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INTRODUCTION

~ The cohomology of abelian groups and the cohomology of a topological space
with values in a sheaf of abelian groups are known for a long time.

Later on one has constructed cohomology theories for nonabelian groups and
sheafs of nonabelian groups on a topological space.

All these cohomology theories have two essential properties : they are func-—
torial and with a short exact sequence in the coefficient category they asso-—
ciate an exact cohomology sequence.

Giraud has developed a cohomology theory in the more general case of a sheaf

~ of groups on a site.

. compact topological spaces.

However, it has the disadvantage that it is not truly functorial and with a

short exact sequence in the coefficient category it does not assotiate an
;I'exact cohomology sequence.

 We have tried to eliminate these two imperfections. Before we explain how this
'Péan be done we will give a brief review of the Giraud cohomology. In the se-

- cond section of this paper we eliminate the two defects of the Giraud cohomo-—
5 1ogy and we define the new 2-cohomology.

Most of the properties and theorems are stated without a proof, for the others
_L'only a sketch of the proof is given.

Tﬁor additional information the reader is referred to [1]. The concepts and no-
“iﬁations used in this paper are (almost) the same as those used by Giraud in
4.

I would like to thank Professor Alfred Warrinnier who suggested I undertake
this study and directed my doctoral thesis in which these results first ap-
peared. I wish also to record my thanks to professor Roger Holvoet who kindly

‘read the manuscript.

1, THE GIRAUD COHOMOLOGY

ﬂ=Let E be a site and A a sheaf of groups on E. HO and Hl are defined as fol-

~ lows :
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the set of the sections of 4,

1 (E,4)

H](E,A) the set of classes of A-isomorphic A-torsors om E.

If u : A+B is a morphism of sheafs of groups on E, then one has the follo-

wing maps :
u©@ KO — 10

Sp—3> U o S
ey :H'(A)_+H’(B)

A
p = Pl—— uD(p) = [Up1 = [ 4 B].

For any short exact sequence of sheafs of groups
1+a 248 Y ct
one has an exact cohomology sequence

] 0) ) )
1 > 10a) uf ), e PLANME LTI SIS LY N SR ‘e ) P A () (x).

Next, one has to define H2 such that the cohomology sequence (%) can be exten-

ded and the extended sequence is still exact. Therefore the obstruction to the
relevation of a C-torsor P to B via the epimorphism v : B> C is analysed.
This obstruction is an E-category K(P) whose fibre over an object S of E is
the category whose objects are the couples (Q,A) where Q is a B-torsor on

. S
E/S and A a v-morphism from Q to P .
This E-category K(P) is a FIELD because the relevations can be localized and

glued together. The field K(P) has the following properties :

1. There exists a refinement & of E such that Ob(K(P)S) # ¢ for all S in
Ob(R), i.e. K(P) is locally not empty. Of course, one always has locally

a v-morphism from Bd to P.

2. Each S-morphism is an isomorphism, i.e. the fibres are groupoids. This is

clear if one realizes that a B-morphism of B-torsors is an ismorphism.

3. Any two objects of K(P)s are locally isomorphic. Indeed we have seen that

two B-torsors are always locally isomorphic.

All this can be expressed more consisely by saying that K(P) is a GERBE om E.
Such a gerbe is called trivial if it admits a section. Hence, the triviality
of K(P) amounts to the same thing as the relevability of P to B.

So K(P) is useful as an obstruction to the relevation of a torsor.
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Now we have to examine the relationship between this gerbe and the sheaf of
groups A.

There exists a refinement & of E such that Ob(K(P)S # ¢ for each object S of
/. For each object S of & we take any object (Q,A) in the fibre category
K(P)s. The family of sheafs of groups

{AutS(Q,)\)|S € 0b(R)} %))

is not coherent in the field of sheafs of groups on E. The interior automor-
phisms of the sheafs of groups éEES(Q,A) prevent this family from being cohe-
rent, That is the reason why we pass on from the field of sheafs of groups
on E to a new field which, roughly speaking, orginates from the former one

by annihilating the interior automorphisms. This new field is called the fiel

of bands on E. Each object G of the field of sheafs of groups on E determine
an object in the field of bands on E. We denote it by lien (G) and we call it
the band determined by G.

