y + ypsx or g = zp + ypr+1x+ xps+1. Let B := k[[x, y]][z]/(g). Then there exists
a k-linear action of Z/pZ on A := k[[u, v]] such that B is isomorphic to AZ/pZ.

Proof. Fix a, b in k[[x, y]] such that either a = xr and b = ys, or a = yr and b = xs, for some
integers r, s ≥ 1. Consider the family of hypersurface singularities SpecBµ, µ ∈ (xy)k[[x, y]],
with

Bµ := k[[x, y, z]]/(zp − (µab)p−1z − apxy + bpx).

Theorem 7.5 shows that when µ ̸= 0, the ring Bµ is isomorphic to the ring of invariants AZ/pZ

of an explicit action of Z/pZ on A = k[[u, v]].
Set µ = 0 in zp−(µab)p−1z−apxy+bpx with a = xr and b = ys, to obtain f = zp−xpr+1y+ypsx.

Similarly, setting µ = 0 with a = yr and b = xs produces f = zp−ypr+1x+xps+1. We now claim
that it is possible to find a polynomial µ of large enough degree such that B := k[[x, y, z]]/(f)
is isomorphic over k to Bµ. To prove the existence of a k-isomorphism from B := k[[x, y, z]]/(f)
to Bµ, we use the Lemma in [11], 2.6, page 345. For the details of the proof of this Lemma,
the authors of [11] refer the reader to the paper [3]. Recall that the Tjurina ideal of f is
j(f) := (f, ∂f

∂x
, ∂f
∂y
, ∂f
∂z
), and that there exists an integer n > 0 such that (x, y, z)n ⊆ j(f) if and

only if the Tjurina number τ := dimk(k[[x, y, z]]/j(f)) is finite. This is indeed the case for our
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polynomials f . Then the Lemma in [11], 2.6, implies that if deg(µh) > 2τ (with h ∈ k[[x, y, z]]),
then B := k[[x, y, z]]/(f) is isomorphic over k to k[[x, y, z]]/(f + µh).
To conclude the proof, we note that since k is algebraically closed, we can make the change of

variables (x, y, z) = (ζX, Y, p
√
ζZ) to transform zp−xmy+ ynx = 0 into Zp+XmY +Y nX = 0,

with ζm−1 = −1. Similarly, the change of variables (x, y, z) = (ζX, Y, p
√
−ζZ) transforms

zp − ymx+ xn = 0 into Zp + Y mX +Xn = 0 when ζn−1 = −1. □

Remark 7.7. The triple groupings. Write c = pr + 1 and d = ps + 1 with r, s ≥ 1. The
singularity zp + xc + yd = 0 is a Z/pZ-quotient singularity ([26], Theorem 5.3(i)).

Assume that p < c < d. The blow-up of the maximal ideal produces in the chart (z/y, x/y, y)
the singularity (z/y)p + (x/y)cyc−p + yd−p = 0, which we normalize (with abuse of notation)
to zp + xcy + yd−c+1 = 0. This is again a quotient singularity by Theorem 7.6 (use the case
f = zp + ypr+1x+ xps+1 and change the role of x and y).
Assume now that p < c < d < 2c. Then we can perform the blowup of zp + xcy+ yd−c+1 = 0

at the origin to get zp + xc−(p−1)y+ yd−c+1xd−c+1−p = 0, which we normalize to zp + x2c−d+1y+
yd−c+1x = 0. This hypersurface singularity is not known to be a Z/pZ-quotient singularity
when p is odd since 2c− d + 1 is of the form pt + 2 for some t ≥ 0. But when p = 2, this is a
Z/2Z-quotient singularity by Theorem 7.6 (use the case f = zp + xpr+1y+ ypsx and change the
role of x and y).
Let p = 2. Starting this process with the E8 singularity z2 + x3 + y5 = 0 produces two new

Z/2Z-quotient singularities (with equations z2 + x3y + y3 = 0 and z2 + x2y + xy3 = 0) whose
associated graphs are the graphs of the Dynkin diagrams E7 and D6, respectively (see [24] 4.8).

8. Existence of quotient singularities with resolutions of small size

It is known that the intersection matrix Ap−1 on the path on n = p − 1 vertices arises as a
Z/pZ-quotient singularity (see [26], 9.4, for p > 2, and 8.7 below for p = 2). We exhibit in this
section examples of families of p-suitable intersection matrices of size n where it is known that
they arise from a quotient singularity and where the graph is star-shaped. As the next theorem
shows, we have not been able to produce examples where n is small compared to p, suggesting
the possibility that such examples might not exist.

Theorem 8.1. Let p be any prime. Let n ≥ p+3 be any integer. Then there exists a p-suitable
intersection matrix of size n which arises from a Z/pZ-quotient singularity.

Proof. We divide the proof into three cases, when (i) p ≥ 5, (ii) p = 3, and (iii) p = 2.

(i) Assume that p ≥ 5. We first establish the case n = p + 3 of the theorem with the
following two claims. Recall that any Brieskorn singularity given by an equation of the form
zp + xpr+1 + yps+1 = 0 for some r, s ≥ 1 is a Z/pZ-quotient singularity ([26], Theorem 5.3).

8.2. (a) Assume that p = 4k + 1. Let c := p+ 1 and d := p(p+ 1)/2 + 1. Then the Brieskorn
singularity zp + xc + yd = 0 has a resolution whose associated intersection matrix N is
p-suitable of size n = p + 3. The intersection matrix is represented below, with |ΦN | = p
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and Z2 = −2.

N

−(p + 3)/4

−d/2
(p−3)/2︷ ︸︸ ︷ −3

−3

Z

p 2p pc/2

2

(p− 2)c/2

(p− 2)c/2 3c/2

3c/2

c/2

c/2

1

(b) Assume that p = 4k + 3. Let c := 3p + 1 and d := p(3p + 1)/2 + 1. Then the Brieskorn
singularity zp + xc + yd = 0 has a resolution whose associated intersection matrix N is
p-suitable of size n = p + 3. The intersection matrix is represented below, with |ΦN | = p
and Z2 = −2.

N −6

−(p + 1)/4

−d/2
(p−3)/2︷ ︸︸ ︷ −3

−3

Z

p 6p pc/2

2

(p− 2)c/2

(p− 2)c/2 3c/2

3c/2

c/2

c/2

1

In both case (a) and case (b), we exhibit a vector Z such that −Z is a column of N−1. Our
notation suggests that this vector is the fundamental cycle of N , but we will not need, or prove,
this fact here. Recall that given N and Z, Theorem 3.4(a) exhibits a new p-suitable matrix N

with a vector Z such that −Z is a column of N
−1

and |Z2| = 1. Since −Z is a column of N
−1
,

we can apply Theorem 3.4(a) again to N and Z to obtain a p-suitable matrix N
(2)

and vector

Z
(2)

such that Z
(2)

is a column of (N
(2)
)−1, and so on, leading for each i ≥ 2 to a p-suitable

matrix N
(i)

and vector Z
(i)

such that Z
(i)

is a column of (N
(i)
)−1.

The key to finish the proof of Theorem 8.1 when p ≥ 5 is the following claim: if N is associated
with the resolution of zp+xc+yd, then N is associated with the resolution of zp+xc+yd+pc = 0,

and for all i ≥ 2, N
(i)

is associated with the resolution of zp + xc + yd+ipc = 0. Since d + ipc

is of the form pm + 1, Theorem 5.3 of [26] can be applied to show that N
(i)

arises from a
Z/pZ-quotient singularity, of size n = p+ 3 + i.