The field of bands on E is denoted by LIEN(E).
The family (1) determines in the field LIEN(E) a family of bands

{lien(Aut (Q,1))|S € Ob(®)}

which is coherent. These local bands can be glued together in LIEN(E) and con
sequently they determine a band L on E.

We call L the band of the gerbe K(P).

For S € Ob(R) and (Q,)) € Ob(K(P)S) one has local isomorphisms

S

ALCS(Q,A)AFA

and these local isomorphisms are unique up to interior automorphisms of A.

Hence in the field of bands on E, one has a global isomorphism
1ien(AutS(Q,>\))_~.,1ien(A)S. (2)

Since the isomorphisms (2) do not comstitute a coherent family, one must not
conclude from this that L -~ 1ien(A) but L 4=+P1ien(A).

This makes clear why Giraud defines his 2-cohomology with values im a band
and not with values in a sheaf of groups.

We now give some definitions and properties concerning bands. It follows from
the construction of LIEN(E) that this is a split E-field and moreover, one

has a morphism of split E-fields :

lien(E) = FAGRSC(E) — LIEN(E)
A lien(a).

Let L be a band on E.



If there exists an isomorphism of bands a : L-:L*lien(A) then L is said to be
representable and (A,a) is called a regresentative of the band L.
It can be proved that each band is locally representable. Let u : L >Mbea

morphism of bands, (A,a) a representative of L and (B,b) a representative of

M. A morphism of sheafs of groups m : A -~ B is called a representative of u
if lien(m) ¢ a =b o u.
One can prove that every morphism of bands is locally representable.

We have seen that there belongs a band to the gerbe K(P) and this band is, up

to an isomorphism, equal to the twisted band P1ien(A) of lien(A) by the C-tor- |

sor P.
More generally, one proves that to each gerbe G there belongs a band L which

is unique up to an isomorphism. Then one says that the gerbe G is bound by

the band L and G is called an L-gerbe.

Let G be an L-gerbe, H an M-gerbe and m : G - H a morphism of gerbes.

Then there exists one and only one morphism of gerbes
u:lL~»+M
such that for each S € Ob(E) and each x € Ob(GS) the morphism of sheafs of

groups éggs(x) -+ Auts(m(x)) is a representative of the restriction of u to

S. We express this fact by saying that m is bound by u and we call m a u-

morphism.

Moreover, it is proved that a morphism of gerbes which is bound by an isomor- &
phism of bands, is an E-equivalence. Consequently, if G and H are L-gerbes on |

Eandm: G+His a idL-morphism of gerbes, then m is an equivalence. In ﬂmti

case we say that G and H are L-equivalent L-gerbes.

We are now ready to introduce Giraud's 2-cohomology. Let L be a band on a gi- £

te E. Then HZ(E,L) is the set of the classes of L-equivalent L-gerbes on E.
If A is a sheaf of groups on E then we put
2 2 .
H(E,A) = H (E,lien(A)).
To simplify the notation, we 'shall write HZ(L) instead of HZ(E,L) and HZ(Af
instead of HZ(E,A). Let u : L - M be a morphism of bands on E.
How can we associate a map

o w2y - e

with the given morphism u ?

. . 1 . . . . . :
In the situation of the H , this was possible via the operation "extension of

the structural group'.

Can we obtain i i i
' ) the desired map in this situation through an analogous opera
tion "extension of the structural band" ? ’

Giraud pr is i i
proves that this is not possible if the natural morphism C_ + C i
s
= m u

not an isomorphism. Hence,

with a given morphism of b
: ands u : L >+ M -
ly have a relation between H2(L) and HZ(M) P

Two el P € 2 q 2 stand in this re ation to each other 1
ements H (L) and €H (M) i i 1 i if
?

there exist i
representatives P of p, Q of q and also a u-morphism from P to

Q. Then we denote : p —o q.

Th i i
e so defined relation between H2(L) and HZ(M) is denoted as follows :
2 :
HY(L) — X _ o HZ(M).

In order to find the second defect of the Giraud cohomology
short exact sequence of sheafs of groups on E : ’

a b

Il A —B——(C=>1,

we consider a

Given a C-
a torsor P, we observed that the gerbe K(P) of the relevations of th
e

C-torsor P i Pyg
to B is bound by the band lien(A). So generally, the obstruction

K(P i
(P) does not determine an element of HZ(A) because HZ(A) is the set of cl
ses of lien(A)-equivalent gerbes. o

This sho 2 i
' ws that H(A) is generally not big enough to contain all the obstruc-
tlons to the relevations of C-torsors to B -

So Giraud is obliged to introduce an adapted set :

o(b) = N(b)/ .
R

In thi i i
n this, N(b) is the set of all triples (K,L,u) with K a gerbe, L its band
’

and u : L i
+ lien(B) a morphism of bands such that the following sequence is

exact
P> L —2 1ien(s)-22®) 5000y » 1

An element (K,L,u) stands i
s in the relati
elation R to an element (K',L',u') if there

exists a morphism of :
P gerbes m : K +K' such that u' o o = u where a : L+ L'

is the morphism of bands which binds m,

Then one has :
sequence : the following cohomology

B (D

. 1 2
1+H°(A) + .. » H (B) 1! (©)—d— op) a’ )ﬂ H2(8) p® 12 (c)

2. THE NEW 2-COHOMOLOGY

We start with a new examination of the ObstIUCtloﬂ to the relevation of a tor-

sor. Let 1 + A —2 =
—*B —>C + 1 be a short exact sequence of sheafs of groups

on a site E,



The investigation of the obstruction to the relevation of a C-torsor P to B
carried out by Giraud has shown that this obstruction is a gerbe K(P). But
this result is incomplete.

To start with, there belongs a morphism of gerbes on E to K(P):
v ¢ K(P)——> TORSC(E,Int(B)).
For each (Q,X) € Ob(K(P)S), S € Ob(E), let v(Q,A) be defined as follows :

B
v(Q,}) = Q A Int(B).

The action of v on the morphisms is defined using the functoriality of the ope- |

ration contracted product.
Next, for each object v(Q,A) of K(P)S, S € Ob(E), one has a natural isomor-

phism - Int(B)
AR5 @

Int(B)

because AutS(Q,A) as well as v(Q,A) &
Int(B)-torsor v(Q,A).

Since these isomorphisms are compatible with the restriction they determine

A is the twisted group of A by the

an isomorphism of morphisms of fields :

Int(B)
k : Aut(XK(P)) —=— (- A A) o v
Int(B) . .
where - A A denotes the E-functor from TORSC(E,Int(B)) to FAGRSC(E) which
Int(B) 3
associates with a Int(B)-torsor P the sheaf of groups P A AL

The triple (K(P),v,k) satisfies the following condition. Let S be an object
of E and (Q,)) an object of the fibre category K(P)s.

Int(B)

For each element x € v(Q,A) —, 7 A and each local representative (o,a) of x

we have : |
vk g 3y (XN0) =0 ° int(a).

This condition expresses the commutativity of the following diagram :

Aut(v)
Aut Q1) SR CHS Aut (v(Q,1))
2 : .
RS v(Q, )
e (®) > v IntB) 1o s)
v(Q,\) A A e — v(Q, A~ Int

where tv(Q Y is the canonical isomorphism between two sheafs of groups which
’

both are the twisted group of Int(B) by v(Q,\) and p : A ~» Int(B) is defined

by p(a) = int(a).

So the obstruction to the relevation of C-torsor P to B is a triple
R(P),v,k)

satisfying the foregoing condition.

Let ® = (A,p,l1,4) be a sheaf of crossed groups on the site E. We shall fre-

quently use the abbreviated notation (A,IT) . The result of the analysis of the

obstruction to the relevation of a torsor suggests the following definition
of (A,ll)-gerbe.