We discuss case (a) below, and leave the details of the proof in case (b) to the reader. We
will need to show that the resolution of zp + xc + yd+pc = 0 has the intersection matrix

(8.1) N

−3

−(p + 3)/4

−d/2 −3

−3
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and the resolution of zp + xc + yd+ipc = 0 has intersection matrix

(8.2) N
(i)

−3
i−1︷ ︸︸ ︷

−(p + 3)/4

−d/2 −3

−3

We use the notation introduced in [26], Theorem 5.1, to describe the intersection matrix of
the resolution of the singularity of zp + xc + yd = 0. Let g := gcd(c, d), and

a1 := c/g, a2 := d/g, and a0 := p.

Set ℓ1 := dp/g, ℓ2 := cp/g and ℓ0 := cd/g, and define bj by bjℓj+1 ≡ 0 mod aj and 0 ≤ bj < aj.
The resolution is star-shaped, and each terminal chain is determined by a fraction aj/bj using
the construction 2.3 with the pair (aj, bj). The unique node of the graph has self-intersection
−s0, where

s0 := g2/cdp+ b1/a1 + b2/a2 + gb0/p.

Since p = 4k + 1 in case (a), we find that d = p(p + 1)/2 + 1 is even. Thus g = 2. It is
easy to check that b1/a1 = 2/(c/g), b2/a2 = 1/(d/g) and b0/a0 = (p − 2)/p. One checks that
the associated chains are of lengths 2, 1, and (p− 1)/2, respectively. Since g = 2, there are two
chains of type (p− 2)/p. Thus the total number of components in the resolution is p+3. Each
self-intersection on each of the chains is at most −2. It is easy to check that s0 = 2.

Let us now describe the intersection matrix of the resolution of the singularity of zp + xc +
yd+icp = 0. Note that we have g = gcd(c, d+ icp). Let

a′1 := c/g, a′2 := (d+ icp)/g, and a′0 := p.

Set ℓ′1 := (d+ icp)p/g, ℓ′2 := cp/g and ℓ′0 := c(d+ icp)/g, and define b′j by b′jℓ
′
j + 1 ≡ 0 mod a′j

and 0 ≤ b′j < a′j. The resolution is star-shaped, and again each terminal chain is determined by
a fraction a′j/b

′
j using the construction 2.3. The unique node of the graph has self-intersection

−s′0, where

s′0 := g2/c(d+ icp)p+ b′1/a
′
1 + b′2/a

′
2 + gb′0/p.

It follows immediately from the definitions and from a1 = a′1 that b1 = b′1. Similarly, it follows
from a0 = a′0 that b0 = b′0. Consider now the equality

b2(cp/g) + 1 = α(d/g)

where 0 ≤ b2 < a2. It follows that α ≤ cp/g. Then we can write

(b2 + αi)(cp/g) + 1 = α(d/g + icp/g)

and we obtain b′2 := b2 + αi < d/g + αi ≤ d/g + icp/g.
We claim that s′0 = s0. Indeed

s′0 − s0 = g2

c(d+icp)p
− g2

cdp
+ g(b2+αi)

d+icp
− gb2

d

= g2

cp
( 1
d+icp

− 1
d
) + gb2(

1
d+icp

− 1
d
) + gαi

d+icp

= gi
d(d+icp)

(−g − b2cp+ αd) = 0.

To complete the proof of the claim, it suffices to check that the terminal chain obtained from
the fraction b′2/a

′
2 using the construction 2.3 with the pair (a′2, b

′
2) is the one depicted in (8.1)
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and (8.2). This is not hard using the values c = p+1 and d = pc/2+1, and we leave the details
to the reader.

(ii) We now address the case p = 3 of Theorem 8.1. Examples of Z/3Z-quotient singularities
with 3-suitable intersection matrices are found in 8.6 with size n = 6, and in [24] 5.6 with size
n = 7. For the cases where n ≥ 8, we proceed with the following family.

Quotient Singularity 8.3. (n = 8+r, r ≥ 0) The matrix Nr associated with the graph below
has three diagonal coefficients smaller than −2. We give these coefficients below along with the
coefficients of Zr and NrZr.

Zr

2(−3) 6 5 4

2(−3)

3

3

2 1(−3)

r︷ ︸︸ ︷
1 1

The associated group ΦNr has order 3 and Z2
r = −2 if r = 0, and Z2

r = −1 if r > 0. The matrix
Nr, r ≥ 0, arises as the resolution of a Z/3Z-quotient singularity in characteristic 3: It is the
resolution of the hypersurface singularity f = z3+x4+y10+12r = 0 ([26], 8.3). The matrix Nr+1

is obtained from Nr and Zr using Theorem 3.4 (a).

(iii) We now address the case p = 2 of Theorem 8.1.

Quotient Singularity 8.4. (n = 4 + r, r ≥ 0)

Nr

−3

r︷ ︸︸ ︷
Zr

1 2

1 1

1

r︷ ︸︸ ︷
1 1

We have Z2
r = −2 when r = 0, and Z2

r = −1 when r > 0. The associated group ΦNr has
order 22. The matrix Nr, r ≥ 0, arises as the resolution of a Z/2Z-quotient singularity in
characteristic 2: It is the resolution of the hypersurface singularity f = z2 + x3 + y3+6r = 0
([26], 8.3). The matrix Nr+1 is obtained from Nr and Zr using Theorem 3.4 (a). The matrix
Nr with r = 0 also appears in [15], Theorem C (iv). □

Corollary 8.5. For each prime p, there exist infinitely many p-suitable matrices with Z2 = −1
and arising from a Z/pZ-quotient singularity.

Proof. The statement is immediate from the list of matrices exhibited in the proof of Theorem
8.1. □

It would be interesting to prove that for each integer 1 < s ≤ p, there exist at least one (or
better, infinitely many) p-suitable matrices with Z2 = −s and arising from a Z/pZ-quotient
singularity. When s ̸= 1, 2, (p + 1)/2, and p, examples of Z/pZ-quotient singularities with
Z2 = −s are not known in general.

Remark 8.6. Fix a prime p ≥ 3. We remark here that in general, the graph Γ alone does
not determine a Z/pZ-quotient singularity. Indeed, consider the following two Z/pZ-quotient
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singularities having the same graph on 2p vertices. Let

N p−1︷ ︸︸ ︷ p−1︷ ︸︸ ︷
−p+1

2

Z

1

p−1︷ ︸︸ ︷
p− 1 p p− 1

p−1︷ ︸︸ ︷
1

2 1

with |ΦN | = p and Z2 = −2. The matrix N is numerically Gorenstein and is shown to arise
as a Z/pZ-quotient singularity in [26], Theorem 6.3. The matrix N exhibited in 9.16 has the
same graph as above, is not numerically Gorenstein, and is shown to arise as a Z/pZ-quotient
singularity in [21], Theorem 6.8, or [22] Theorem 1.1, or [29], Corollary 7.13.

Quotient Singularity 8.7. The only known case so far where the matrix N = (−p) arises as
a wild Z/pZ-quotient singularity is when p = 2. This is obtained with a := xi and b := yi+1 in
the equation f := zp − (abxy)p−1z − apxy − bpy = 0 (see Theorem 7.5). Note that the matrix
N = (−p) is not numerically Gorenstein when p > 2.

9. Quotient singularities on models of curves

We review in this section how one can naturally generate interesting quotient singularities
when constructing regular models of curves. As we will see in Theorem 9.2, the intersection
matrices N associated with these singularities must be such that N−1 has at least one integer
coefficient. Motivated by the setup of models of curves, we show in Theorem 9.5 how to start
with the discrete data of the reduction of a curve and obtain infinitely many new p-suitable
matrices which might arise as Z/pZ-quotient singularities.

9.1. Let K be a complete discrete valuation field with valuation v, ring of integers OK , uni-
formizer πK , and residue field k of characteristic p > 0, assumed to be algebraically closed. Let
X/K be a smooth proper geometrically connected curve of genus g > 0. When g = 1, assume
in addition that X(K) ̸= ∅. Assume that X/K does not have semi-stable reduction over OK ,
and that it achieves good reduction after a cyclic extension L/K of degree p.
Let H denote the Galois group of L/K. Let Y/OL be the smooth model of XL/L. Let σ

denote a generator of H. By minimality of the model Y , σ defines an automorphism of Y also
denoted by σ (but note that σ : Y → Y is not a morphism of OL-schemes). We also denote by
σ the automorphism of the special fiber Yk induced by the action of σ on Y . Let Z/OK denote
the quotient Y/H, and let α : Y → Z denote the quotient map. The scheme Z is normal. The
map α induces a natural map Yk → Zred

k which factors as follows:

Yk
ρ−−−→ Yk/ ⟨σ⟩ −−−→ Zred

k .

The map ρ is Galois of order |H|, and the second map is the normalization map of Zred
k (see

[21], 5.1).
Let P1, . . . , Pd, be the ramification points of the map Yk → Yk/ ⟨σ⟩. Let Q1, . . . ,Qd be their

images in Z. The normal scheme Z is singular exactly at Q1, . . . , Qd (see [21], 5.2). We
assume now that d ≥ 1. Consider the regular model X → Z obtained from Z by a minimal
desingularization. After finitely many blow-ups X ′ → X , we can assume that the model X ′ is
such that X ′

k has smooth components and normal crossings, and is minimal with this property.
Let f denote the composition X ′ → Z. Let C0/k denote the strict transform in X ′ of the

irreducible closed subscheme Zred
k of Z. The curve C0 has multiplicity |H| in X ′. Let Γ

i
denote

the graph attached to the exceptional divisor f−1(Qi) associated with the resolution of Qi. Let
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D1, . . . , Dd denote the irreducible components of X ′
k that meet C0 and assume that Di is a

component of f−1(Qi). Let ri denote the multiplicity of Di in X ′, i = 1, . . . , d.

Theorem 9.2. Let X/K be a smooth proper geometrically connected curve of genus g > 0 be
as 9.1. Keep the above notation. Let Γ denote the graph associated with the special fiber X ′

k.
Then, for all i = 1, . . . , d,

(a) p divides ri, and ΓQi
contains a node of Γ.

(b) Let Ni denote the intersection matrix associated with an ordering of the vertices of ΓQi
.

Then the diagonal coefficient of N−1
i corresponding to the vertex Di is an integer.

Proof. Part (a) is proved in Theorem 5.3 of [21]. We show now that Part (b) is a consequence
of Part (a). Let ni denote the size of the matrix Ni. Without loss of generality, we can assume
that the component Di corresponds to the first vertex of Γi. Let e1 denote the first standard
vector in Zni . Removing the component C0 of multiplicity p disconnects the special fiber X ′

k

into the d connected curves f−1(Qi), i = 1, . . . , d. Each component of f−1(Qi) has a multiplicity
in X ′

k, and we thus have a vector Ri ∈ Zni
>0 such that NiRi = −pe1, and such that tRi = (ri, . . . )

because of our choice of ordering of the components of f−1(Qi). It follows from the equality
NiRi = −pe1 that −Ri/p is the first column of the matrix N−1

i . Since we know that p divides
ri, we find that the top left coefficient of N−1

i is an integer. □

9.3. Recall that to any regular model X/OK , one associates a linear algebraic object called
an arithmetical graph which describes the combinatorics of the special fiber Xk. We recall
below the definition of an arithmetical graph for the convenience of the reader. Let Γ be a
finite connected graph on s vertices. An arithmetical structure (Γ,M,R) on Γ is a matrix
M ∈ Ms(Z) of the form M = Diag(−c1, . . . ,−cs) + Ad(Γ) with ci ∈ Z>0 for i = 1, . . . , s, and
a vector R ∈ Zs

>0 such that M is positive semidefinite of rank s − 1 and MR = 0. Writing
tR = (r1, . . . , rs), we always assume that gcd(r1, . . . , rs) = 1. Such triple (Γ,M,R) will also be
called an arithmetical graph.

Theorem 9.5 below constructs infinitely many p-suitable matrices starting with an arithmeti-
cal graph with some additional properties (specified below in 9.4). The quotient construction
of models of curves used in Theorem 9.2 suggests that the p-suitable matrices constructed in
Theorem 9.5 might arise in some cases from quotient singularities in models of curves. We
explain in more detail this motivation in the case of elliptic curves of reduction type I∗m in 9.12.

9.4. Let v be a vertex of the arithmetical graph (Γ,M,R). Consider the submatrixM v obtained
fromM by removing the row and the column ofM corresponding to the vertex v. Let Γv denote
the induced subgraph of Γ obtained by removing from Γ the vertex v and all the edges of Γ
attached to v. If Γv is a connected graph, then M v is an intersection matrix associated with
Γv. The discussion below does not assume that Γv is connected.

Let m ∈ Z≥1. Consider the following intersection matrix N on n := s+mp− 1 vertices with
graph ΓN . The graph ΓN is obtained from the graph Γ by attaching to the vertex v a chain
of mp − 1 new vertices. More precisely, consider the path Amp−1 with vertices w1, . . . , wmp−1,
labeled in such a way that w1 and wmp−1 are the terminal vertices of the path. The graph ΓN is
obtained by linking with one edge the vertex v of Γ with the vertex w1 of Amp−1. The diagonal
elements of N are those of M for every vertex of Γ except for the vertex v. Denoting by −cv the
diagonal element of M corresponding to v, we set the diagonal element of N for the vertex v to
be −cv − 1. The diagonal element of the new vertex wi is set to be −2, for i = 1, . . . , pm− 1.
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Theorem 9.5. Let p be prime. Let (Γ,M,R) be an arithmetical structure on a finite connected
graph Γ on s vertices. Suppose that v is a vertex of Γ such that the coefficient of R corresponding
to v is equal to p. Assume that the group Zs−1/Im(M v) is killed by p. Assume also that the
coefficients on the diagonal of M are at most equal to −2, except possibly for the coefficient
−cv corresponding to v, which could equal −1. Let m ≥ 1. Then

(a) The matrix N ∈ Ms+mp−1(Z) described in 9.4 is a p-suitable intersection matrix associated
with ΓN , and ΦN = Zs−1/Im(M v).

(b) The column of N−1 corresponding to v (resp. wp(m−1)−1) is an integer column when m = 1
(resp. m > 1).

Proof. Let us prove first the case m = 1. We choose an ordering of the vertices of Γ so that v
is the last vertex in that ordering. The matrix N can be represented as follows:

N =



M v ...
. . . −cv − 1 1 0 . . . 0

1 −2 1
...