Definition : A (A,l)-gerbe on E is a triple

(G,u,3)

where G is a gerbe on E, p : G ——> TORSC(E,Nl) a morphism of gerbes on E,

. I . . . .
and j : Aut(G) ——— (~ A A) ° p an ismorphism of morphisms of fields on E.

These data must satisfy the following condition :

For each object S of E and each x € Ob(GS) the following diagram commutes :

Aut(u)x
Aut (x) — Aut(u(x))
sz t tu(X)
u(x) Q A — u(x) E I
id A p

Remark : This condition means that the morphism Aut(u)x is identified, via

the isomorphisms jx and tu(x)’ with the twisted morphism

u(X)p =id A p

Definition : Let (f,¢) : (A,I)—— (A" ,1I') be a morphism of sheafs of crossed
groups, (G,u,j) a (A,Ml)-gerbe and (G',u',j") a (A",l1")-gerbe on E.

A (f,¢)-morphism from (G,u,j) to (6',u",j") is an ordered pair
(,1)

where A : G —>G' is a morphism of gerbes on E and i : TORSC(E,¥) o 1 5 ple A

. an isomorphism of morphisms of gerbes such that the following diagram commutes :



Aut () Aut(h) * Aut(6') ° A
i AR
Ay o s (=T Ay ey e
w

where for each object x of GS’ S € Ob(E), the morphism W, is equal to the
following composite :

L H \J
(IJ(X) ll-\lnl) &IA'_———y u'(k(x)) A A

prf ixAid.

n(x) ? A

n .
and p_ is the evident morphism from n(x) to p(x) a II', We shall now define
x A
the composite of two such morphisms. Let (f,¢) : (4,l1) — (A',JI'} and

(g,¥) : (A", M')——(A", ") be morphisms of sheafs of crossed groups on

the site E. Suppose we are given a (f,¢)-morphism (6,i) : ;?
s m"non i ==
(G,u,j)——>(G",u",3') and a (g,y)-morphism (A,m) : (6',u',j")——(G",u",i").
t]

The composite
(A,m) ° (8,1)

is by definition the (g,y) ° (f,p)-morphism (A o §,m x i). For each object x

of GS’ S € Ob(E), the morphism (m ¢ i)x is defined by

- . 1"
(mx l)x=m6(x) ° (lx/\n) ° Cx
where
. . ~ n Hl
c. : p(x) E M ————— (u(x) A I') A O"
X

follows from the associativity of the contracted product and the isomorphism

Hl

m ', mr — ",

Definition : Let (f,¢) : (A,JI)——— (A',II') be a morphism of sheafs of cros:

. . . m- b G -.). "_.
sed groups, (Al,ll) and (Az,lz) two (f,p)-morphisms of the (A,Il)-gerbe (G,n,] 1

to the (A',Nl")-gerbe (G',u',j'). A morphism m from (X],il) to (Xzslz) is a

morphism of E-functors

such that (' ¢ m) o i1 = i2.

Properties : We shall now give two properties which will allow us to define
the new Hz.

(1) Let (f,¢) : (A,)——(A",[I') be a morphism of sheafs of crossed groups
on E and (A,i) : (G,u,j)——(6",u",j") a (f,¢)-morphism of gerbes on E.

If (£,¢) is an isomorphism, then A is an E-equivalence.

Corollary : If (A,i) : (G,u,j)—(C",u",j") is an id(A n)—morphism,
. 3

then A is an E-equivalence.

Then we say that (G,u,j) and (6',u",j") are (a,M)-equivalent gerbes and

(A,1) is called an (A,I)-equivalence.

(ii) Let (A,I) be a sheaf of crossed groups on E. The gerbe TORSC(E,A) of A-
torsors on E has a canonical structure of (A,I)-gerbe.
TORSC(E,A) supplied with this canonical structure of (A,M)-gerbe, will
be denoted as follows :

(TORSC(E,A) yhpp, dpp) -

We shall use the notation (TORSC(E,A'),uﬁ.,j'H,) to express the fact

that we consider the gerbe TORSC(E,A') supplied with its canonical struc-—
ture of (A',ll')-gerbe.