0
. . . . . . . . . 0

... 1 −2 1
0 . . . 0 1 −2


.

Let tZ ′ := ((tR), p− 1, p− 2, . . . , 2, 1). By construction, since MR = 0, we find that

(9.1) (tZ ′)N = (0, . . . , 0,−1, 0, . . . , 0),

where the only non-zero entry is in the s-th column, the column corresponding to v. This fact
follows in an essential way from the fact that we have added exactly p − 1 vertices to Γ. The
equation (9.1) shows that the s-th column of N−1 is an integer vector. It follows from the
minimality of the fundamental cycle Z of N that Z ≤ Z ′, and |Z2| ≤ |Z ′2| = p.
To compute the group ΦN , we explicitly describe a row and column reduction of the matrix

N . First, add to the last column of N the sum of the other columns, weighted by the coefficient
of the column in Z ′. We obtain the matrix N ′ below:

N ′ =



M v ... 0
. . . −cv − 1 1 0 . . . −1

1 −2 1 0

0
. . . . . . . . .

...
... 1 −2 0
0 · · · 0 1 0


.

It is clear from the shape of N ′ that Zs+p−1/Im(N ′) is isomorphic to Zs−1/Im(M v). We leave it
to the reader to describe the row and column operations needed to establish this isomorphism.
Since Zs−1/Im(M v) is killed by p by hypothesis, we find that N is p-suitable, and the case
m = 1 is proved.
Given the matrix N obtained above in the case of m = 1, consider the following new arith-

metical graph (Γ1,M1, R1). Recall that the vertices of the graph ΓN are the vertices of Γ and
new vertices w1, . . . , wp−1, with wp−1 the terminal vertex on the new chain on ΓN . Let Γ1 be
the graph ΓN along with a new vertex wp attached by one edge to wp−1. Let R1 ∈ Zs+p be such
that tR1 := (tR, p, . . . , p). Let M1 ∈ Ms+p(Z) be the matrix with associated graph Γ1 whose
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coefficient on the diagonal corresponding to wp is −1, and whose other diagonal coefficients
are as in N . Then M1R1 = 0 and so (Γ1,M1, R1) is an arithmetical graph with a vertex wp of
multiplicity p.

Since M
wp

1 = N , we find that Zs+p−1/Im(M
wp

1 ) = Zs−1/Im(M v). We can thus prove the case
m = 2 of the Theorem by applying the case m = 1 to the arithmetical graph (Γ1,M1, R1) with
the vertex wp. It is clear that this process can be continued and that the general case can be
obtained by a sequence of m applications of the case m = 1. □

Example 9.6. Let p be prime. We describe below a class of star-shaped arithmetical trees
Γ(p, r1, . . . , rt) with a unique vertex v0 of multiplicity p to which the construction in Theorem
9.5 can be applied.

Let t ≥ 2. Consider integers ri, i = 1, . . . , t, such that 1 ≤ ri < p. Assume that
∑t

i=1 ri = cp
for some integer c. Each pair (p, ri) determines an intersection matrix Ni = N(p, ri) as in 2.3
whose graph ΓNi

is a path, along with a vector Ri = R(p, ri) such that (tRi)Ni = (−p, 0, . . . , 0).
Note that this construction uses a chosen order of the vertices of ΓNi

, and we denote by wi the
first vertex of ΓNi

in this ordering. In the construction, wi is then a vertex of degree 1 of ΓNi
.

Let Γ := Γ(p, r1, . . . , rt) denote the graph with unique node v0 to which we attach each
path ΓNi

with one edge linking v0 to wi. Let s denote the total number of vertices of Γ. Let
M ∈ Ms(Z) denote the matrix of the form M = Diag(−c1, . . . ,−cs) + Ad(Γ) such that M
restricted to the vertices on the path ΓNi

is the matrix Ni, and such that the self-intersection
of the central vertex v0 is −c. Let R ∈ Zs

>0 denote the vector such that R restricted to the
vertices on the path ΓNi

is the vector Ri and such that the coefficient corresponding to v0 is p.
Then we have MR = 0 by construction, and (Γ,M,R) is an arithmetical structure on Γ.

Removing from Γ the vertex v0 and the edges adjacent to v0 in Γ leaves us with the disjoint
union of the graphs ΓNi

. Since ΦNi
= Z/pZ for each i = 1, . . . t, it follows that Zs−1/Im(M v0)

is isomorphic to (Z/pZ)t. We can thus apply Theorem 9.5 to the arithmetical graph (Γ,M,R)
at the vertex v0. Choosing m ≥ 1, we obtain an intersection matrix N of size s+ pm− 1 whose
graph is star-shaped with t+ 1 terminal chains, and with ΦN isomorphic to (Z/pZ)t.

9.7. The p-suitable matrix N in 9.16 is obtained from Γ(p, 1, p − 1) using Theorem 9.5. This
matrix is not numerically Gorenstein. It does arise from a quotient singularity.

Let now p = 2. The Dynkin diagrams D2d (see 6.2) are 2-suitable intersection matrices
obtained from the arithmetical tree Γ(2, 1, 1) using Theorem 9.5. The Dynkin diagrams D2d

are known to arise as Z/2Z-quotient singularities (see, e.g., [1], Examples on page 64, [2], [31]
(2.6), or [20], Theorem 4.1, or [28], III.3.1.5.1. The earliest appearance of D4 and D8 as quotient
singularities might be in [32], § 6). It is interesting to note that the Dynkin diagrams D2d arise
in two different ways. Let Z/2Z act on A := k[[u, v]] such that SpecAZ/2Z has a resolution of
type D2d. Consider the associated morphism φ : SpecA → SpecAZ/2Z. When d is even, the
morphism φ is only ramified at the maximal ideal. When d is odd, φ is ramified in codimension
1. In particular, only the case D2d with d even can arise in the context of regular models of
elliptic curves. We present below an intersection matrix N(r, s, t), obtained from the Kodaira
type I∗m with m = 2(r + s), which seems to arise in the context of elliptic curves only when
r + s is even (see 9.12).
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Intersection Matrix 9.8. The Kodaira type I∗m is the arithmetical graph with m+5 vertices
described below. We fix a vertex v to apply the construction in Theorem 9.5.

I∗m
1 2 2

v

2 2 1

1 1

To the left of the vertex v is a Dynkin diagram Da (on a vertices, see 6.2) and to the right of v
is a Dynkin diagram Db. Since the vertex v can a priori be any of the vertices of multiplicity
2 on the graph, we slightly generalize the definition of the Dynkin diagram Da to include the
cases a = 2 and a = 3. We set D2 to be the disjoint union of two vertices of self-intersection
−2, so that ΦD2 = Z/2Z × Z/2Z. We set D3 to be the path on three vertices, each of self-
intersection −2, so that ΦD3 = Z/4Z. In general, it is well-known that ΦDa = Z/4Z if a is odd,
and ΦDa = Z/2Z× Z/2Z if a is even.
Let r, t ≥ 0 and s ≥ 1 be integers. Theorem 9.5 shows that the following intersection matrix

N = N(r, s, t), constructed from the arithmetical graph I∗2r+2s, is always 2-suitable:

N = N(r, s, t)

2r+1︷ ︸︸ ︷
−3

2s︷ ︸︸ ︷

︸ ︷︷ ︸
1+2t

The group ΦN has order 24 since it is isomorphic to ΦD2r+2 × ΦD2s+2 . The matrix N(r, s, t)
is denoted (21)k,i,j in [36], page 437. It is also found in [38], page 121, (38), along with an
equation for a singularity in characteristic 0 whose resolution produces N(r, s, t).

Quotient Singularity 9.9. (n = 6 + 4ℓ and two nodes.) Set r = t = 0 in the above
intersection matrix N(r, s, t) and let s = 2ℓ, with ℓ ≥ 1.

N = N(0, 2ℓ, 0)

−3

4ℓ︷ ︸︸ ︷
Z

1 2 2

4ℓ︷ ︸︸ ︷
2 1

1 1 11

The group ΦN has order 24 and Z2 = −2. We have K = −Z and p(Z) = 1. Computations
indicate that this intersection matrix arises in the resolution of the singularity f := zp −
(ab)p−1z−apy−bpx = 0 when a := x2+xy and b := y2+ℓ+xy with ℓ ≥ 1. The quotient singularity
4.7 in [24] can be interpreted as the case ℓ = 0 in this construction. Our computations thus
make it likely that, with the parameters r = t = 0 and s = 2ℓ, the 2-suitable matrix N in 9.8
does arise from a Z/2Z-quotient singularity.

The matrix N(0, s, 0), of size 6+2s, is denoted A∗,o+A∗,o+A∗,o+A2s,∗∗,o in [16], Table 2, p.
1291, and is associated with the resolution of z2 + (y3 + x3)(x2 + y2+2s) = 0 in characteristic 0.
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Quotient Singularity 9.10. (n = 6 + 4λ + 4ℓ and three nodes.) Set again t = 0 in the
intersection matrix N in 9.8, and let r = 2λ and s = 2ℓ, with λ, ℓ ≥ 1.

N = N(2λ, 2ℓ, 0)

4λ︷ ︸︸ ︷
−3

4ℓ︷ ︸︸ ︷
The group ΦN has order 24 and Z2 = −2. We have K = −Z and p(Z) = 1. Computations
indicate that this intersection matrix might arise in the resolution of the singularity f :=
zp − (ab)p−1z − apy − bpx = 0 when a := x2+λ + xy and b := y2+ℓ + xy with λ, ℓ ≥ 1. This
intersection matrix is denoted A∗,o + An,∗∗,o + Am,∗∗,o at the bottom of page 1291 in [16].

Remark 9.11. In the 2-suitable intersection matrices above in 9.8, 9.9, and 9.10, the diagonal
elements are all equal to −2, except for one single coefficient equal to −3. Intersection matrices
with this property have been completely classified in [39].

Remark 9.12. Let us return to the set-up of Theorem 9.2. In particular, let OK be a discrete
valuation ring with algebraically closed residue field k of characteristic p = 2. Let X/K be
an elliptic curve. Assume that there exists a quadratic extension L/K such that XL/L has a
smooth model Y/OL. Assume that the special fiber Yk is a supersingular curve. The normal
quotient Z := Y/Gal(L/K) has then a unique singular point. Let X ′ → Z denote the minimal
desingularization of Z, and let X0 denote the minimal regular model of X/K, with contraction
morphism X ′ → X0.

Assume that the Kodaira type of the special fiber of X0 is I∗m for some m ≥ 1. Since
[L : K] = 2, we can apply Theorem 1 in [10] to find that the component group of the Néron
model of X/K must be killed by 2, so that m has to be even. We can thus write m = 2r + 2s
for some r ≥ 0 and s ≥ 1 such that the intersection matrix of the desingularization X ′ is of the
form N(r, s, t) in 9.8. Since we assume that the elliptic curve has potentially good supersingular
reduction, we can further use [37], Theorem 1.4, to show that in fact m is divisible by 4.
Hence, using elliptic curves, we can only produce examples of Z/2Z-quotient singularities

with intersection matrices N(r, s, t) as in 9.8 with the additional constraint that r + s is even.
We do not know if the matrix N(r, s, t) also arises as a quotient singularity when r + s is odd.

9.13. Let p be prime. Let N be a p-suitable intersection matrix of size n. Suppose that v is a
vertex of ΓN such that the corresponding column (N−1)v of the matrix N−1 is not an integer
column, but the diagonal element (N−1)vv is an integer. Let m ≥ 1. Consider the following
matrix Nm of size n + pm. Let w1, . . . , wpm be the ordered vertices of a chain of length pm.
Consider the graph ΓNm obtained by attaching the vertex v of ΓN with the initial vertex w1 of
the chain using a single edge. Set the matrix Nm associated with ΓNm to have the following
diagonal elements: if w is a vertex of ΓN , use the diagonal element of N . Set the diagonal
element corresponding to w1 to be (N−1)vv − 1. Set all other diagonal elements corresponding
to w2, . . . , wpm to be −2. The matrix N is a submatrix of Nm in the top left corner.

Corollary 9.14. Let p be prime. Let N be a p-suitable intersection matrix of size n. Suppose
that v is a vertex of ΓN such that the corresponding column (N−1)v of the matrix N−1 is not an
integer column, but the diagonal element (N−1)vv is an integer. Let m ≥ 1. Then the matrix
Nm of size n+ pm described in 9.13 is p-suitable. Its group ΦNm is isomorphic to ΦN .

Proof. The corollary follows directly from Theorem 9.5 applied to the following arithmetical
graph (G,M,R). Let G denote the graph obtained by linking the vertex v of ΓN to an additional
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vertex w1 by a single edge. The matrix M with graph G is set to have the matrix N in its
top left corner. The bottom right diagonal element is set to be (N−1)vv. Since all coefficients
of the matrix N−1 are negative, the vector tR := (−p t(N−1)v, p) has positive coefficients. It is
easy to check that MR = 0. Since t(N−1)v is not an integer column, the coefficients of R are
coprime. The triple (G,M,R) is an arithmetical graph and the vertex w1 has multiplicity p.
The top left minor of M has group killed by p since it is isomorphic to ΦN . Thus we can apply
the construction of Theorem 9.5 to (G,M,R) and w1. □

Let us say that a matrix N can be extended if there exists a matrix N ′ that contains N and
such that the diagonal coefficients of N are also on the diagonal of N ′.

Corollary 9.15. Let p be prime. Let N be a p-suitable intersection matrix of size n. Suppose
that v is a vertex of ΓN such that the diagonal element (N−1)vv is an integer. Then the matrix
N can be extended to a larger p-suitable matrix N ′.

Proof. If the column (N−1)v is not an integer column, then the matrix N ′ := Nm in Corollary
9.14 is the desired extension of N . If the column (N−1)v is an integer column, then the matrix
N ′ := N in Theorem 3.4 (a) is an extension of N . □

Quotient Singularity 9.16. The following p-suitable matrix N and its vertex v on the left
produce, using Corollary 9.14, new matrices Nm for everym ≥ 1. The matrix N and all the new
matrices Nm all arise as Z/pZ-quotient singularities. We indicate on the right the coefficients
of the vector R0 = −p(N−1)v such that tR0N = (−p, 0, . . . , 0). We have |ΦN | = p2.

N

v

p−1︷ ︸︸ ︷ p−1︷ ︸︸ ︷
−p

R0

p

p−1︷ ︸︸ ︷
p p p− 1

p−1︷ ︸︸ ︷
1

1p

The matrix N is not numerically Gorenstein, and is shown to arise as a Z/pZ-quotient sin-
gularity in [21], Theorem 6.8, or [22] Theorem 1.1, or [29], Corollary 7.13. For Nm, use [22]
Theorem 1.3 and 3.12.