The cohomology with values in a sheaf of crossed groups ® = (A,p,l,4) on a
site E coincides with Giraud's cohomology in dimension O and 1.

So we have

#0(£,8) = 10@a)

1im(A)

HI(E,¢) = HI(A) the set of classes of A-isomorphic A-torsors on E.

Definition

HZ(E,¢) = the set of classes of (A,M)-equivalent (A,M)-gerbes on E.

A class is called neutral if there exists a representative which admits a
section. The class containing the (A,M)-gerbe (TORSC(E,A),uH,jn) is called
the unit element. We shall mostly use the notation H"(A,Nl) instead of HZ(E,¢)

Now we shall show that the new H2 is functorial. The essential part of the

proof comsists in showing that it is possible to associate to a given morphism

(£,0) : (A,——(@A",1') a map from H2(A,M) to HE(A',N').
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Theorem : Let (£f,p) (4,1) ——(A",II") be a morphism of sheafs of crossed
groups and let (G,u,j) be a (A,MT)-gerbe. Then there exists always a a',n")-
gerbe (G',u',j') and also a (f,¢)-morphism (A,i) : (G, )—(G",u",3i").
Proof : Since Giraud has proved that each fibred E-category is E-equivalent
to a split E-category, we may assume that G is split.

The construction of G' is carried out in two steps which will be sketched now,

First step : The construction of the split E-prefield G*.

Let S be an object of E. How shall we define the category G(S) ?

The objects of G*(§) are, by definition, those of the fibre category GS. Thus
0b(G*(S)) = Ob(GS) for each S € Ob(E).

Let x and y be objects of G*(S). In what follows the notation n(x,A) will
be used instead of u(x) A A.

The morphism ¢ : I——iI' allows us to consider A' as a left [-object.
Hence, the contracted product u(x) g A' exists and we denote it by u(x,A').
The sheaf of groups AEES(X) operates on the sheaf of sets lgggs(x,y) on the
right by composition of morphisms.

Then EEEES(X’Y)’ because of the isomorphism jx : éggs(x)—;:——+u(x,A), beco-
mes a right u(x,A)-object. Since the contracted product is functorial we
have a morphism p(x,f) : u(x,A)——nu(x,A") which allows us to consider

u(x,A") as a left p(x,A)-object. We then define :

Isomg(x,y) = Isoms(x,y) u(xﬂf) p(x,A").

The S-morphisms from x to y in G*(S) are defined as the sections of the sheaf

Isomg(x,y). The set of all these morphisms from x to y will be denoted as
follows :

Isomg(x,y).
For any three objects x, y and z one has a map

Isomg(x,y) x Isomé(y,z) —_— Isomé(x,z)

which is defined by the following "formula"
-1
([(m,a;)],[(n,a}',)]) — [(n ° m,u(m ,A')(a;,).a}'()].

This defines the composition of morphisms in G¥*(S).

The reader is referred to [1] for further details about the construction of
G*. The construction of G* yields a morphism of split E-categories :

A% (x) = x. x € 0b(G,.). m

A . @ ——— g

TR

67
Second step. The (A',ll')-gerbe (G',u',j").
We now consider the field associated with G* :
G' = A(G¥®).
Moreover, one has a bicovering morphism
a: G*f —— G' = A(G). (2)

The composition of (1) and (2) yields a morphism of split E-—categories :

A: G— G,

The E-category G' is a gerbe. Besides, we have a cartesian E-functor

p' : G'——>TORSC(E,II') and also an isomorphism of morphisms of fields

. ~ o .

' : Aut(G')—=—(- A A') o u' such that (G',u’',j') is a (A',II')-gerbe.