10. Existence of integer coefficients in N−1

We investigate in this section when a p-suitable matrix N has the property that N−1 has an
integer coefficient, or an integer column. The geometric motivation for studying this question
comes from Theorem 9.2(b).

Let N ∈ Mn(Z) be an intersection matrix with associated graph Γ. We let e1, . . . , en denote
the standard basis of Zn. When v is a vertex of Γ and no ordering of the vertices of Γ has been
chosen, we let ev denote the standard basis vector of Zn associated with v. We let v denote the
class of ev in the quotient ΦN := Zn/Im(N).
Let (N−1)v denote the column of N−1 corresponding to v, so that we have N(N−1)v = ev.

It follows that v is trivial in ΦN if and only if the column (N−1)v is an integer vector.

Theorem 10.1. Let p be a prime. Let N ∈ Mn(Z) be an intersection matrix such that ΦN is
killed by p. Assume that the graph Γ associated with N is a star-shaped tree. If |ΦN | ≠ p, then
the matrix N−1 has at least one integer column.
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Proof. Let v0 denote the unique node of Γ. Removing v0 from Γ as well as all the edges of Γ
adjacent to v0 produces the disjoint union of m terminal chains Γ1, . . . ,Γm. Order the vertices
of each terminal chain from the vertex connected to v0 to the terminal vertex of the chain.
Let NΓi

denote the intersection matrix of the chain with that ordering. Let ai > bi denote the
coprime integers associated with NΓi

in 2.3. In particular, there exists a vector tRi = (bi, . . . , 1)
such that (tRi)NΓi

= (−ai, 0, . . . , 0). Let −c denote the diagonal element of N associated with
the vertex v0. Then, as seen in [26], Proposition 1.3, we have

|det(N)| =
( ∏m

i=1 ai
lcm(a1, . . . , am)

)(
lcm(a1, . . . , am)(c−

m∑
i=1

bi/ai)

)
.

Assume that ΦN is killed by p and that for all vertices v of Γ, v ̸= 0. Then by Lemma 10.2

(b), we have ai coprime to p for i = 1, . . . ,m. It follows that
∏m

i=1 ai
lcm(a1,...,am)

can only be a power

of p if
∏m

i=1 ai
lcm(a1,...,am)

= 1. Hence,

|det(N)| = lcm(a1, . . . , am)(c−
m∑
i=1

bi/ai).

It follows from [26], Proposition 1.3, that lcm(a1, . . . , am)(c −
∑n

i=1 bi/ai) is the order of v0 in
ΦN . By hypothesis, this order is p. Hence, we have shown that |det(N)| = p, as desired. □

Lemma 10.2. Let p be a prime. Let N ∈ Mn(Z) be an intersection matrix with associated graph
Γ. Let v1, . . . , vt denote the consecutive vertices of a terminal chain T of Γ. More precisely,
assume that vt is a terminal vertex (and so has degree 1), and that when t > 1, vi is linked to
vi+1 by exactly one edge for i = 1, . . . , t − 1, and v1 has degree 2. Let NT denote the matrix
of this chain, and let s0 > s1 > · · · > st = 1 denote the integers associated with this terminal
chain as in 2.3. Letting tS := (s1, . . . , st), we have tSNT = (−s0, 0, . . . , 0). Let v0 be the vertex
of Γ linked to v1 that is not on the given terminal chain. Then

(a) We have v0 = s0vt. We also have s1v0 = s0v1 and, more generally, si+1vi = sivi+1.
(b) Assume that the group ΦN is killed by p, and that vt ̸= 0 in ΦN . Then the elements

v0, . . . , vt−1 are not trivial in ΦN if and only if p does not divide s0, s1, . . . , st−1.
Let −ci denote the coefficient corresponding to the vertex vi on the diagonal of N .

When p = 2, the condition p does not divide s0, s1, . . . , st−1 is equivalent to the condition
c1, . . . , ct−1 are even and ct is odd.

Proof. (a) Let us start by showing that v0 − s0vt = 0. For this, it suffices to show that the
vector ev0 − s0evt is in the image of N . Recall that | det(NT )| = s0. Consider the sequence 1 =
r1 < r2 < · · · < rt < s0 such that, letting tR := (1, r2, . . . , rt), we have (

tR)NT = (0, . . . , 0,−s0).
Let Nv denote the column of N corresponding to the vertex v. We obtain

ev0 − s0evt = Nv1 + r2Nv2 + · · ·+ rtNvt ,

as desired. Shortening the chain v1, . . . , vi, . . . , vt to vi, . . . , vt and applying the above result to
the new chain vi, . . . , vt shows that vi+1 − si+1vt = 0. Using the relations vi − sivt = 0 and
vi+1 − si+1vt = 0 gives us si+1vi = sivi+1.

(b) Assume that vt has order p and that the group ΦN is killed by p. Suppose that there
exists an index i in [0, t − 1] such that vi is trivial. The relation sivi+1 = si+1vi shows then
that either p divides si, as desired, or that vi+1 = 0. We can repeat the argument with vi+1 if
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p does not divide si. Since we assume that vt is not trivial, we must have sj divisible by p for
some j ∈ [i, t− 1].

Assume now that p divides si for some i ∈ [0, t− 1]. Then the relation sivi+1 = si+1vi shows
that either vi is trivial as desired, or that p divides si+1. Repeating the process if vi is not
trivial, we find that either one of the vj is trivial, as desired, or we have p dividing st = 1,
which is a contradiction. □

Intersection Matrix 10.3. We exhibit below a 2-suitable matrix N of size n = 10 with
|ΦN | = 2 and such that N−1 does not have any integer coefficient. Suppose that such N exists.
Then the condition |Z2| ≤ 2 implies that N contains a principal square submatrix N ′ of size
n− 1 such that | det(N ′)| = 1. The terminal chains of the graph of N also have to satisfy the
conditions of Lemma 10.2. It turns out that Graph (11) in Table I of [5] exhibits an 9 × 9
intersection matrix N ′ satisfying the above conditions, and from which one can obtain the
desired example N of size n = 10:

N
−29 −3

−1233

−5

−2366275

−3

Z
92475 2839527

946509

2175

536355

2366273 1

1577515

2

The group ΦN has order 2 and Z2 = −2. The matrix N−1 has no integer coefficient. As the
reader will have noted, one coefficient of N is very negative compared to the size of |ΦN |. The
graph (5) in Table I of [5] is star-shaped on 9 vertices and leads to a similar example.

Proposition 10.4. Let p be prime. Let N ∈ Mn(Z) be a p-suitable intersection matrix such
that |ΦN | = p. If N−1 has an integer coefficient, then it has an integer column.

Proof. Let us assume that N−1 has no integer columns. Let N−1
j denote the j-th column of

N−1. Since ΦN is killed by p, we have pN−1
j ∈ Zn and N(pN−1

j ) = pej, showing that the class

of ej has order dividing p. Since the vector N−1
j has at least one non-integer coefficient by

hypothesis, we find that the class of ej has order exactly p in ΦN := Zn/Im(N).
Assume now that |ΦN | = p. If N = (−p), the proposition is true. Assume that n ≥ 2. Fix

any k ≤ n. Since the matrix N is symmetric, for any k ≤ n, we can find j ≤ n such that the
j-th coefficient of the k-th line is not an integer. Let i ̸= j. Since ΦN is cyclic of order p, and
the classes of ei and of ej have exact order p, there exists an integer ai coprime to p such that
the class of aiei − ej is trivial in ΦN . Since we have N(aiN

−1
i −N−1

j ) = aiei − ej, we find that

(aiN
−1
i −N−1

j ) must be an integer vector. Thus, if the k-th coefficient of N−1
j is not an integer,

then the k-th coefficient of N−1
i cannot be an integer. It follows that the matrix N−1 has a

k-th row, none of whose coefficients are integers. □

Proposition 10.5. Let N be a p-suitable intersection matrix such that its associated graph Γ
is a chain. Then the matrix N−1 has no integer coefficient.

Proof. First, since Γ is a chain, the group ΦN is always a non-trivial cyclic group ([20], Lemma
3.13). Since N is p-suitable, we find that |ΦN | = p. It follows from 10.4 that to show that
N−1 has no integer coefficient, it suffices to show that it has no integer column. For this, we
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use 10.2 (a). Keeping the notation introduced in 10.2, let v0, v1, . . . , vt denote the consecutive
vertices of Γ. We have p = det(−N) > s0 > s1 > · · · > st. In particular, every integer si
is coprime to p for i = 0, . . . , t − 1. Since si+1vi = sivi+1, we find that none of the classes vi
can be trivial, because if one were trivial, all would be, and this would contradict the fact that
det(−N) > 1. □

Proposition 10.6. Let Γ be a connected tree on n vertices v1, . . . , vn. Let di denote the degree
of the vertex vi. Let N := Diag(−c1, . . . ,−cn) +Ad(Γ) with ci ∈ Z≥2 for all i = 1, . . . , n. Let e
denote the exponent of ΦN .

(a) Assume that ci ∈ Z≥di for all i = 1, . . . , n, and that for at least one index j, cj > dj. Then
N is negative definite with tZ = (1, . . . , 1) and |Z · Z| ≤ e. We have2 p(Z) = 0.

(b) Assume that ci ∈ Z>di for all i = 1, . . . , n. Then the inverse N−1 does not have any integer
on its diagonal.

Proof. (a) Since (1, . . . , 1)N < 0, we find that N is negative definite (3.1). In particular,
tZ = (1, . . . , 1). That |Z · Z| ≤ e follows immediately from Lemma 3.7 in [20] since Z has a
coefficient equal to 1. Since Γ is a tree, we have

∑n
i=1(di − 2) = −2. Using this fact, it is easy

to check that p(Z) = 0.
(b) Our hypothesis on the diagonal of N shows that P := −N is strictly row diagonally

dominant (see [13], p. 124). It follows then from Theorem 2.5.12 in [13] that P−1 is strictly
diagonally dominant. This means that if we write P−1 = ((qij)), then for each i, and for all
j ̸= i, qii > qij.

Without loss of generality, it suffices to prove that the diagonal element q11 on the first line
Q1 of P−1 is not an integer. Let N1 denote the first column of N . Then

Q1(−N1) = q11c1 −
∑n

j=2 q1jAd(Γ)1j = 1
(1, . . . , 1)(−N1) = c1 −

∑n
j=2 Ad(Γ)1j = ci − di ≥ 1.

It follows that
∑n

j=2(q1j − q11)Ad(Γ)1j ≥ q11 − 1. Because the graph is connected, we find that
the left hand side of the inequality is always strictly negative. On the other hand, if q11 is a
(positive) integer, then q11 − 1 ≥ 0, which is not possible. □

Example 10.7. Given any prime p ≥ 11, there exists a p-suitable matrix N of size p+2, with
fundamental vector Z such that K = −Z and p(Z) = 1, and such that N−1 does not have any
integer coefficient. Indeed, consider the following matrix N(p), with |ΦN(p)| = p and Z2 = −3:

Z

2 4 6

3

5 4 3 2(−3) 2

p−8︷ ︸︸ ︷
2

1

1(−3)

11

We leave the details to the reader. This matrix is denoted by An,∗∗,o + E7,o on page 1294 in
[16], and associated with the resolution of y(z2 + x3 + y5) + xazb = 0 with 2a+ 3b = p.

11. Bound for the size of the discriminant group

Let N be an intersection matrix. The columns of N−1 provide upperbounds for the funda-
mental cycle Z. We discuss below two cases where Z is related to a column of N−1.

2When ci ≥ di, the associated weighted graph Γ with weights (c1, . . . , cn) is called minimal in [33], 2.3.



INTERSECTION MATRICES OF WILD CYCLIC QUOTIENT SINGULARITIES 34

Proposition 11.1. Let N ∈ Mn(Z) be an intersection matrix with fundamental cycle Z.

(a) If (tZ)NZ = −1, then −Z is an integer column of the matrix N−1.
(b) Let Ri ∈ Zn be as in 3.2. If (tRi)NRi = (tZ)NZ, then Ri = Z. In particular, if for some

i, (tRi)NRi = −1, then Ri = Z.
(c) Assume that |ΦN | = 1. Then the vector −Z is a column of N−1. More precisely, let z

denote the minimum of the coefficients of the matrix −N−1. Then there exists an index
j ∈ [1, n] such that z = (−N−1)jj and the vector −Z is equal to the j-th column of N−1.

Proof. (a) Write tZ = (z1, . . . , zn). Recall that Z is a positive vector, and that NZ is a non-
positive vector. It follows that when (tZ)NZ = −1, there exists an integer i ∈ [1, n] such that
NZ = −ei and zi = 1. Hence, −Z is equal to the i-th column of N−1.
(b) Since by construction, Ri has positive coefficients and NRi is a non-positive vector, the

minimality property of Z implies that Z ≤ Ri. Let us then write Ri = Z +X with X ≥ 0. It
follows that

R2
i = Z2 + 2(tZ)NX +X2.

Since N is negative definite, X2 ≤ 0. Since NZ ≤ 0 and X ≥ 0, we have (tZ)NX ≤ 0. Hence,
R2

i ≤ Z2, and when R2
i = Z2, we must have X2 = 0 or, equivalently, Ri = Z.

Assume now that (tRi)NRi = −1. Since R2
i ≤ Z2 ≤ −1, we find that in this case R2

i = Z2,
so that Ri = Z.

(c) Write Ri = Z +Xi with Xi ≥ 0. It follows that

Z ·Ri = −pizi = Z2 + Z ·Xi.

Since |ΦN | = 1, we find that pi = 1. Let j ∈ [1, n] be such that zj = mini(zi). Since Z2 is a
linear combination (with negative coefficients) of z1, . . . , zn, we find that the only possibility to
have −zj = Z2+Z ·Xj with Z ·Xj ≤ 0 is to have NZ = −ej. Since NRj = −ej, we must have
Z = Rj, as desired. Now that we know that Z is a column of −N−1, and that Ri ≥ Z for all i,
we find that z must be a coefficient of Rj. Since the matrix N−1 is symmetric, z must be the
diagonal element of the j-th column of −N−1. □

Theorem 11.2. Let N be a 2-suitable intersection matrix with fundamental cycle Z. Then
there exists a column R of N−1 such that either Z = −R or Z = −2R.