Furthermore, for each x € Ob(GS), S € Ob(E) one has a natural isomorphism
. o,
ipsux) A lM—— u'(A(x))

such that (A,i) is a (f,y)-morphism,

Theorem : Let (f,¢) : (A,J) ——(A', ') be a morphism of sheafs of crossed
groups, ()‘l:i]) (G,usj) ——"(G],u],j]) and (}‘2’1‘-2) : (G’usj)_+(G2’u2’j

(f,p)-morphisms. Then one has an (A',lI')-equivalence.

(6,) 1 (G o1 55 )——(Gyslysi,)

such that

(6,5) ° ()‘],il) = ()‘2312)-

Proof : Let (G',u',j') be the (A',lI')-gerbe and (A,i) the (f,p)-morphism
from (G,u,j) to (G',u',j') of the preceding theorem. -~
Then A is the following composite :

c AR cx a

G' = A(G®).

It suffices to prove the existence of id(A' H,)—morphisms
2

(85e)) = (6',u',3")— (G,u,,],) and (§,,¢)) (6,1, )——(G,,u,:

such that

(6],91) o (A,i) = (Al,i]) and (62,32) o (A,1) = (Az,iz).



Indeed, if (6;,5;) denotes a quasi-inverse of (Gl,el), then we have :
t 1 . ~ .
(62952) ° (61951) o ()‘]’11) —_— ()\2,12)-
Thus
(6,8) = (8,,e5) o (8),¢})
is the required equivalence.
In order to prove the existence of (Gl,el) it suffices to show that there

exist a morphism GT ¢ G ——— G, and an isomorphism

€} :+ TORSC(E,lp,) o u* ——— u, o 8§ such that

(1) 8% o A% =2 .

(ii) For each object x of G¥, S € Ob(E) the following diagram commutes :

S’
Aut(é?)x
Autg(x) Auts(GT(x))
sz l J]G?(x)
o m ” mn
uE(x) A AT > w (85(x)) A A
WX
X

where wi is the following composite

" n ~ i n n' " m
WHx) A AT (*(x) A ') A AT (67 (%)) " A'.
Py Ay Ex M lar

" " n . . -
For each x € Ob(Gg) we have p*(x) = p(x) A II' and the isomorphism J;
is defined as the composite of the isomorphisms
nl
A

W oAt = o) Ty R A~ ue o

and

Autf(x) = Aut(x) “(XA’A) u(x,A") = u(x,a) “(x,\’A) u(x,A') = u(x) A

Since A¥ is the identity on the objects, we are obliged to define the action

of 6? on the objects as follows :

6?(x) = Al(x) for each x € Ob(Gg), S € Ob(E).
Next, for each x € Ob(Gg), we define

e =1
I1x

%
its action on the S~automorphisms of an object x of Gg. So, let m be an S-

In order to determine the action of 6% on morphisms it suffices to define

automorphisms of x. Then we put

. =1 " rss
al(m) - (Jléf(x) o Wy o J% )(m).
The existence of (62,32) is proved similarly.

Functoriality of H2

Let (f,¢) : (A,MI)——(A',lI') be a morphism of sheafs of crossed groups on the
site E. With this we associate the mapping

£,0)® ¢ wia,my——n?ar,mn

which assigns to an element g = [(G,u,j)] of HZ(A,H) the element

£,0) P (g) = [(F,v,K)] of HE(A',II') where (F,v,k) is a (A',')-gerbe for
which there exists a (f,¢)~morphism (8,e) : (G,u,j)——>(F,v,k). This mapping
sends the neutral elements of HZ(A,ﬂ) over to neutral elements of HZ(A',H').

For each couple of composable morphisms of sheafs of crossed groups

M) — oA ————— (A", TI")

(£,¢) (g,¥)

one has that

(g,\P)(z) ° (f,‘p)(Z) = (g o f,‘JI ° w)(Z).

The second coboundary mapping. Let

e > ® = (A,0,,4) —> ' = (A',p",4") — " = (A",p"1",¢") > e
(£,1p) (9

be a short exact sequence of sheafs of crossed groups on the site E.