Proof. Proposition 11.1 (a) shows that if (tZ)NZ = −1, then −Z is an integer column of the
matrix N−1. Let tZ := (z1, . . . , zn). Suppose now that (tZ)NZ = −2. Then either

(a) There exists i ∈ [1, n] such that NZ = −ei and zi = 2, or
(b) There exists i ∈ [1, n] such that NZ = −2ei and zi = 1, or
(c) There exist i, j ∈ [1, n], i ̸= j, such that NZ = −ei − ej and zi = zj = 1.

In the first case, −Z is a column of N−1. The second case can only happen when N is 2-suitable,
and in this case −Z/2 is a column of N−1.

Assume now that we are in the third case and that ΦN is killed by a prime p. Recall that
NRi = −piei and NRj = −pjej for some pi, pj ∈ {1, p}. It follows that Z = Ri/pi + Rj/pj.
Since Z is an integer vector, such equality can only happen if pi = pj = 1 or pi = pj = p. Since
Z is the fundamental cycle, we must have Z ≤ Ri and Z ≤ Rj, and therefore only the case
pi = pj = p can happen, and we have pZ = Ri +Rj.
The hypothesis that NZ = −ei − ej shows that Z < Ri and Z < Rj. We obtain then that

2Z < Ri +Rj = pZ. When p = 2, this inequality is impossible, and so (c) cannot happen. □
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Remark 11.3. When p > 2, it may happen that the fundamental cycle is not related only
to a single column of N−1. The construction in Theorem 3.8 for instance is likely to produce
p-suitable intersection matrices N with fundamental cycle Z such that NZ has two non-zero
coefficients (see 3.7 when p = 3). We do not know how to construct families of p-suitable
intersection matrices N such that n ≥ p and NZ has at least three non-zero coefficients.

Let N be a p-suitable intersection matrix with associated graph Γ. When Z is a multiple
of a column of N−1, we produce below a tight upperbound for |ΦN |. Let di denote the degree
of the vertex vi ∈ Γ. Write N = −Diag(c1, . . . , cn) + Ad(Γ) with c1, . . . , cn ≥ 2. Let K be
the canonical cycle of N (see 2.2). Given any vector R ∈ Zn with tR = (r1, . . . , rn), we have
tRNK =

∑n
i=1 ri(ci−2). Let now R = Rj ∈ Zn be as in 3.2, with NRj = −pjej and pj ∈ {1, p}.

Then

(1, . . . , 1)NR = −pj =
n∑

i=1

(−ci + 2)ri +
n∑

i=1

(di − 2)ri,

and we find that

(11.1) tRNK = pj +
n∑

i=1

(di − 2)ri.

Assume in addition that R = Rj = Z. Then (tR)NR = −pjrj = Z2 ≥ −p. Hence, pjrj ≤ p.

Theorem 11.4. Let N be a p-suitable intersection matrix.

(a) Assume that −Z is a column of N−1. Then ordp(|ΦN |)(p− 1) ≤ Z ·K + p. In particular,

ordp(|ΦN |) ≤ 2 + 2p(Z)
p−1

.

(b) Assume that −Z/p is a column of N−1. Then ordp(|ΦN |)(p− 1) ≤ Z ·K + 1.
(c) Let p = 2. Then |ΦN | divides p2p(Z)+2.

Proof. Recall the expression for |ΦN | obtained in [20], Theorem 3.14, using the vector R := Rj:

| det(N)| = pjrj ·
n∏

i=1

r
(di−2)
i .

This expression is strikingly similar to the expression for tRNK found in (11.1). We are going
to relate these two expressions using an arithmetical graph obtained from N , to which we will
apply the following result on arithmetical graphs.

Let (G,M,R) be an arithmetical tree on s vertices, as in 9.3. Let tR := (r1, . . . , rs), with
gcd(r1, . . . , rs) = 1. Let δi denote the degree of the vertex vi ∈ G. The main integer invariant
associated with (G,M,R) is given by the formula

2g0 − 2 :=
s∑

i=1

ri(δi − 2).

Let ΦM denote the torsion subgroup of Zs/Im(M). Then [18], Theorem 4.7, shows that∑
q prime

ordq(|ΦM |)(q − 1) ≤ 2g0.

(a) Let us assume now that −Z = Rj is a column of N−1, so that pj = 1 and rj ≤ p. Using
N , Γ, and Rj, we construct the following arithmetical graph (G,M,R). The tree G is obtained
from Γ by attaching with a single edge one new vertex w to the vertex vj of Γ. The matrix M
has then size s = n + 1. Assuming that the order of the vertices of G are v1, . . . , vn, w, we set
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the diagonal of M to be (−c1, . . . ,−cn,−rj). Set
tR := (r1, . . . , rn, 1), and note that MR = 0.

It is easy to check that |ΦM | = |ΦN | and that

2g0 − 2 =
∑s

i=1 ri(δi − 2) =
∑n

i=1 ri(di − 2) + rj − 1
= (tR)NK − pj + rj − 1.

Hence, 2g0 = (tR)NK + rj. Since ΦN is a p-group by hypothesis, we find that

ordp(|ΦN |)(p− 1) =
∑

q prime

ordq(|ΦM |)(q − 1) ≤ 2g0 ≤ Z ·K + p.

By definition, Z ·K + p ≤ p+ 2p(Z)− 2− Z · Z ≤ 2(p− 1) + 2p(Z).
(b) Let us assume now that −Z = Rj is such that pj = p, so that rj = 1. Using N , Γ,

and Rj, we again construct an associated arithmetical graph (G,M,R). Let w0, w1, . . . , wp−1

denote the ordered vertices of a chain of length p. The tree G is obtained from Γ by attaching
with a single edge the vertex w0 to the vertex vj of Γ. The matrix M has then size s = n+ p.
Assuming that the order of the vertices of G are v1, . . . , vn, w0, . . . , wp−1, we set the diagonal of
M to be (−c1, . . . ,−cn,−1,−2, . . . ,−2). Set tR := (r1, . . . , rn, p, p− 1, . . . , 2, 1), and note that
MR = 0. Computing in two different ways the determinant of the matrix Mn+1,n+1 obtained
by removing the row and column of M corresponding to the vertex w0 gives

| det(Mn+1,n+1)| = |ΦM |p2 = |ΦN |p.
Finally, we find that

2g0 − 2 =
∑s

i=1 ri(δi − 2) =
∑n

i=1 ri(di − 2) + rj − 1
= (tR)NK − pj + rj − 1.

Hence, 2g0 = (tR)NK − pj + 2. Since ΦN is a p-group by hypothesis, we find that

ordp(|ΦN |/p)(p− 1) =
∑

q prime

ordq(|ΦM |)(q − 1) ≤ 2g0 = Z ·K − p+ 2.

It follows that ordp(|ΦN |)(p− 1) ≤ Z ·K + 1.
(c) Recall that when p = 2, Theorem 11.2 shows that either −Z or −Z/2 is a column of

N−1. We can thus apply (a) and (b) to obtain that ord2(|ΦN |) ≤ Z ·K +2. Then 2p(Z) + 2 =
Z ·K + Z2 + 4 ≥ Z ·K + 2, since by hypothesis, a 2-suitable matrix satisfies Z2 + 2 ≥ 0. □

The bound in (c) is achieved in Example 6.3. Note that this bound is much sharper in this
example than the bound obtained using Proposition 4.6 (b). Note also that Example 10.7 shows
that one cannot expect to bound |ΦN | only in terms of p(Z).
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Algebraic Geom. 5 (1996), no. 4, 801–813.
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