Theorem : Let (A,i) : (G",u',j') — (G",u",3i") be a (h,¥)~morphism of

gerbes.
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i3 1
If s is a section of G", then the gerbe K(s) of the relevations of s to G
has a structure of (A,I)-gerbe. K(s) supplied with this structure will be de-

noted by (K(s),u ,j ). Moreover, one has an evident isomorphism
s’"s
i(s) : TORSC(E,IH) ° us——————+ B' o k(s)
such that

(k(8),i()) & (R(s),u i )——>(G",n",i")

is a (f,ln)-morphlsm. N
\

Proof : First we shall show that ‘K(s) has a structure of (A,ll)-gerbe. So we
begin by defining a morphism of gerbes

Mg K(s)—/——TORSC(E,IT).

For any S-object (z,m) of K(s) we define

us(z,m) =u'(2).

Next we have to show that there exists a natural isomorphism

n A
js(z,m) : Auts(z,m)———————'> US(Z,m) A A

Since G' is a (A',l)-gerbe and G" is a (A",[I")-gerbe one has the following

diagram :
Aut (k(s)) Aut(}) \
Aut (z,m) 2 pue (2) z aut (A (2))
iz EIYON
W' (2) A ﬂ,(z)lr} A — " (2) kA"
idu'(z)A £ B, =, aM) 0 (p, aidyr)

: n . . .
Since Auts(z,m) as well as u'(z) A A is a kernel of Bz there exists a unique
isomorphism

' ) > u'(2) n A

ig(z,m) : Autg(z,m A
such that

(idu'(z) A f) ° js(z’m) = _]; ° A\.\t(k(s))(z’m).
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In this way we obtain a (A,M)~gerbe (K(s),us,js).

Next, for each object (z,m) of K(s)s, one has a natural isomorphism
n
i(s)(z,m) : us(z,m) ANl ———— ' (k(s)(z,m))
because
| 1 I
M (z,m) A= p'(z) AT, u'(k(s)(z,m)) = u'(z) and u'(z) A N ~u'(2)

It is easily checked that (k(s),i(s)) is a (f,]n)-morphism.

Application

The preceding theorem may be applied to the (h,¥)-morphism

(TORSC(E’h)’i(h,w)) : (TORSC(E,A'),uﬁ,jfl)—*(TORSC(E,An),uﬁ",jﬁu)

where, for each A'-torsor Q, the isomorphism i (Q) is obtained by compo~
(h,¥) y

sing the natural isomorphism
n ~ A
W@ A I g A

with the inverse of the isomorphism

uﬁn(Q A A") —“') Q A o,

A A"-torsor P determines a section of TORSC(E,A"). It will be denoted by Spe
Because of the preceding theorem, we have a structure of (A,M)-gerbe on the
gerbe K(P) of the relevations of P to A'. The gerbe K(P) supplied with this
structure will be denoted by
((2) 15,55
Furthermore, we have an isomorphism

ip : TORSC(E, 1) up — by o k(P)

such that (k(P),iP) is a (f,ln)-morphism.

Definition. With a short exact sequence

e>®= (AN ——— @' = A') ———— " = (A",0") > e (¥)

(£,1p) (b, )

we associate a mapping d : Hl(E,Q") ———*HZ(E,¢) which assigns to any element
p = [P] of H](E,¢") the element [(K(P),uP,jP)] of HZ(E,Q). This map d is cal-

led the second coboundary map.
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The short exact sequence (¥) gives rise to the cohomology sequence
2)
£, 1" )
1 > HO(E,®) + > ! (2,8 — w2 (E,2) 2 w2 ey B0 S u(E,em)

which is exact in the sense of the following theorem.

Theorem

(i) An element p of HI(E,Q") belongs to Im(h,w)(]) if and only if d(p)
is neutral

(ii) An element x of HZ(E,¢) belongs to Im d if and omnly if (f,ln)(z)(x)
is the unit element.

(2)

(iii) An element x of HZ(E,¢') belongs to Im(f,ln) if and only if

(h,c)(z)(x) is neutral.
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